Caracterização Matemática e Visualização da Esfera de Bloch: Ferramentas para Computação Quântica

L.M. CARVALHO¹, Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, UERJ, Rua São Francisco de Xavier, 524, sala 6026, bloco D, Maracanã, 20550-013 Rio de Janeiro, RJ, Brasil

C. LAVOR², Departamento de Matemática Aplicada, IMECC, UNICAMP, CP 6065, 13081-970 Campinas, SP, Brasil

V.S. MOTTA³, Departamento de Ciências Fundamentais, Radiações e Meio Ambiente, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Praia Vermelha, 22290-270 Rio de Janeiro, RJ, Brasil.

Resumo. Faremos uma descrição matemática da esfera de Bloch, discutiremos propriedades dessa representação e apresentaremos algumas visualizações de 1 qbit.

1. Introdução

A visualização de propriedades matemáticas de um objeto é sempre bem-vinda. São inúmeros os exemplos em matemática e física: os eixos cartesianos, o plano de Argand-Gauss, os diagramas de Feynman, entre outros. A esfera de Bloch [4] é uma das representações possíveis, em três dimensões, para um bit quântico. No entanto, vários livros da área de computação quântica dão um tratamento pouco aprofundado à sua construção e às suas propriedades (por exemplo, ([13], p. 15) e ([15], p. 54)), e alguns outros nem mesmo o fazem ([6], [9]).

Nosso objetivo é produzir ferramentas que ajudem aos desenvolvedores de algoritmos quânticos, aos pesquisadores da área e aos estudantes interessados a ter maior facilidade de incorporar a visualização às propriedades algébricas e geométricas de estados quânticos emaranhados e não-emaranhados. Nesse sentido, um primeiro passo é a descrição matemática da esfera de Bloch e a representação visual de algumas propriedades relevantes.

Em computação quântica, ainda não há uma padronização de representações para um ou mais q-bits, mas dependendo do foco de cada trabalho, algumas representações vêm sendo desenvolvidas. Em [3], propõe-se uma representação para

¹luizmc@gmail.com

²clavor@ime.unicamp.br

 $^{^{3}}$ valeria@ime.eb.br

m q-bits usando-se uma generalização da esfera de Bloch, através da Álgebra de Clifford. A principal motivação desse trabalho é descobrir, se dada uma matriz Hermitiana com traço unitário, ela representa ou não um estado quântico. Em [5], usa-se Geometria Algébrica em um espaço real de seis dimensões para se construir grupos unitários especiais para dois q-bits, similar à representação de um q-bit pela esfera de Bloch. Em [12], usa-se o fibrado de Hopf para representar dois e três q-bits, buscando uma generalização para a esfera de Bloch no caso de dois q-bits. Em [11], a ação de um tipo de transformação unitária particular é representada na esfera de Bloch. Em [10], são apresentadas condições para se descrever medidas fisicamente realizáveis na esfera de Bloch. Citamos alguns outros trabalhos que buscam discutir representações, por exemplo, [1], [2], [7], [8], [16].

Nosso ponto de partida é simples e diferente dos referidos acima. Uma vez que todo circuito quântico pode ser decomposto em uma série de portas lógicas quânticas universais de apenas um ou dois q-bits, conseguir uma boa representação visual para esses fenômenos é uma contribuição para a área de algoritmos quânticos. Nesse artigo, estamos discutindo a representação e propriedades visuais para um q-bit, apresentando, inclusive, um exemplo não trivial de ortogonalidade entre vetores, sem existência de perpendicularismo. Em trabalhos futuros, pretendemos desenvolver representações para dois q-bits.

O restante desse artigo consta de uma descrição matemática detalhada da esfera de Bloch, onde demonstramos algumas de suas propriedades (seções 3. e 4.). Na seção 2., introduzimos definições preliminares (maiores detalhes em [14]). Para uma visão mais abrangente sobre computação quântica, sugerimos o livro de Nielsen e Chuang [13].

2. Modelos para um q-bit

Em computação clássica, a menor porção de informação disponível é o bit, que pode assumir apenas dois valores, por exemplo, 0 e 1. Em computação quântica, utilizam-se estados quânticos no lugar de estados clássicos. O bit é substituído pelo bit quântico, o q-bit, e os valores 0 e 1 de um bit são substituídos pelos vetores $|0\rangle$ e $|1\rangle$, representados por

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$$
 e $|1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$.

