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Abstract. The aim of this work is to present an approach of interval fuzzy logic
based on complete lattices. In particular, we study the extensions of the notions of
t-conorms, fuzzy negations and S-implication, from the unit interval to arbitrary
complete lattices. Some general properties of S-implications on complete lattices
are analyzed. We show that the interval extensions of t-conorms, fuzzy negations
and S-implications on complete lattices preserve the optimality property, being the
best interval representations of these fuzzy connectives.
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1. Introduction

Fuzzy set theory is a mathematical theory introduced by Zadeh [32] to deal with
uncertain or vague notions, using values in the unit interval [0, 1] to indicate the
specialist’s uncertainty when evaluating the membership degree of an element to
a given set. Fuzzy Logic, the logic underlying this theory, allows more human-like
interpretation and reasoning in machines than the classic logic. Fuzzy systems
technology has achieved its maturity with widespread applications in many areas,
such as, e.g., control, automation, artificial intelligence, image/signal processing,
pattern recognition. [23]

On the other hand, interval mathematics [25] was developed to model the un-
certainty in numerical computations, allowing the development of reliable computa-
tional tools with the rigorous and automatic error analysis of numerical algorithms,
with applications in technological and scientific computations [3, 11, 19].
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There are several papers connecting these areas (see, e.g., [9, 12, 14, 22, 24]),
showing the intrinsic relation between fuzzy logic and interval mathematics. In this
paper, we consider the so-called interval fuzzy logic approach, which uses interval as
membership degrees of fuzzy sets, aiming at dealing with the uncertainty associated
to digital computers.

Lattice theory has been used to consider fuzzy logic in a more general frame-
work. See, e.g., the works on L-fuzzy set theory [15], BL-algebras of Hájek [16]
and Brouwerian lattices [29]. The notion of triangular norm (t-norm, for short) of
partially ordered sets, which are more general mathematical structures than com-
plete lattices, is considered in [8, 2]. In [26, 4], an extension of t-norms for bounded
lattice was presented in the same sense as proposed by [8, 2]. In [9, 10] complete
lattices were considered.

This work uses complete lattices in the interval fuzzy logic approach. Different
from the papers mentioned in the above paragraph, the aim of this work is to
introduce a generalization of t-conorms, fuzzy negations and fuzzy S-implications
for arbitrary complete lattices. It is shown that the interval constructor preserves
the usual constructions of fuzzy S-implication as well as the related properties. We
observe that these results are based on the preservation of the monotonicity of such
functions by their interval representations.

The paper is organized as follows. In Sect. 2., we review the basic concepts, such
as complete lattices and the interval version of this class of lattices. In Sect. 3., we
present the interval constructor and discuss the conditions to obtain the best interval
representation of a real function. Interval extensions of fuzzy t-conorms and fuzzy
negations are introduced in Sections 4. and 5., respectively. Further analysis of the
properties satisfied by fuzzy S-implications is done in Sect. 6.: Sect. 6.1. shows that
the minimal properties of fuzzy implications may be extended considering interval
fuzzy degrees, in a natural way; in Sect. 6.2., a commutative diagram relating fuzzy
S-implications with interval fuzzy S-implications is discussed. Section 7. is the
Conclusion.

2. Lattices

Let L = 〈L,∧,∨〉 be an algebraic structure, where L is a nonempty set and ∧ and ∨
are binary operations, called, respectively, meet and join. L is a lattice, if, for each
x, y, z ∈ L, the operations meet and join are commutative, associative, and satisfy
the absorption laws:

(1a) x ∧ y = y ∧ x; (1b) x ∨ y = y ∨ x;

(2a) x ∧ (y ∧ z) = (x ∧ y) ∧ z; (2b) x ∨ (y ∨ z) = (x ∨ y) ∨ z;

(3a) x ∧ (x ∨ y) = x; (3b) x ∨ (x ∧ y) = x.

