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Error Analysis on General Grids for Finite

Difference Discretizations of Sturm-Liouville

Problems1
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mática Pura e Aplicada, UFRGS, 91509-900 Porto Alegre, RS, Brazil.

Abstract. We introduce a simple method to obtain very accurate pointwise es-
timates for both solution and gradient errors of finite difference discretizations on
arbitrary grids of one-dimensional Sturm-Liouville problems. Application is given
to the detailed analysis of an inconsistent, 2nd-order convergent scheme.
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1. Introduction

In this work we discuss a novel approach for the investigation of error bounds of
finite difference approximations on arbitrary grids to smooth solutions of regular
Sturm-Liouville problems with separated boundary conditions,

−
d

dx

(

K(x)
du

dx

)

+ q(x)u(x) = f(x), a < x < b, (1.1a)

α0 u(a) − α1K(a) u′(a) = Γa, β0 u(b) + β1K(b) u′(b) = Γb , (1.1b)

where α0, α1, β0, β1,Γa,Γb are given constants satisfying

α0, α1, β0, β1 ≥ 0, α0 + α1 > 0, β0 + β1 > 0, α0 + β0 > 0, (1.1c)

and where K, q, f are given (smooth) functions, with K(x) > 0, q(x) ≥ 0 everywhere
on [ a, b ]. (Actually, the analysis carries over to more general q, but to avoid non-
essential details we will restrict our attention to the simpler case q ≥ 0.) Under
these conditions, it is well known that problem (1.1) admits a unique solution u,
whose values are typically obtained only through some sort of discrete approxima-
tions such as those provided by finite difference or finite element schemes.

For the discretization of (1.1), we set up an arbitrary grid on the interval [ a, b ],
picking N + 1 points a = x0 < x1 < · · · < xN−1 < xN = b, called nodes, which
divide [ a, b ] into N subintervals [xi−1, xi], or cells, with lengths Li−1/2 = xi−xi−1,

1The authors would like to thank CAPES, CNPq and FAPERGS for their partial support.
2greice.lorenzzetti@ufrgs.br, jzingano@mat.ufrgs.br, pzingano@mat.ufrgs.br
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whose centers will be denoted by xi−1/2, 1 ≤ i ≤ N . (Here, we follow notation in
[1], [5].) Throughout the text, it will be convenient to set x−1/2 ≡ x0, L−1/2 ≡ 0,
xN+1/2 ≡ xN , LN+1/2 ≡ 0, and associate some local length with the nodes, given
by hi := xi+1/2 − xi−1/2, i.e.,

hi :=
Li−1/2 + Li+1/2

2
, 0 ≤ i ≤ N (L−1/2 ≡ 0, LN+1/2 ≡ 0 ). (1.2)

The corresponding numerical schemes to be considered are then cast in the form

−D(K · Gvh) + q · vh = f, (1.3a)

α0 v0 − α1K0 · (Gvh)0 = Γa, β0 vN + β1KN · (Gvh)N = Γb , (1.3b)

for appropriate difference operators D (“discrete divergent”), G (“discrete gradient”)
and discrete functions K, q, f (or, in more pedantic notation, Kh, qh, fh, with super-
script h referring to the grid) that represent (“project”) K, q, f on appropriate grid
points; solving (1.3) for vh gives the approximation sought for the exact values uh.
For example, the standard finite-difference formula3

−
Ki−1/2

Li−1/2
vi−1 +

(

Ki−1/2

Li−1/2
+

Ki+1/2

Li+1/2
+ qihi

)

vi −
Ki+1/2

Li+1/2
vi+1 = hifi, (1.4a)

with 1 ≤ i ≤ N − 1, plus the boundary terms corresponding to (1.1b) above, has
D, G given by

(Dw )i =
wi+1/2 − wi−1/2

hi
, (Gz)i−1/2 =

zi − zi−1

Li−1/2
, (1.4b)

while the so-called mimetic method [2], [5]