Essa notação, utilizada em mecânica quântica, é conhecida por notação de Dirac.

A principal diferença entre um bit e um q-bit é que um q-bit genérico $|\psi\rangle$ é uma combinação linear dos vetores $|0\rangle$ e $|1\rangle$, ou seja, $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, onde α e β são números complexos. Note que os vetores $|0\rangle$ e $|1\rangle$ pertencem ao espaço vetorial complexo $\mathbb{C}^2(\mathbb{C})$ e formam uma base ortonormal para esse espaço vetorial. Em computação quântica, essa base é chamada de *base computacional* e o vetor $|\psi\rangle$ é denominado de *superposição* dos vetores $|0\rangle$ e $|1\rangle$, com *amplitudes* α e β . Em mecânica quântica, vetor é também chamado de *estado*; usaremos os dois termos indistintamente.

A interpretação física de um q-bit é que ele está simultaneamente nos estados $|0\rangle \in |1\rangle$. Isso faz com que a quantidade de informação armazenada no estado

 $|\psi\rangle$ possa ser infinita. Entretanto, essa quantidade infinita de informação está no nível quântico. Para torná-la acessível, no nível clássico, precisamos fazer uma medida. A mecânica quântica diz que o processo de medida altera o estado de um q-bit, fazendo-o assumir o estado $|0\rangle$, com probabilidade $|\alpha|^2$, ou o estado $|1\rangle$, com probabilidade $|\beta|^2$. Com apenas duas possibilidades, $|0\rangle$ ou $|1\rangle$, temos então que $|\alpha|^2 + |\beta|^2 = 1$. Calculando a norma de $|\psi\rangle$, obtemos: $||\psi\rangle|| = \sqrt{|\alpha|^2 + |\beta|^2} = 1$. Como conseqüência imediata, podemos estabelecer o primeiro modelo para um q-bit.

Proposição 2.1. Um vetor unitário de $\mathbb{C}^2(\mathbb{C})$ é um modelo matemático para um *q*-bit.

Um outro modelo é dado na proposição abaixo.

Proposição 2.2. Um vetor unitário de $\mathbb{R}^4(\mathbb{R})$ é um modelo matemático para um *q*-bit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ e a esfera unitária S³ de \mathbb{R}^4 é o lugar geométrico dos *q*-bits.

Demonstração. Considere $\alpha = a + i b \in \beta = c + i d (a, b, c, d \in \mathbb{R})$. Como $|\alpha|^2 = (\sqrt{a^2 + b^2})^2 e |\beta|^2 = (\sqrt{c^2 + d^2})^2$, temos $a^2 + b^2 + c^2 + d^2 = 1$. Nesse caso, interpretamos um q-bit como sendo um vetor unitário $(a, b, c, d) d \in \mathbb{R}^4$. Como essa propriedade é válida para todos os q-bits, a esfera S³ é o lugar geométrico buscado.

Para introduzirmos a esfera de Bloch, precisamos do seguinte resultado.

Proposição 2.3. Um q-bit pode ser escrito na forma polar

$$|\psi\rangle = e^{i\gamma} [\cos(\xi)|0\rangle + e^{i\varphi} sen(\xi)|1\rangle], \qquad (2.1)$$

onde $0 \leq \gamma < 2\pi$, $0 \leq \varphi < 2\pi$ $e \ 0 \leq \xi \leq \pi/2$.

Demonstração. Expressemos as amplitudes do q-bit $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ em coordenadas polares. Temos $\alpha = |\alpha| e^{i \operatorname{Arg}(\alpha)}$ e $\beta = |\beta| e^{i \operatorname{Arg}(\beta)}$, onde $\operatorname{Arg}(z)$ é o ramo principal do argumento do número complexo z, ou seja, $0 \leq \operatorname{Arg}(z) < 2\pi$ e |z| é o seu módulo. Nesse caso, existe uma bijeção entre cada número complexo e essa representação polar.

