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Abstract. In this article, we prove the existence of solutions for an hyperbolic

equation known as the Benjamin-Bona-Mahony equation. Our study involves in-

creasing, decreasing, and mixed non-cylindrical domains and for this analysis, our

main tools are the change of variable technique, the Galerkin and penalization

method.
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1. Introduction

Let α, β ∈ C2([0, T ];R), such that α(t) < β(t), for all 0 ≤ t ≤ T. We represent by
∧

Q the noncylindrical domain of R
2, given by

∧

Q= {(x, t) ∈ R
2; α(t) < x < β(t),

∀ 0 < t < T}, with lateral boundary
∧∑

defined by
∧∑

=
⋃

0<t<T

{α(t), β(t)} × {t} and

supposed Q̂ ⊂ Q = Ω × ]0, T [, where Ω denotes ]0, 1[.
In the present work we investigate the existence, of solutions for the following

problem ∣∣∣∣∣∣∣∣∣∣

ut + (σ(u))x − uxxt = 0 in Q̂

u(x, t) = 0 for (x, t) ∈
∑̂

u(x, 0) = u0(x) in α(0) < x < β(0),

(1.1)

where σ : R → R is a C1-function. such that
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(H1) There exist constants σ0, ρ > 0 such that |σ′(λ)| ≤ σ0(1 + |λ|ρ−1).

(H2) There exists constant σ1 > 0 such that |σ(λ)| ≤ σ1(|λ| + |λ|ρ).

Benjamin, Bona & Mahony in [3] introduced the equation

ut(x, t) + ux(x, t) + u(x, t) ux(x, t) − uxxt(x, t) = 0 in R×[0, T ], (1.2)

which is an alternative smoothness model for the KdV, known as Benjamin-Bona-
Mahony equation or BBM equation. In [3], the existence and uniqueness of solutions
for the Cauchy problem associated with (1.2) were investigated. Subsequently, Bona
and Briant [4] investigated the BBM equations with Dirichlet boundary conditions,
considering the spatial variable x ∈ [0,∞]. Medeiros & Milla Miranda [12] studied
the existence, uniqueness and regularity of solutions for the BBM equation with
general nonlinear term when x ∈]0, 1[. Later was the time for Bona & Dougalis [5]
prove the existence and uniqueness of solutions for the BBM equation considering
non-homogeneous boundary conditions. The case n dimensional of the equation
(1.2) was studied by Goldstein [8] and again in the work of Avrin and Goldstein
together [1]. Similar equations to (1.2) in noncylindrical domains were studied by
Cousin and Larkin for the Kuramoto Sivashinski equation [7] and recently Barreto
et al. [2] for the Rosenau and BBM equations. To study the Rosenau equation in
cylindrical domains see Park [13] and Rosenau [14]. In this article, we study the
existence of solutions for the problem (1.1) for increasing, decreasing and mixed
noncylindrical domains. The importance of our work can be noticed, as the change
of variable technique makes the computational study of the problem in noncylindri-
cal domains easier. Some works that we know in this direction are Liu and Rincon
[10] that use the paper Medeiros and Limaco [11] and Santos et al. [15], that use
Caldas et al. [6].

This paper is organized as follows. The next section is devoted to the existence
and uniqueness of solution for (1.1), satisfying the hypothesis:

(H3) α′(t) ≥ 0, and β′ (t) ≤ 0 for t ∈ [0, T ].

Note that this hypothesis implies that Q̂decreases in a sense such that if
t2 > t1, then the projection of [α(t2), β(t2)] in the subspace t = 0 is contained in
the projection of [α(t1), β(t1)] in the same subspace.

In the third section of this article, we study the existence of solutions for (1.1) sat-
isfying the hypothesis:

(H4) α′(t) ≤ 0 and β′(t) ≥ 0 for t ∈ [0, T ].

Analogously, hypothesis (H4) implies that Q̂ increases.