−
Ki−1

hi−1
vi−3/2 +

(

Ki−1

hi−1
+

Ki

hi
+ qi−1/2Li−1/2

)

vi−1/2−
Ki

hi
vi+1/2 = Li−1/2fi−1/2,

(1.5a)
with 1 ≤ i ≤ N , corresponds to4

(Dw )i−1/2 =
wi − wi−1

Li−1/2
, (Gz)i =

zi+1/2 − zi−1/2

hi
. (1.5b)

Of foremost importance here are the errors eh := vh − uh (“solution error”),
Eh := Gvh − (u′)h (“gradient error”), which are related to τh (“truncation error”)
defined by

−D(K · Guh) + q · uh = f + τh (1.6a)

at the internal nodes or cell centers, according to the particular scheme, and

α0 u0 − α1K0 · (Guh)0 = Γa + τ
0
, β0 uN + β1KN · (Guh)N = Γb + τ

N
(1.6b)

3Given w : [ a, b ] → R, we denote wi := w(xi), wi−1/2 := w(xi−1/2), w′

i := w′(xi), w′′

i+1/2
:=

w′′(xi+1/2), etc. Cell averaged values (as in finite element schemes) can also be used. Grid function
values at particular grid points are denoted in this work without superscript h (vi, wi−1/2, etc.).

4Although (1.4) and (1.5) look similar, they may behave quite differently (see below and [4], [5]).
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at the endpoints x0 = a, xN = b. The relevance of τh can be seen from the equations

−D(K · Geh) + q · eh = − τh (1.7a)

α0 e0 − α1K0 · (Geh)0 = − τ
0
, β0 eN + β1KN · (Geh)N = − τ

N
(1.7b)

relating τh to eh. In particular, it is a fundamental result that, as the grid is
infinitely refined (“h → 0”), condition τh→ 0 (“consistency”) is sufficient to assure
eh→ 0 (“convergence”)5, although it is by no means necessary [2], [4], [7], [8]. One
example is given by scheme (1.5), for which6

τi−1/2 = Ki−1/2 u′′

i−1/2

(

1 −
hi + hi−1

2Li−1/2

)

−
1

6
Ki−1/2 u′′′

i−1/2

h2
i − h2

i−1

Li−1/2

(1.8)

−
1

4
K ′

i−1/2 u′′

i−1/2 (hi − hi−1) + O(L2
i−3/2) + O(L2

i−1/2) + O(L2
i+1/2)

for 1 ≤ i ≤ N : not only τh does not decrease uniformly as h → 0, it may well
grow unboundedly! In spite of such odd behavior, (1.5) turns out to have some
nice convergence properties and even a few advantages over the more standard,
consistent formula (1.4) [2], [5], [8]. However, it is in general extremely difficult to
investigate the behavior of convergent inconsistent schemes by traditional numerical
analysis, particularly on rough grids7 [4]. One nice feature of our approach is that
it can handle many such problems almost as easily as it does in case of problems
that are simple enough to be satisfactorily tackled by classical analysis. In the next
sections, this will be illustrated by applying our procedure to the derivation of sharp
error estimates for the mimetic scheme (1.5). The results are easy to describe: one
obtains6

ei−1/2 = −
1

8
u′′(xi−1/2)L2

i−1/2 + O(ℏ2), 1 ≤ i ≤ N (1.9a)

e0 = O(ℏ2), eN = O(ℏ2) (1.9b)

Ei = O(ℏ2), 0 ≤ i ≤ N (1.9c)

with all O(ℏ2) terms having size bounded by Cℏ
2 for some positive constant C that

depends on the solution u but is independent of i or the particular grid considered,
where ℏ is the grid spacing parameter given by

ℏ =

√

√

√

√

N
∑

j = 1

L3
j−1/2 . (1.10)

This is precisely the exact behavior observed in numerical experiments [1], [5], [8].