Definindo $\gamma = \operatorname{Arg}(\alpha)$ e $\varphi = \operatorname{Arg}(\beta) - \operatorname{Arg}(\alpha)$, podemos reescrever o q-bit $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ como (nesse artigo, todas as operações com ângulos devem ser consideradas em aritmética módulo 2π) $|\psi\rangle = |\alpha| e^{i\gamma} |0\rangle + |\beta| e^{i(\gamma+\varphi)} |1\rangle$. Sendo $|\alpha| \ge 0, |\beta| \ge 0 e |\alpha|^2 + |\beta|^2 = 1$, podemos também definir ξ por meio das equações $\cos(\xi) = |\alpha| e \operatorname{sen}(\xi) = |\beta|$. Note que $0 \le \xi \le \pi/2$. Finalmente, podemos escrever

$$|\psi\rangle = e^{i\gamma} [\cos(\xi) |0\rangle + e^{i\varphi} \sin(\xi) |1\rangle],$$

onde

$$\begin{aligned} \xi &= \arccos(|\alpha|) = \arcsin(|\beta|) \quad (0 \le \xi \le \pi/2), \\ \varphi &= \operatorname{Arg}(\beta) - \operatorname{Arg}(\alpha) \quad (0 \le \varphi < 2\pi), \\ \gamma &= \operatorname{Arg}(\alpha) \quad (0 \le \gamma < 2\pi). \end{aligned}$$

3. A Esfera de Bloch

Em computação quântica, o escalar $e^{i\gamma}$, em (2.1), é denominado fator de fase global (veja [13], p. 93). Note que dois q-bits quaisquer $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ e $e^{i\zeta} |\psi\rangle$ têm as mesmas probabilidades de, ao serem medidos, produzirem os estados $|0\rangle$ e $|1\rangle$, pois

 $e^{i\zeta} |\psi\rangle = e^{i\zeta} \alpha |0\rangle + e^{i\zeta} \beta |1\rangle \qquad e \qquad |e^{i\zeta} \alpha| = |e^{i\zeta} ||\alpha| = |\alpha|.$

Note que o mesmo ocorre para β .

Sabemos, também, que a evolução de um q-bit é descrita, matematicamente, pela aplicação sucessiva de operadores unitários (veja [13], p. 81). Ao aplicarmos uma matriz unitária U em um q-bit $|\psi\rangle = e^{i\gamma} [\cos(\xi) |0\rangle + e^{i\varphi} \sin(\xi) |1\rangle]$, obtemos

$$U|\psi\rangle = e^{i\gamma} U[\cos(\xi) |0\rangle + e^{i\varphi} \operatorname{sen}(\xi) |1\rangle].$$

Note que o fator de fase global não se modifica pela aplicação de um operador unitário. Usando essas propriedades, podemos desprezar o fator $e^{i\gamma}$ e, a partir daí, tentar encontrar uma representação geométrica para um q-bit em \mathbb{R}^3 .

Proposição 3.1. Os vetores da forma $|\psi\rangle_R = \cos(\xi)|0\rangle + e^{i\varphi} \operatorname{sen}(\xi)|1\rangle$, com $0 \leq \xi \leq \pi/2$ e $0 \leq \varphi < 2\pi$, pertencem a um subespaço vetorial de $\mathbb{C}^2(\mathbb{R})$ de dimensão três.

Demonstração. Reescrevendo o vetor $|\psi\rangle_R$, temos

$$|\psi\rangle_R = \cos(\xi)|0\rangle + e^{i\varphi}\operatorname{sen}(\xi)|1\rangle = \cos(\xi)|0\rangle + \cos(\varphi)\operatorname{sen}(\xi)|1\rangle + \operatorname{i}\operatorname{sen}(\varphi)\operatorname{sen}(\xi)|1\rangle.$$

Ou seja, o vetor $|\psi\rangle_R$ pode ser visto como

$$|\psi\rangle_R = \begin{bmatrix} a\\ c+\mathrm{i}\,d \end{bmatrix},$$

 $\operatorname{com} a, b, c \in \mathbb{R}.$

O espaço vetorial real $\mathbb{C}^2(\mathbb{R})$ tem dimensão quatro e uma de suas bases ortonormais é o conjunto

$$\left\{ \left[\begin{array}{c} 1\\0\end{array}\right], \left[\begin{array}{c} i\\0\end{array}\right], \left[\begin{array}{c} 0\\1\end{array}\right], \left[\begin{array}{c} 0\\i\end{array}\right] \right\}.$$

Entretanto, podemos representar o vetor $|\psi\rangle_R$ utilizando apenas três vetores dessa base, ou seja,

$$|\psi\rangle_R = \cos(\xi) \begin{bmatrix} 1\\0 \end{bmatrix} + \cos(\varphi)sen(\xi) \begin{bmatrix} 0\\1 \end{bmatrix} + sen(\varphi)sen(\xi) \begin{bmatrix} 0\\i \end{bmatrix}.$$

Isso conclui a demonstração.