In the last section of this article we study (1.1), satisfying the hypothesis:
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(H5)

Q̂ = Q̂1 ∪ Q̂2 ∪ {(x, T1) ∈ R
2; α(T1) < x < β(T1)}

where

Q̂1 = {(x, t) ∈ R
2; α(t) < x < β(t), 0 < t < T1}

is decreasing satisfying (H1) and

Q̂2 = {(x, t) ∈ R
2; α(t) < x < β(t), T1 < t < T}

is increasing satisfying (H2).

In the following, by Ωt and Ω0 denote the intervals ]α(t), β(t)[ and ]α(0), β(0)[
respectively; we denote, by (., .), ||.|| respectively the scalar product and norm in

L2(Ω). We also denote, ∂wm

∂x
,∂

2wm

∂x2 , ∂2wm

∂t ∂x
, by wm,x, wm,xx, wm,xt respectively,

etc.

2. Solution on Decreasing Domains

In this section we study the existence and uniqueness for (1.1) satisfying (H1) and
(H3).

Let be γ(t) = β(t) − α(t) > 0, for all t ≥ 0. Then 0 <
x−α(t)
γ(t) < 1, for all

t ∈ [0, T ]. With the change of variable u(x, t) = v(y, t) with y = x−α(t)
γ(t) , for all

t ∈ [0, T ], problem (1.1) is transformed into

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vt + 1
γ
(σ(v))y −

1
γ2 vyyt −

(α
′

+γ
′

y)
γ

vy + 2γ′

γ3 vyy

+ (α
′

+γ
′

y)
γ3 vyyy = 0 in Ω×]0, T [

v(0, t) = v(1, t) = 0 in ]0, T [

v(y, 0) = v0(y) in Ω.

(2.1)

In these conditions, we can establish the following existence result:

Theorem 2.1. Given u0 ∈ H1
0 (Ω0) ∩H

2(Ω0), there exists a unique function

u : Q̂→ R, satisfying u ∈ L∞(0, T ;H1
0 (Ωt)), ut ∈ L∞(0, T ;H1

0 (Ωt)) and

∫ bQ ut φdx dt+

∫ bQ(σ(u))x φ dx dt+

∫ bQ uxt φ x dx dt = 0, (2.2)

for all φ ∈ L2(0, T ;H1
0 (Ωt)) u(x, 0) = u0(x), for all x ∈ Ω0.

In order to prove Theorem 2.1, we need the following lemma:

Lemma 2.1. Given v0 ∈ H1
0 (Ω) ∩H2(Ω), there exists a unique function

v : Ω×]0, T [−→ R, satisfying v ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)), vt ∈ L∞(0, T ;H1

0 (Ω)),
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and

∫

Ω×]0,T [

[vtψ +
1

γ
(σ(v))yψ +

1

γ2
vytψy −

(α
′

+ γ
′

y)

γ
vyψ +

2γ′

γ3
vyyψ

−( (α
′

+γ
′

y)ψ
γ3 )y vyy ] dy dt = 0, for all ψ ∈ L2(0, T ;H1

0 (Ω))

(2.3)

v(y, 0) = v0(y), for all y ∈ Ω.

Proof. Let (wi)i∈N be the special basis of H1
0 (Ω), such that

wi,yy = λiwi in Ω

wi(0) = wi(1) = 0 i ∈ N.

We denote by Vm the subspace generated by w1, ..., wm. We start by construct-
ing the Galerkin approximation of the solution vm ∈ Vm, which is given by the
solution of the approximate equation:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(vm,t(t), w) + 1
γ
((σ(vm(t))y, w) − 1

γ2 (vm,yyt(t), w)

−( (α′+γ′y)
γ

vm,y(t), w)

+ 2γ′

γ3 (vm,yy(t), w) + ( (α′+γ′y)
γ3 vm,yyy(t), w) = 0 for all w ∈ Vm

vm(0) = v0
m −→ v0 in H2(0, 1).

(2.4)

Note that the solution vm defined on [0, tm[ can be extended to the interval
[0, T ], by the next first a priori estimate.