5One must note that, in our present setting, consistency is also sufficient for zero-stability [8].
6Expressions (1.8), (1.9) are valid provided that K ∈ C3([ a, b ]), u ∈ C4([ a, b ]). If K, u are less

smooth, then these must be changed accordingly.
7Similar comments apply to the investigation of supraconvergence phenomena in general [3], [7].
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2. Error Analysis for q = 0

Our analysis of discrete schemes (1.3) begins with the fundamental case q = 0.
To shorten our exposition, let us discuss the Dirichlet problem only, the other
boundary problems being treated in a completely similar way. The starting point
in the analysis is to estimate the quantity Geh. Because

Ki(Geh)i = KN (Geh)N −
N

∑

j = i + 1

Lj−1/2 (D(K · Geh))j−1/2 (2.1)

for all 0 ≤ i ≤ N , we obtain, using (1.7) and recalling that q = 0,

Ki(Geh)i = KN (Geh)N −

N
∑

j = i + 1

Lj−1/2 τj−1/2, 0 ≤ i ≤ N . (2.2)

Now, from (1.8), we get

N
∑

j = i + 1

Lj−1/2 τj−1/2 = O(ℏ2) +

N
∑

j = i + 1

Kj−1/2 u′′

j−1/2 (Lj−1/2 −
hj−1 + hj

2
)

(2.3)

−
1

4

N
∑

j = i + 1

K ′

j−1/2 u′′

j−1/2 Lj−1/2 (hj − hj−1) −
1

6

N
∑

j = i + 1

Kj−1/2 u′′′

j−1/2 (h2
j − h2

j−1)

and we proceed by estimating the sums on the right hand side of (2.3): for the first
one, setting w(x) = K(x)u′′(x), we have

N
∑

j = i + 1

Kj−1/2 u′′

j−1/2 (Lj−1/2 −
hj−1 + hj

2
) =

= −
1

4

N
∑

j = i + 1

wj−1/2

{

(Lj+1/2 − Lj−1/2 ) − (Lj−1/2 − Lj−3/2 )
}

= −
1

4

N
∑

j = i + 1

{

wj (Lj+1/2 − Lj−1/2 ) − wj−1 (Lj−1/2 − Lj−3/2 )
}

+
1

4

N
∑

j = i + 1

{

(wj − wj−1/2 ) (Lj+1/2 − Lj−1/2 )

− (wj−1 − wj−3/2 ) (Lj−1/2 − Lj−3/2 )
}

+
1

4

N
∑

j = i + 1

(wj−1/2 − wj−3/2 ) (Lj−1/2 − Lj−3/2 )

=
1

4
wN−1/2 LN−1/2 +

1

4
wi−1/2 (Li+1/2 − Li−1/2 )

+
1

8

N
∑

j = i + 1

w′

j−1 (L2
j−1/2 − L2

j−3/2 ) + O(ℏ2)

=
1

4
wN−1/2 LN−1/2 +

1

8
w′

N−1/2 L2
N−1/2 +

1

4
wi−1/2 (Li+1/2 − Li−1/2)
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−
1

8
w′

i L2
i−1/2 + O(ℏ2)

=
1

4
wN LN−1/2 +

1

4
wi(Li+1/2 − Li−1/2) −

1

8
w′

i Li−1/2Li+1/2 + O(ℏ2),

so that we obtain

N
∑

j = i + 1

Kj−1/2 u′′

j−1/2 (Lj−1/2 −
hj−1 + hj

2
) =

(2.4a)

=
1

4
KN u′′

N LN−1/2 +
1

4
Ki u′′

i (Li+1/2 − Li−1/2 ) +

−
1

8
K ′

i u′′

i Li−1/2 Li+1/2 −
1

8
Ki u′′′

i Li−1/2 Li+1/2 + O(ℏ2).