O subespaço \mathbb{V} de $\mathbb{C}^2(\mathbb{R})$, gerado pelos elementos

$$\left\{ \left[\begin{array}{c} 1\\0 \end{array}\right], \left[\begin{array}{c} 0\\1 \end{array}\right], \left[\begin{array}{c} 0\\i \end{array}\right] \right\},$$

tem dimensão três. Como esse subespaço está definido sobre o corpo dos reais, ele é isomorfo a \mathbb{R}^3 . Considere, então, um isomorfismo \mathcal{T} entre $\mathbb{V} \in \mathbb{R}^3$, tal que

$$\mathcal{T}\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\0\\0\end{array}\right], \quad \mathcal{T}\left(\left[\begin{array}{c}0\\i\end{array}\right]\right) = \left[\begin{array}{c}0\\1\\0\end{array}\right], \quad \mathcal{T}\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = \left[\begin{array}{c}0\\0\\1\end{array}\right].$$

Usando esse isomorfismo, podemos escrever

$$\mathcal{T}(|\psi\rangle_R) = \cos(\varphi) \operatorname{sen}(\xi) \begin{bmatrix} 1\\0\\0 \end{bmatrix} + \operatorname{sen}(\varphi) \operatorname{sen}(\xi) \begin{bmatrix} 0\\1\\0 \end{bmatrix} + \cos(\xi) \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

Podemos então imaginar que, quando desprezamos o fator de fase global de um q-bit, ele é "projetado" em um subconjunto de \mathbb{R}^3 . Observamos que o lugar geométrico determinado por $|\psi\rangle_R$ (a partir do isomorfismo, podemos usar indistintamente $\mathcal{T}(|\psi\rangle_R)$ e $|\psi\rangle_R$) é uma semi-esfera de \mathbb{R}^3 , denominada SE^2 , com centro na origem e raio unitário (ou seja, $x^2 + y^2 + z^2 = 1$ e $z \ge 0$). Note que $0 \le \xi \le \pi/2$ e $0 \le \varphi < 2\pi$, como representamos na Figura 1(a).

Para chegarmos à esfera de Bloch, vamos enunciar dois lemas.

Lema 3.1. Sejam $\overline{SE}^2 = SE^2 - \{(0,0,1), (x,y,0)^4\}$ (a semi-esfera na Figura 1(a) sem o equador e o pólo norte) e $Q = (0, \pi/2) \times [0, 2\pi)$. A função a seguir é uma bijeção

$$\begin{array}{rcl} f:Q & \to & \overline{SE}^2 \\ (\xi,\varphi) & \mapsto & (\cos(\varphi)\operatorname{sen}(\xi),\operatorname{sen}(\varphi)\operatorname{sen}(\xi),\cos(\xi)) \end{array}$$

Demonstração.

1) Sejam $X_1 = (\xi_1, \varphi_1)$ e $X_2 = (\xi_2, \varphi_2)$ em Q com $f(X_1) = f(X_2)$. Segue que:

$$\begin{cases} \cos(\varphi_1) \operatorname{sen}(\xi_1) = \cos(\varphi_2) \operatorname{sen}(\xi_2) \\ \operatorname{sen}(\varphi_1) \operatorname{sen}(\xi_1) = \operatorname{sen}(\varphi_2) \operatorname{sen}(\xi_2) \\ \cos(\xi_1) = \cos(\xi_2). \end{cases}$$

Como $\xi_1, \xi_2 \in (0, \pi/2), \cos(\xi_1) = \cos(\xi_2) \Rightarrow \xi_1 = \xi_2$. Logo, $\operatorname{sen}(\xi_1) = \operatorname{sen}(\xi_2) \neq 0$; substituindo no sistema acima, temos que $\cos(\varphi_1) = \cos(\varphi_2) \operatorname{esen}(\varphi_1) = \operatorname{sen}(\varphi_2)$. Como $\varphi_1, \varphi_2 \in [0, 2\pi), \log \varphi_1 = \varphi_2$. E assim $X_1 = X_2 \operatorname{eff}$ é injetiva. 2) Como $\overline{SE}^2 = SE^2 - \{(0, 0, 1), (x, y, 0)\}, \operatorname{com} x^2 + y^2 = 1 \operatorname{eff}(Q) = \{(x, y, z) \in \mathbb{R}^3; (\cos(\varphi) \operatorname{sen}(\xi), \operatorname{sen}(\varphi) \operatorname{sen}(\xi), \cos(\xi)) \operatorname{com}(\xi, \varphi) \in Q\},$ que-