First Estimate. Taking w = 2vm(t) in (2.4), we have

d
dt

(||vm(t)||2 + 1
γ2 ||vm,y(t)||

2) + γ
′

γ
||vm(t)||2 + γ

′

γ3 ||vm,y(t)||
2

+α
′

γ3 v
2
m,y(0) − β

′

γ3 v
2
m,y(1) + 1

γ
(σ(vm(t) )y , 2vm(t)) = 0.

(2.5)

Since

(σ(vm(t) )y , 2vm(t)) = −2

1∫

0

d

dy
[σ(vm(t))] dy = 0, (2.6)

where σ(s) =

∫ s

0

σ(λ) dλ, then from (2.5), (2.6) and (H1), there exist C1 > 0, such

that
d
dt

(||vm(t)||2 + 1
γ2 ||vm,y(t)||

2) + α
′

γ3 v
2
m,y(0) − β

′

γ3 v
2
m,y(1)

≤ C1(||vm(t)||2 + ||vm,y(t)||
2).

(2.7)
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Integrating (2.7) over [0, t] with 0 < t < tm and using hypothesis (H3), we
obtain

||vm(t)||2 + 1
γ2 ||vm,y(t)||

2 ≤ ||v0||2 + 1
γ2(0) ||v

0
y||

2

+ C1

∫ t

0

(||vm(s)||2 + ||vm,y(s)||
2) ds.

(2.8)

From (2.8) and Gronwall inequality, we obtain

||vm(t)||2 +
1

γ2
||vm,y(t)||

2 ≤ C2 (2.9)

where C2, C3, ... denote positive constants.

Second Estimate. Taking w = −2vm,yy(t) in (2.4), we have

d
dt

[||vm,y(t)||
2 + 1

γ2 ||vm,yy(t)||
2] − γ′

γ3 ||vm,yy(t)||
2 + α′

γ3 v
2
m,yy(0)

− β′

γ3 v
2
m,yy(1) = 2

γ
((σ(vm(t))y, vm,yy(t)) − ( (α1+γ

′y)
γ

vm,y(t), 2vm,yy(t)).

(2.10)

From (2.10) and using Young’s inequality and Poincare’s inequality, we get

d
dt

[||vm,y(t)||
2 + 1

γ2 ||vm,yy(t)||
2] + α′

γ3 v
2
m,yy(0)

− β′

γ3 v
2
m,yy(1) ≤ C3 (||vm,y(t)||

2 + 1
γ2 ||vm,yy(t)||

2).

(2.11)

Integrating (2.11) over [0, t], using hypothesis (H1) and applying Gronwall in-
equality, we have:

||vm,y(t)||
2 +

1

γ2
||vm,yy(t)||

2 ≤ C4. (2.12)

Third Estimate. Taking w = vm,t(t) in (2.4), we have:

||vm,t(t)||
2 + 1

γ2 ||vm,yt(t)||
2 = − 1

γ
(σ′(vm(t)) vm,y(t), vm,t(t))

+( (α′+γ′y)
γ

vm,y(t), vm,t(t)) −
2γ

′

γ3 (vm,yy(t), vm,t(t))

+ γ
′

γ3 (vm,yy(t), vm,t(t)) + ( (α′+γ′y)
γ3 vm,yy(t), vm,yt(t)).

(2.13)

From (2.10), (2.12) and (2.13), we have

||vm,t(t)||
2 +

1

γ2
||vm,yt(t)||

2 ≤ C5. (2.14)

Estimates (2.9), (2.13) and (2.14), allow us to pass to the limit in (2.4) and we
obtain a weak solution v in the sense of Lemma 2.1.

The uniqueness of solution and the verification of initial data are shown by the
standard arguments.

The Proof of Theorem 2.1. follows immediately from Lemma 2.2 and the Change
of Variable Theorem. Therefore, we omit it.
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3. Solutions on Increasing Domains

In this section we study the existence of solution for the systems (1.1) satisfying
the hypotheses (H2) and (H4). We use the Penalization Method given by Lions

[9]. Let Q =]a, b[ × ]0, T [ be a cylinder such that Q ⊃ Q̂. We define the function

M : Q −→ R, by M(x, t) =





1 in Q\Q̂ ∪ (Ω0 × {0})}

0 in Q̂ ∪ (Ω0 × {0}).