In a similar way, for the second term in (2.3), setting w̃(x) := K′(x)u′′(x), we get

N
∑

j = i + 1

K ′

j−1/2 u′′

j−1/2 Lj−1/2 (hj − hj−1 ) =

= −
1

4

N
∑

j = i + 1

{

w̃j Lj−1/2 hj − w̃j−1 Lj−1/2 hj−1

}

+ O(ℏ2)

= w̃N LN−1/2 hN − w̃i Li−1/2 hi −

N
∑

j = i + 1

w̃j−1 (Lj−1/2 − Lj−3/2 )hj−1

+ O(ℏ2)

= w̃N LN−1/2 hN − w̃i Li−1/2 hi −
1

2

N
∑

j = i + 1

{

w̃j L2
j−1/2 − w̃j−1 L2

j−3/2

}

+ O(ℏ2)

= −
1

2
w̃i Li−1/2 Li+1/2 + O(ℏ2),

that is,

N
∑

j = i + 1

K ′

j−1/2 u′′

j−1/2 Lj−1/2 (hj − hj−1 ) = −
1

2
K ′

i u′′

i Li−1/2 Li+1/2 + O(ℏ2).

(2.4b)

Finally, for the third term in (2.3), we get

N
∑

j = i + 1

Kj−1/2 u′′′

j−1/2 (h2
j − h2

j−1 ) =
1

4
KN−1/2 u′′′

N−1/2 L2
N−1/2 − Ki u′′′

i h2
i

(2.4c)
+ O(ℏ2),

so that we have, from (2.3) and (2.4a), (2.4b), (2.4c),

N
∑

j = i + 1

Lj−1/2 τj−1/2 =
1

4
KN u′′

N LN−1/2 −
1

24
KN u′′′

N L2
N−1/2 +
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(2.5)

+
1

4
Ki u′′

i (Li+1/2 − Li−1/2 ) −
1

8
Ki u′′′

i Li−1/2 Li+1/2 +
1

6
Ki u′′′

i h2
i + O(ℏ2).

Now, for (2.2) to be useful, there still remains to estimate (Geh)N = − eN−1/2/hN .
Solving (1.7a) for eN−1/2 (using, say, Gaussian elimination), we obtain

eN−1/2 = −
θ
[0]
N−1cN−1

cN + θ
[0]
N−1cN−1

N
∑

j = 1

1

θ
[0]
j−1cj−1

Lj−1/2 τj−1/2 (2.6)

where ci = Ki/hi and

θ
[0]
i =

hi

Ki

(

i
∑

ℓ = 0

hℓ

Kℓ

)

−1

, 0 ≤ i ≤ N . (2.7)

The sum on the right hand side of (2.6) can be computed as in (2.3) – (2.5) above:
setting

IN :=

N
∑

j = 0

hj

Kj
=

∫ b

a

1

K(x)
dx + O(ℏ2), (2.8)

we get
N

∑

j = 1

1

θ
[0]
j−1cj−1

Kj−1/2 u′′

j−1/2 (Lj−1/2 −
hj−1 + hj

2
) =

=
1

4
IN KN u′′

N LN−1/2 + O(ℏ2),
N

∑

j = 1

1

θ
[0]
j−1cj−1

K ′

j−1/2 u′′

j−1/2 Lj−1/2 (hj − hj−1 ) = O(ℏ2),

N
∑

j = 1

1

θ
[0]
j−1cj−1

Kj−1/2 u′′′

j−1/2 (h2
j − h2

j−1 ) =
1

4
IN KN u′′′

N L2
N−1/2 + O(ℏ2),

so that we have

N
∑

j = 1

1

θ
[0]
j−1cj−1

Lj−1/2 τj−1/2 =
1

4
IN KN u′′

N LN−1/2 +

(2.9)

−
1

24
IN KN u′′′

N L2
N−1/2 + O(ℏ2).

Also, from (2.7) and (2.8),

θ
[0]
N−1cN−1

cN + θ
[0]
N−1cN−1

=
1

1 + cN

N − 1X
ℓ = 0

hℓ

Kℓ

=
hN

KN

NX
ℓ = 0

hℓ

Kℓ

=
hN

INKN
, (2.10)

which immediately yields, from (2.6) above,

eN−1/2 = hN

{

−
1

4
u′′

N LN−1/2 +
1

24
u′′′

N L2
N−1/2 + O(ℏ2)

}

. (2.11)
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Therefore, we obtain, for (Geh)N ,