If there exist two distinct elements, 0 and 1, such that, for each x ∈ L, x∧1 = x

and x ∨ 0 = x, then L = 〈L,∧,∨, 1, 0〉 is said to be a bounded lattice.
Each lattice L = 〈L,∧,∨〉 establishes a partial order ≤L ⊆ L × L, defined by

x ≤L y ⇔ x ∧ y = x ⇔ x ∨ y = y,
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where ∧ is the greatest lower bound (infimum) and ∨ is the least upper bound
(supremum) of the set {x, y}. A bounded lattice L is called complete if the infimum
and the supremum exist for any subset of L.

In the interval version of a complete lattice L, denoted by IL = 〈L,∧,∨, [1, 1], [0, 0]〉,
the set of intervals in L, L = {[x, x] : x, x ∈ L, x ≤L x}, satisfies the conditions

(a) [x, x] ∧ [y, y] = [x ∧L y, x ∧L y] and (b) [x, x] ∨ [y, y] = [x ∨L y, x ∨L y].

Clearly, IL is also a complete lattice. In fact, considering A ⊂ L, it holds that

supA = [sup{X | [X,X] ∈ A}, sup{X | [X,X] ∈ A}],

inf A = [inf{X | [X,X] ∈ A}, inf{X | [X,X] ∈ A}].

The associated order for IL agrees with the product order and can be expressed
as

[x, x] ≤L [y, y] if and only if x ≤L y and x ≤L y. (2.1)

The partial order defined in Eq. (2.1) generalizes the most usual partial order in the
context of interval mathematics, introduced by Kulisch and Miranker [21]. That is,
when the usual order of the real numbers is considered and L is the unitary interval,
the order in Eq. (2.1) coincides with the order of Kulisch-Miranker.

Remark 1. One can notice that:
(i) X ≤L Y if and only if, for each x ∈ X, there exists y ∈ Y such that x ≤L y

and, for each y ∈ Y , there exists x ∈ X such that x ≤L y.
(ii) X = Y if and only if, for each x ∈ X, there exists y ∈ Y such that x ≤L y and,
for each y ∈ Y , there exists x ∈ X such that y ≤L x.

3. Interval Representations

The notions of interval representation and canonical interval representation, here
refereed as the best interval representation, were both introduced in [28], with
the goal of providing a mathematical foundation for interval computations, where
correctness and optimality principles can be verified. In this section, a generalization
for arbitrary complete lattices is presented. Notice that an interval [x, x] ∈ L may be
seen either as a pair of elements (x, x) or as a set of elements {α ∈ L | x ≤L α ≤L x},
and the latter is considered in this paper.

An interval X ∈ L is said to be an interval representation of each α ∈ X. Let X

and Y be interval representations of α. Thus, X is said to be a better representation
of α than Y if X ⊆ Y . This notion can be easily extended for n-tuples of intervals,
indicated by ( ~X) = (X1, . . . ,Xn).

Definition 3.1. Let L be a complete lattice. A function F : L
n −→ L is an

interval representation of a function f : Ln −→ L if, for each ~X ∈ L
n and ~x ∈ ~X,

f(~x) ∈ F ( ~X).

Thus, when L is a complete lattice, an interval function F : L
n −→ L is a better

interval representation of the function f : Ln −→ L than G : L
n −→ L, denoted by

G ⊑ F , if for each ~X ∈ L
n, the inclusion F ( ~X) ⊆ G( ~X) holds.
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Definition 3.2. Let L be a complete lattice. For each function f : Ln −→ L, the

interval function f̂ : L
n −→ L, defined bybf( ~X) = [inf{f(~x) | ~x ∈ ~X}, sup{f(~x) | ~x ∈ ~X}] (3.1)

is called the best interval representation of f .

The interval function f̂ is well defined [27, 28] and for any other interval rep-

resentation F of f , F ⊑ f̂ . The function f̂ returns a narrower interval than any
other interval representation of f [17]. Thus, f̂ has the optimality property of inter-
val algorithms mentioned by Hickey et al. [18], when it is seen as an algorithm to
compute a real function f .

4. T-conorms on Complete Lattices

Let L be a complete lattice. An interval triangular conorm (t-conorm, for short)
is a function S : L2 → L that is commutative, associative, monotonic and has 0 as
the neutral element.

It follows from the work proposed in [5] that an interval t-conorm may be con-
sidered as an interval representation of a t-conorm. This interval generalization
of a t-conorm on the unit interval lattice fits the fuzzy principle and the interval
membership degree may be thought as an approximation of the exact degree.