To show the existence of result we will use the following Lemma:

Lemma 3.1. Under the hypothesis (H4), if u, ut ∈ L2(0, T ;L2(a, b)), then

t∫

0

(Mu(s), ut(s))ds ≥
1

2
||M(t)u(t)||2L2(a,b) −

1

2
||M(0)u(0)||2L2(a,b) .

Proof. We have

∫ t

0

(Mu(s), ut(s))ds = 1
2

∫ t

0

∫ b

a

M(u2(s))t dξ ds

= 1
2

∫

[0,t]×[a,b]

M(u2(s))t dξ ds.

From Fubini’s Theorem, recalling the definition of M , and the hypothesis (H4), it
follows that

∫ t

0

(Mu(s), ut(s))ds

= 1
2

∫ α(t)

a

∫ t

0

[u2(s)]t ds dξ +
1

2

∫ α(0)

α(t)

∫ α−1(x)

0

[u2(s)]t ds dξ

+ 1
2

∫ β(t)

β(0)

∫ β−1(x)

0

[u2(s)]t ds dξ +
1

2

∫ b

β(t)

∫ t

0

[u2(s)]t ds dξ

= 1
2

∫ α(t)

a

[u2(t, ξ) − u2(0, ξ)] dξ +
1

2

∫ α(0)

α(t)

[u2(α−1(x), 0) − u2(0, ξ)] dξ

+ 1
2

∫ β(t)

β(0)

[u2(β−1(x), 0) − u2(0, ξ)] dξ +
1

2

∫ b

β(t)

[u2(t, ξ) − u2(0, ξ)] dξ
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≥ 1
2 [

∫ α(t)

a

u2(t, ξ) dξ +

∫ b

β(t)

u2(t, ξ) dξ − (

∫ α(t)

a

u2(0, ξ) dξ

+

∫ α(0)

α(t)

u2(0, ξ) dξ +

∫ β(t)

β(0)

u2(0, ξ) dξ +

∫ b

β(t)

u2(0, ξ) dξ)]

= 1
2

∫ b

a

M(t, ξ)u2(t, ξ) dξ −
1

2

∫ b

a

M(0, ξ)u2(0, ξ) dξ

= 1
2‖M(t)u(t)‖2

L2(a,b) −
1
2‖M(0)u(0)‖2

L2(a,b)

which completes the proof.
The existence of solution for (1.1), satisfying the hypothesis (H2) and (H4), is

established in the next theorem.

Theorem 3.1. For each u0 ∈ H1
0 (Ω0), there exists a function u : Q̂→ R, satisfying

u ∈ L∞(0, T ;H1
0 (Ωt)), ut ∈ L∞(0, T ;H1

0 (Ωt)) and

∫ bQ ut φdx dt− ∫ bQ σ(u)φx dx dt+

∫ bQ uxt φx dx dt = 0,

for all ϕ ∈ L2(0, T ;H1
0 (Ωt))

u(x, 0) = u0(x), for all x ∈ Ω0.

(3.1)

Proof. To prove this result we will use the penalization method. For each ε > 0 we
consider the following problem:

∣∣∣∣∣∣∣∣∣∣

uε,t + (σ(uε))x − uε,xxt + 1
ε
Muε,t = 0 in Q

uε(a, t) = uε(b, t) = 0 for ]0, T [

uε(x, 0) = ũ0(x) in ]a, b[.

(3.2)

Let {wi}i∈N be a basis of H1
0 (a, b), such that w1 = ũ0. We denote by Vm =

[w1, ..., wm] the subspace of H1
0 (a, b), generated by ũ0, w2, ..., wm. We seek uεm(t) ∈

Vm solution of the following approximate problem:

∣∣∣∣∣∣∣∣∣∣

(uεm,t(t), w) + (σ(uεm(t)))x, w) − (uεm,xxt(t), w)

+ 1
ε
(M(t)uεm,t(t), w) = 0 for all w ∈ Vm

uεm(0) = u0(x) −→ ũ0 in H1
0 (a, b).