(Geh)N =
1

4
u′′

N LN−1/2 −
1

24
u′′′

N L2
N−1/2 + O(ℏ2), (2.12)

so that we get, from (2.1), (2.5) and (2.12), the fundamental estimate

(Geh)i = −
1

4
u′′

i (Li+1/2 − Li−1/2 ) −
1

24
u′′′

i (L2
i−1/2 − Li−1/2Li+1/2

(2.13)

+ L2
i+1/2 ) + O(ℏ2)

for all 0 ≤ i ≤ N . In particular, because Eh satisfies

Ei = (Geh)i + (Guh)i − u′

i

= (Geh)i +
1

4
u′′

i (Li+1/2 − Li−1/2) +
1

48
u′′′

i

L3
i−1/2 + L3

i+1/2

hi
+ O(ℏ2),

we obtain

Ei = O(ℏ2), 0 ≤ i ≤ N , (2.14)

as claimed. Finally, from the trapezoidal quadrature rule, we have

ei−1/2 = −
1

8
u′′(xi−1/2)L

2
i−1/2 + O(L3

1/2 + ... + L3
i−1/2) +

i− 1
∑

j = 0

hj Ej

for all 1 ≤ i ≤ N + 1. so that (2.14) gives

ei−1/2 = −
1

8
u′′

i−1/2 L2
i−1/2 + O(ℏ2), 1 ≤ i ≤ N . (2.15)

3. Error Analysis for q ≥ 0

We now derive similar estimates for nonnegative q ∈ C0([ a, b ]), and same smooth-
ness assumptions on K, u. Given such q, the corresponding solution error will
hereafter be denoted by e[q], to distinguish from the case q = 0. Writing (1.7a) as

Ah(q)e[q] = −Lhτh, Ah(q) = Ah(0) + Qh(q), (3.1)

where Lh = diag (L1/2, ..., LN−1/2), Qh(q) = diag ( q1/2L1/2, ..., qN−1/2LN−1/2),

and recalling that Ah(0)e[0] = −Lhτh, we obtain, for the difference e[q] − e[0], the
linear algebraic equation

Ah(q) (e[q] − e[0]) = −Qhe[0]. (3.2)

Reducing (3.2) to triangular form, we obtain Âh(q) (e[q] − e[0]) = ζ̂, where ζ̂ is
given by
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ζ̂i−1/2 = −

i
∑

j = 1

θ
[q]
i−1ci−1

θ
[q]
j−1cj−1

ν
[q]
ij Lj−1/2 qj−1/2 e

[0]
j−1/2, 1 ≤ i ≤ N , (3.3)

with | ν
[q]
ij | ≤ 1 for all i, j, and positive θ

[q]
1 , θ

[q]
2 , ... given recursively by θ

[q]
0 = 1

and

θ
[q]
i =

ci−1 θ
[q]
i−1 + qi−1/2 Li−1/2

ci−1 θ
[q]
i−1 + ci + qi−1/2 Li−1/2

, 1 ≤ i ≤ N − 1. (3.4)

Thus, we have

| ζ̂i−1/2 | ≤ θ
[q]
i−1ci−1

i
∑

j = 1

1

θ
[q]
j−1cj−1

Lj−1/2 ‖ q ‖sup | e
[0]
j−1/2 |

≤ θ
[q]
i−1ci−1 ‖ q ‖sup

i
∑

ℓ = 1

hℓ

Kℓ

i
∑

j = 1

Lj−1/2 | e
[0]
j−1/2 |, 1 ≤ i ≤ N ,

that is,

| ζ̂i−1/2 | ≤ θ
[q]
i−1ci−1 IN ‖ q ‖sup

N
∑

j = 1

Lj−1/2 | e
[0]
j−1/2 |, 1 ≤ i ≤ N ,

where ‖ q ‖sup denotes the supnorm of q on [ a, b ]. This immediately gives

‖ e[q] − e[0] ‖sup ≤ IN ‖ q ‖sup

N
∑

j = 1

Lj−1/2 | e
[0]
j−1/2 |, 1 ≤ i ≤ N , (3.5)

so that ‖ e[q] − e[0] ‖sup = O(ℏ2) by (2.15). Therefore,

e
[q]
i−1/2 = −

1

8
u′′(xi−1/2)L2

i−1/2 + O(ℏ2), 1 ≤ i ≤ N (3.6)

where the size of the constant in the term O(ℏ2) depends on the values of q, K,
1/K and of derivatives K(ℓ), u(1+ℓ), 0 ≤ ℓ ≤ 3, on [ a, b ].