Proposition 4.1. If S is a t-conorm on the complete lattice L then Ŝ : L
2 → L is

a t-conorm on the complete lattice IL.

Proof. It is analogous to [6, Theorem 5.1].

Proposition 4.2. Let S be a t-conorm on the complete lattice L and Ŝ : L
2 →

L be the corresponded interval t-conorm on the interval lattice IL. Based on the
monotonicity of t-conorms, Ŝ can be expressed by:

Ŝ(X,Y ) = [S(X,Y ), S(X,Y )]. (4.1)

Proof. Since, for each x ∈ X and y ∈ Y , it holds that X ≤L x ≤L X and
Y ≤L y ≤L Y , then, based on the monotonicity of the t-conorm S, it follows
that S(X,Y ) ≤L S(x, y) ≤L S(X,Y ). So, S(X,Y ) is the minimal element and
S(X,Y ) is the maximal element (and then they are the infimum and supremum,
repectively) of {S(x, y) | x ∈ X and y ∈ Y }. Thus, by Eq. (3.1), it follows that

[S(X,Y ), S(X,Y )] = Ŝ(X,Y ).

5. Fuzzy Negations on Complete Lattices

A function N : L → L is a fuzzy negation on the complete lattice L if

N1 : N(0) = 1 and N(1) = 0;

N2 : If y ≤L x then N(x) ≤L N(y);
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Fuzzy negations satisfying the involutive property are called strong fuzzy nega-
tions [20, 7] on L, i.e.:

N3 : N(N(x)) = x, ∀x ∈ L.

One can introduce a partial order on fuzzy negations in a natural way. For fuzzy
negations N1 and N2, define N1 ≤ N2 if, for each x ∈ L, N1(x) ≤L N2(x).

A function N : L → L is an interval fuzzy negation on the complete lattice IL if
the following conditions hold:

N1 : N([0, 0]) = [1, 1] and N([1, 1]) = [0, 0];

N2a : If Y ≤L X then N(X) ≤L N(Y );

N2b : If X ⊆ Y then N(X) ⊆ N(Y ).

Interval fuzzy negations satisfying the involutive property [7, 20] on L, are called
strong interval fuzzy negations, that is:

N3 : N(N(X)) = X, ∀X ∈ L.

Proposition 5.1. Let N : L −→ L be a fuzzy negation on the complete lattice L.
A characterization of N̂ : L → L can be given by:

N̂(X) = [N(X), N(X)]. (5.1)

Proof. Since, for each x ∈ X, it holds that X ≤L x ≤L X, then, based on the
antitonicity of N , it follows that N(X) ≤L N(x) ≤L N(X). So, N(X) is the
minimal element and N(X) is the maximal element (and then they are the infimum
and supremum, repectively) of {N(x) | x ∈ X}. Thus, by Eq. (3.1), it follows that

[N(X), N(X)] = N̂(X).

In the next theorem, it is shown that the interval function N̂ , presented in
Prop. 5.1, satisfies the conditions of an interval fuzzy negation.

Theorem 5.1. Let N : L −→ L be a fuzzy negation on the complete lattice L.
Then N̂ : L −→ L is a fuzzy negation on the complete lattice IL. Moreover, if N is
a strong fuzzy negation on L then N̂ is a strong fuzzy negation on IL.

Proof. It follows that:

N1 : It is trivial.

N2a : If Y ≤L X then it holds that Y ≤L X and Y ≤L X. So, by N2, it fol-
lows that N(X) ≤L N(Y ) and N(X) ≤L N(Y ). Therefore, one has that
[N(X), N(X)] ≤L [N(Y ), N(Y )] and then, by Prop. 5.1, it follows that

N̂(X) ≤L N̂(Y ).

N2b : If X ⊆ Y then, it holds that Y ≤L X and X ≤L Y . So, by N2, it fol-
lows that N(X) ≤L N(Y ) and N(Y ) ≤L N(X). Therefore, one has that

[N(X), N(X)] ⊆ [N(Y ), N(Y )] and then, by Prop. 5.1, N̂(X) ⊆ N̂(Y ).
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N3 : Considering that N is a strong fuzzy negation, by Prop. 5.1 and the involution
of N , it holds that N̂ ◦ N̂(X) = N̂([N(X), N(X)]) = [N(N(X)), N(N(X))] =
X.