(3.3)

By the Caratheodory theorem, the system (3.3) has solutions on some interval
[0, tm[. To extend them to any finite interval and to pass to the limit as m → ∞
and ε > 0 fixed, we need a priori estimates.
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First Estimate. Taking w = 2uεm(t) in (3.3), we have

d
dt

[|||uεm(t)|||2 + |||uεm,x(t)|||
2] + ((σ(uεm(t)))x, w)

+ 2
ε
(M(t)uεm,t(t), w) = 0,

(3.4)

where |||.||| denotes the norm in L2(a, b).
Using the Fundamental Theorem of Calculus and integrating by parts we obtain:

b∫

a

[σ(uεm(t))]x uεm(t) dx = 0. (3.5)

Integrating (3.4) over [0, t], using (3.5) and Lemma 3.1, we have

|||uεm(t)|||2 + |||uεm,x(t)|||
2 + 1

ε
|||M(t)uεm(t)|||2

≤ ||| ũ0 |||2 + ||| ũ0
x|||

2 ≤ C6.

(3.6)

Second Estimate.Taking w = uεm,t(t) in (3.3) and using (H2) and (3.6), we
have:

|||uεm,t(t)|||
2 + |||uεm,xt(t)|||

2 + 1
ε
(M(t)uεm,t(t), uεm,t(t))

≤ C7 + 1
2 |||uεm,t(t)|||

2.

(3.7)

From (3.7) we obtain

1

2
|||uεm,t(t)|||

2 + |||uεm,xt(t)|||
2 +

1

ε
|||M(t)uεm,t(t)|||

2 ≤ C8. (3.8)

From the estimates (3.6) and (3.8) we pass to limit in (3.3), and we obtain that
uε is a solution of the penalized problem

∫ T

0

∫ b

a

uε,t φdx dt+

∫ T

0

∫ b

a

(σ(uε))x φ dx dt+

∫ T

0

∫ b

a

uε,xt φ x dx dt

+ 1
ε

∫ T

0

∫ b

a

Muε,t φ dx dt = 0 for allφ ∈ L2(0, T ;H1
0 (a, b)).

(3.9)

From (3.6), (3.8) and the Banach-Steinhauss Theorem, we pass to the limit as
ε→ 0 in (3.9) and we obtain (3.1).

Regularity. From (3.6), we have

1

ε

∫ t

0

(M(s)uεm,t(s), uεm(s)) ds ≤ C9.

On the other hand, from Lemma 3.1 we obtain:

1

ε

∫ t

0

(M(s)uεm,t(s), uεm(s)) ds ≥
1

2ε
|||M(t)uεm(t)|||2.



Benjamin-Bona-Mahony Equation 337

Then |||M(t)uεm(t)|||2 ≤ 2C9ε. Thus

∫ T

0

∫ b

a

M(t) u2
εm(t) dx dt ≤ 2C9εT or

T∫

0

∫ b

a

|M(t)uε(t)|
2 dx dt ≤ lim inf

∫ T

0

∫ b

a

|M(t)uε(t)|
2 dx dt ≤ 2C9εT.

Then Muε → 0 strong in L2(0, T ;L2(a, b)), as ε → 0+. On the other hand,
Muε → M u in L2(0, T ;L2(a, b)) and Muεm → M uε in L2(0, T ;L2(a, b)), as
ε→ 0+.

Therefore, we conclude that: Mu = 0 a.e. in Q or u = 0 in Q \Q̂.
Since u ∈ L∞(0, T ;H1

0 (a, b)) and ut ∈ L∞(0, T ;H1
0 (a, b)), then u ∈ C([0, T ];

H1
0 (a, b)). Thus, u(t) ∈ H1

0 (a, b) for all t and u = 0 in ]a, b[ \ ]α(t), β(t)[. From there,
we have that u(t) ∈ H1

0 (α(t), β(t)), for all t. Thusu ∈ L∞(0, T ;H1
0 (Ωt)).