It still remains to estimate E[q], Ge[q], and, now that (3.6) has been obtained,
this can be done as in Section 2: from (2.1), we have, for 0 ≤ i ≤ N ,

Ki(Ge[q])i = KN (Ge[q])N −
N

∑

j = i + 1

Lj−1/2 qj−1/2 e
[q]
j−1/2 −

N
∑

j = i + 1

Lj−1/2 τj−1/2, (3.7)

where the first sum has size O(ℏ2), by (3.6), and the last has already been com-
puted, see (2.5) above. As to KN (Ge[q])N , we proceed as we did before, computing

e
[q]
N−1/2 to third order accuracy. From (3.1), we have Ah(0)e[q] = b(u) − Qh(q)e[q],

where b(u) := −Lhτh; after elimination, this becomes Âh(0)e[q] = b̂(u) − ζ̂, with

ζ̂ = (ζ̂1/2, ... , ζ̂N−1/2) given by

ζ̂i−1/2 = −

i
∑

j = 1

θ
[0]
i−1ci−1

θ
[0]
j−1cj−1

Lj−1/2 qj−1/2 e
[q]
j−1/2, 1 ≤ i ≤ N ,
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where cℓ := Kℓ/hℓ. This gives | ζ̂i−1/2 | ≤ θ
[0]
i−1ci−1 IN ‖ q ‖sup

i
∑

j = 1

Lj−1/2 | e
[q]
j−1/2 |

and therefore, by (2.10),

∣

∣

∣
( Âh(0)−1ζ̂ )

N−1/2

∣

∣

∣
≤

θ
[0]
N−1cN−1

cN + θ
[0]
N−1cN−1

IN ‖ q ‖sup

N
∑

j = 1

Lj−1/2 | e
[q]
j−1/2 |

=
hN

KN
‖ q ‖sup

N
∑

j = 1

Lj−1/2 | e
[q]
j−1/2 |.

For e[0] = Ah(0)−1b(u) = Âh(0)−1 b̂(u), we get e
[q]
N−1/2 = e

[0]
N−1/2 − (Âh(0)−1ζ̂ )

N−1/2
,

so that, by (2.6), (2.11) and (3.6), we obtain

e
[q]
N−1/2 = hN

{

−
1

4
u′′

N LN−1/2 +
1

24
u′′′

N L2
N−1/2 + O(ℏ2)

}

. (3.8)

This gives

(Ge[q])N =
1

4
u′′

N LN−1/2 −
1

24
u′′′

N L2
N−1/2 + O(ℏ2), (3.9a)

so that we obtain, from (2.5), (3.6), (3.7) and (3.9a),

(Ge[q])i = −
1

4
u′′

i (Li+1/2 − Li−1/2 ) −
1

24
u′′′

i (L2
i−1/2 − Li−1/2Li+1/2

(3.9b)
+ L2

i+1/2 ) + O(ℏ2)

for all 0 ≤ i ≤ N . Since E[q] = Ge[q] + Guh − u′, we finally obtain

E
[q]
i = O(ℏ2), 0 ≤ i ≤ N , (3.10)

and the argument is complete.
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Resumo. Neste trabalho é apresentado um procedimento de análise simples para a
investigação detalhada dos erros de aproximação em malhas arbitrárias decorrentes
de métodos de diferenças finitas usados na discretização de problemas de Sturm-
Liouville unidimensionais. Como ilustração, um esquema inconsistente (mas con-
vergente) é examinado, com estimativas precisas dos erros de solução e gradiente.
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