6. Fuzzy Implications

Let L be a complete lattice. A binary function I : L2 −→ L is a fuzzy implication
on L if I satisfies the minimal boundary conditions:

I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0.

Some reasonable properties may be required for fuzzy implications. The prop-
erties considered in this paper are listed below:

I1 : If x ≤L z then I(x, y) ≥L I(z, y);

I2 : If y ≤L z then I(x, y) ≤L I(x, z);

I3 : I(1, x) = x (left neutrality principle);

I4 : I(x, I(y, z)) = I(y, I(x, z)) (exchange principle);

I5 : I(x, y) = I(N(y), N(x)), with respect to a fuzzy negation N (contraposition
law).

Several definitions for fuzzy implication together with related properties have
been given for the unit interval lattice [7, 13, 30, 31]. In these definitions, a fuzzy
implication should have the same behavior than the classical implication for the
crisp case.

Proposition 6.1. Let I : L2 −→ L be a fuzzy implication on a complete lattice
L satisfying the properties I1 and I2. The interval fuzzy implication Î can be
expressed as

Î(X,Y ) =[I(X,Y ), I(X,Y )]. (6.1)

Proof. If X ≤L x ≤L X and Y ≤L y ≤L Y then, by I1 and I2, it follows that
I(X,Y ) ≤L I(x, y) ≤L I(X,Y ), and then I = {I(x, y) : x ∈ X, y ∈ Y } ⊆ Î(X,Y ).
Since I(X,Y ), I(X,Y ) ∈ I, then they are the infimum and the supremum of I,
respectively.

6.1. S-implications and the Interval Constructor

Let S be a t-conorm and N be a fuzzy negation on the complete lattice L. Then
the fuzzy implication called S-implication [20] on L is given by:

IS,N (x, y) = S(N(x), y). (6.2)



S-Implications on Complete Lattices and the Interval Constructor 149

An S-implication arises from the notion of disjunction and negation using the
corresponding tautology of classical logic. More specifically, S-implications are
based on the classical logical equivalence: α → β ≡ ¬α ∨ β.

One can notice that in some works (e.g., in [1, 7, 13]), an S-implication requires a
strong fuzzy negation. In this case, the S-implication is called a strong S-implication.
The main results relating S-implications and the properties I1, . . ., I5 are considered
below.

Proposition 6.2. Let I : L2 → L be a fuzzy implication. I is a strong S-implication
on L if and only if NI(x) = I(x, 0) is a strong fuzzy negation and the properties I1

and I4 are satisfied.

Proof. It is analogous to [1, Theorem 2.6].

Theorem 6.1. Let I : L2 → L be a fuzzy implication. I is a strong S-implication
on L if and only if the properties I1 or I2, I3, I4, and I5 (with respect to a strong
fuzzy negation N) are satisfied.

Proof. It is analogous to [1, Theorem 2.8].

Considering any fuzzy implication on an arbitrary complete lattice L, it is al-
ways possible to obtain an interval fuzzy implication canonically. An interval fuzzy
implication satisfies the optimality property and preserves the same properties sat-
isfied by a fuzzy implication. In the following, the best interval representation of
a fuzzy implication is shown to be an inclusion-monotonic function in both argu-
ments. The related proofs are straightforward, following from the definition of Î as
a particular case of the Eq. (3.1).

Proposition 6.3. If I is a fuzzy implication on L then Î is a fuzzy implication on
IL.

Proposition 6.4. Let I be a fuzzy implication on L. Then, for each X1,X2, Y1, Y2 ∈
L, if X2 ⊆ X1 and Y1 ⊆ Y2 then it holds that Î(X1, Y1) ⊆ Î(X2, Y2).