From the second estimate, we have

∫ T

0

∫ b

a

|M(t)uεm,t(t)|
2 dx dt ≤ 2cεT. (3.10)

From (3.10) and by similar arguments, we obtain that ut ∈ L∞(0, T ;H1
0 (Ωt)),

which prove the regularity of the solution.

Remark 3.1. Theorems 2.1 and 3.1 are invariable by translation.

In fact, the particular problem

∣∣∣∣∣∣∣∣∣∣

ut + (σ(u))x − uxxt = 0 in Q̂ ⊂ Ω× ]T0, T1[

u(x, t) = 0 in
∑̂

u(x, T0) = u0(x) in ΩT0
.

(3.11)

with the change of variable u(x, t) = u(x, t−T0) can be transformed into a problem
of the type (1.1).

4. Solutions on Mixed Domains

Here we analyze the case where Q̂ is a mixed domain, satisfying the hypothesis

(H5). Let
∑̂

1 and
∑̂

2 the lateral boundaries of Q̂1 and Q̂2 respectively.

To find a solution of (1.1) in Q̂, we consider the following two cases:

1) Solution on Q̂1. For each u0 ∈ H1
0 (Ω0) ∩H

2(Ω0), by Theorem 2.1, there exists
u1 solution of ∣∣∣∣∣∣∣∣∣∣

u1,t + (σ(u1))x − u1,xxt = 0 in Q̂1

u1(x, t) = 0 in
∑̂

1

u1(x, 0) = uo(x) in Ω0

(4.1)
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satisfying u1 ∈ L∞(0, T1;H
1
0 (Ωt)), u1t ∈ L∞(0, T1;H

1
0 (Ωt)) . Therefore u1 is in

C([0, T1];H
1
0 (Ωt)).

2) Solution on Q̂2

For each u0 = u1(T1) ∈ H1
0 (ΩT1

), by Theorem 3.1 and Remark 3.1, there exists
u2 solution of

∣∣∣∣∣∣∣∣∣∣

u2,t + (σ(u2))x − u2,xxt = 0 in Q̂2

u2(x, t) = 0 in
∑̂

2

u2(x, T1) = u0(x) in ΩT1

(4.2)

satisfying u2 ∈ L∞(T1, T ;H1
0 (Ωt)), u2t ∈ L∞(T1, T ;H1

0 (Ωt)), u2 ∈ C([T1, T ];H1
0 (Ωt)).

3) Solution on Q̂

We define u : Q̂ −→ R by u(x, t) =

{
u1(x, t), (x, t) ∈ Q̂1

u2(x, t), (x, t) ∈ Q̂2

where u1 and u2 are solutions of (4.1) and (4.2), respectively. Given that u0 ∈
H1

0 (Ω0), by Remark 3.1, we deduce that the function u defined above is solution of:

∣∣∣∣∣∣∣∣∣∣

ut + (σ(u))x − uxxt = 0 in Q̂ ⊂ Ω× ]0, T [

u(x, t) = 0 in
∑̂

u(x, 0) = u0(x) in Ω0

(4.3)

satisfying u ∈ L∞(0, T ;H1
0 (Ωt)), ut ∈ L∞(0, T ;H1

0 (Ωt)) and

∫ bQ ut φdx dt− ∫ bQ σ(u)φx dx dt+

∫ bQ uxt φx dx dt = 0, ∀φ ∈ L2(0, T ;H1
0 (Ωt))

u(x, 0) = u0(x). This result is summarized in the following theorem:

Theorem 4.1. For each u0 ∈ H1
0 (Ω0) ∩ H2(Ω0), and Q̂ a mixed domain sat-

isfying the hypothesis (H5), there exists a function u : Q̂ → R, satisfying u ∈
L∞(0, T ;H1

0 (Ωt)), ut ∈ L∞(0, T ;H1
0 (Ωt)) and

∫ bQ ut φdx dt −

∫ bQ σ(u)φx dx dt+

∫ bQ uxt φx dx dt = 0,

for all φ ∈ L2(0, T ;H1
0 (Ωt))

u(x, 0) = u0(x), for all x ∈ Ω0.

(4.4)
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