Proof. Suppose that X2 ⊆ X1 and Y1 ⊆ Y2. Thus, one has that: (i) X
1
≤L

X
2
≤L X2 ≤L X1 and, based on properties I1 and I2, it holds that I(X

2
, Y

2
) ≤L

I(X
1
, Y

2
) ≤ I(X

1
, Y

1
); (ii) Y

2
≤L Y

1
≤L Y 1 ≤L Y 2 and, based on properties I1

and I2, it follows that I(X1, Y 1) ≤L I(X2, Y 1) ≤ I(X2, Y 2). Then, onde has that
inf{I(x, y)|x ∈ X2, y ∈ Y2} ≤L inf{I(x, y)|x ∈ X1, y ∈ Y1} and sup{I(x, y)|x ∈
X1, y ∈ Y1} ≤L sup{I(x, y)|x ∈ X2, y ∈ Y2}. It follows that I(X1, Y1) ⊂ I(X2, Y2).

Theorem 6.2. Let I be a fuzzy implication on L. If I satisfies a property Ik, for
some k = 1, . . . , 5, then Î also satisfies the property Ik.

Proof. It follows that:

I1 : If u ∈ Î(Z, Y ), there exist z ∈ Z and y ∈ Y such that u ≤L I(z, y). If X ≤L Z

then, by remark 1(i), there exists x ∈ X such that x ≤L z and thus, by I1,

it follows that I(x, y) ≥L I(z, y) ≥L u. On the other hand, if v ∈ Î(X,Y ),
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there exist x ∈ X and y ∈ Y such that v ≥L I(x, y). If X ≤L Z then,
by remark 1(i), there exists x ∈ X such that x ≤L z and therefore, by I1,

v ≥L I(x, y) ≥L I(z, y). So, one has that Î(X,Y ) ≥L Î(Z, Y ).

I2 : If u ∈ Î(X,Y ), there exist x ∈ X and y ∈ Y such that u ≤L I(x, y). If
Y ≤L Z then, by remark 1(i), there exists y ∈ Y such that y ≤L z and

therefore, by I2, u ≤L I(x, y) ≤L I(x, z). Analogously, if v ∈ Î(X,Z), there
exist x ∈ X and z ∈ Z such that v ≥L I(x, z). If Y ≤L Z then, by remark
1(i), there exists y ∈ Y such that y ≥L z and therefore, by I2, it follows that

I(x, y) ≤L I(x, z) ≤L v. So, by remark 1(i), one has that Î(X,Y ) ≤L Î(X,Z).

I3 : Trivially, by I3, for each x ∈ X, it holds that I(1, x) = x, and then {I(1, x) :

x ∈ X} = X. Thus, since Î([1, 1],X) is the narrowest interval containing

{I(1, x) : x ∈ X}, it follows that Î([1, 1],X) = X.

I4 : If u ∈ Î(X, Î(Y,Z)) then there exist x ∈ X, y ∈ Y and z ∈ Z such that
u ≤L I(x, I(y, z)). But, by I4, it holds that I(x, I(y, z)) = I(y, I(x, z)) ∈

Î(Y, Î(X,Z)). On the other hand, if v ∈ Î(Y, Î(X,Z)) then there exist x ∈ X,
y ∈ Y and z ∈ Z such that v ≤L I(y, I(x, z)). But, by I4, it holds that

I(y, I(x, z)) = I(x, I(y, z)) ∈ Î(X, Î(Y,Z)). So, by remark 1(ii), one has that

Î(X, Î(Y,Z)) = Î(Y, Î(X,Z)).

I5 : If u ∈ Î(X,Y ) then u ≤L I(x, y), for some x ∈ X and y ∈ Y . But, by
property I5, it holds that I(x, y) = I(N(y), N(x)). On the other hand, If

v ∈ Î(N̂(X), N̂(Y )) then v ≤L I(N(x), N(y)), for some x ∈ X and y ∈ Y .
But, by property I5, I(N(y), N(x)) = I(x, y). So, by remark 1(ii), it follows

that Î(X,Y ) = Î(N̂(X), N̂(Y )).

6.2. S-implications on Complete Lattices and the Interval

Constructor

Theorem 6.3. Let S be a t-conorm on L and N be a fuzzy negation on L. Then
it holds that IbS, bN = ÎS,N .

Proof. Consider X,Y ∈ L. Applying Eq. (6.2), one has that IbS, bN (X,Y ) =

Ŝ(N̂(X), Y ). By Eq. (5.1), it follows that IbS, bN (X,Y ) = Ŝ([N(X), N(X)], Y ).

Based on Eq. (4.1), it holds that Ŝ([N(X), N(X)], Y ) = [S(N(X), Y ), S(N(X), Y )],
and due to the definition of an S-implication in Eq. (6.2) we obtain [S(N(X), Y ),

S(N(X), Y )] = [IS,N (X,Y ), IS,N (X,Y )], which, by Eq. (6.1), is equal to ÎS,N (X,Y ).

Corollary 6.3. If I is an S-implication on L then Î is an S-implication on IL.

Proof. If I is an S-implication on L, then there exist a t-conorm S and a fuzzy
negation N on L such that I = IS,N . By Theorem 6.3, it follows that Î = IbS, bN ,
which is an S-implication on IL.
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The above results together with Theorem 6.3 state the commutativity of the
diagram in Fig. 1, where C(S)L denotes the class of t-conorms on L, C(N)L indicates
the class of fuzzy negations on L and C(I)L is the class of S-implications on L.

C(S)L × C(N)L
Eq.(6.2)

- C(I)L

C(S)IL × C(N)IL

Eq.(4.1), Eq.(5.1)

? Eq.(6.2)
- C(I)IL

Eq.(6.1)

?

Figure 1: Commutative diagram relating S-implications on L with S-implications
on IL

7. Conclusion

The use of t-norms and t-conorms can be considered vital for more flexible and
reliable fuzzy logic controllers. From t-norms and t-conorms, it is possible to de-
rive several fuzzy implication functions (e.g, S-implications, R-implications, QL-
implications, D-implications), which are important not only because they are used
in representing “If ... then” rules in fuzzy systems, but also because their use in
performing inferences in approximate reasoning and fuzzy control.

This paper complements the results of previous works [4, 5, 6] related to the
approach of interval fuzzy logic, which considers interval mathematics to deal with
the uncertainty of membership degrees of fuzzy sets. We presented an approach
of interval fuzzy logic based on complete lattices. In particular, we introduced a
generalization of t-conorms, fuzzy negations and S-implication for arbitrary com-
plete lattices. Some general properties of S-implications on complete lattices were
analyzed. We also showed that the interval extensions of t-conorms, fuzzy negations
and S-implications on complete lattices preserve the optimality property, being the
best interval representations of these fuzzy connectives.

The results presented in this paper are important not only to analyze deductive
systems in mathematical depth but also to provide foundations of methods based
on interval fuzzy logic. They integrate two important features: the accuracy criteria
and the optimality property of interval computations, and a formal mathematical
theory for the representation of uncertainty, concerned with the fuzzy set theory.
The former gives a more reliable modelling of real systems and the latter is crucial
for their management and control.
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Resumo. O objetivo deste trabalho é apresentar uma abordagem da lógica fuzzy
intervalar baseada en reticulados completos. Em particular, extensões de t-normas,
negações fuzzy e S-implicações do intervalo unitário para um reticulado completo
arbitrário são apresentadas. Algumas propriedades gerais de S-implicações sobre
reticulados completos são analisadas. Mostra-se que as extensões intervalares de
t-norms, negações fuzzy e S-implicações sobre reticulados completos preservam a
propriedade de otimalidade e conduzem à melhor representação intervalar desses
conectivos fuzzy.
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and optimality of interval computations, Formal Aspects of Computing, 18,
No. 2 (2006), 231–243.



154 Reiser et al.

[29] Z.D. Wang, Y.D. Yu, Pseudo t-norms and implication operators on a complete
brouwerian lattice, Fuzzy Sets and Systems, 132 (2002), 113–124.

[30] R.R. Yager, On the implication operator in fuzzy logic, Information Sciences,
31 (1983), 141–164.

[31] R.R. Yager, On some new classes of implication operators and their role in
approximate reasoning, Information Sciences, 167 (2004), 193–216.

[32] L.A. Zadeh, Fuzzy probabilities, Information Processing and Management, 20

(1984), 363–372.