 $f(Q) = \{(x, y, z) \in \mathbb{R}^3; (\cos(\varphi) \operatorname{sen}(\xi), \operatorname{sen}(\varphi) \operatorname{sen}(\xi), \cos(\xi)) \operatorname{com}(\xi, \varphi) \in Q\}, \text{ queremos provar que } \overline{SE}^2 = f(Q).$

Vamos começar provando que $\overline{SE}^2 \subset f(Q)$. Considerando $X = (x, y, z) \in \overline{SE}^2$, segue da definição dos conjuntos considerados que:

$$x^{2} + y^{2} + z^{2} = 1$$
, $(x, y, z) \neq (0, 0, 1)$ e $z > 0$.

 4 Com $x^{2} + y^{2} = 1$.

Como 0 < z < 1, então existe um $\xi \in (0, \pi/2)$ tal que $\cos(\xi) = z \operatorname{esen}(\xi) = \sqrt{1 - z^2}$. Como $x^2 + y^2 + z^2 = 1$ e $z \neq 1$, usando a identidade fundamental trigonométrica, podemos definir:

$$\cos(\varphi) = \frac{x}{\sqrt{1-z^2}}$$
 e $\sin(\varphi) = \frac{y}{\sqrt{1-z^2}}$

Como $-\sqrt{1-z^2} \leq x \leq \sqrt{1-z^2}$ e $-\sqrt{1-z^2} \leq y \leq \sqrt{1-z^2}$, concluímos que $\varphi \in [0, 2\pi)$. Logo, existe $(\xi, \varphi) \in Q$ para o qual $X = (\cos(\varphi) \operatorname{sen}(\xi), \operatorname{sen}(\varphi) \operatorname{sen}(\xi), \cos(\xi))$. Assim temos que $X \in f(Q)$ e que $\overline{SE}^2 \subset f(Q)$.

Provando, agora, $f(Q) \subset \overline{SE}^2$.

Considerando $Y \in f(Q)$, então existe $(\xi, \varphi) \in Q$ tal que

$$Y = (\cos(\varphi) \operatorname{sen}(\xi), \operatorname{sen}(\varphi) \operatorname{sen}(\xi), \cos(\xi))$$

Como $\xi \in (0, \pi/2)$ temos que $0 < \cos(\xi) < 1$. Assim, já que $(\xi, \varphi) \in Q$, deveremos ter $Y \neq (0, 0, 1)$. Substituindo as coordenadas de Y na equação $x^2 + y^2 + z^2 = 1$, observamos que:

$$\begin{aligned} [\cos(\varphi)\sin(\xi)]^2 + [\sin(\varphi)\sin(\xi)]^2 + [\cos(\xi)]^2 &= \\ &= [\cos^2(\varphi) + \sin^2(\varphi)]\sin^2(\xi) + \cos^2(\xi) &= \ \sin^2(\xi) + \cos^2(\xi) = 1. \end{aligned}$$

Então, $Y \in \overline{SE}^2$ e, segue daí que, $f(Q) \subset \overline{SE}^2$. Logo, $f(Q) = \overline{SE}^2$ e f é sobrejetiva. Concluímos, então, que f é uma bijeção.

De forma análoga, podemos provar que

0

Lema 3.2. Sejam $\overline{S}^2 = S^2 - \{(0,0,1), (0,0,-1)\}$ (a esfera na Figura 1(b) sem os pólos norte e sul) e $Q = (0, \pi/2) \times [0, 2\pi)$. A função

$$\begin{array}{rcl} g: Q & \to & \overline{S}^2 \\ (\xi, \varphi) & \mapsto & (\cos(\varphi) \operatorname{sen}(2\xi), \operatorname{sen}(\varphi) \operatorname{sen}(2\xi), \cos(2\xi)) \end{array}$$

é uma bijeção.

Proposição 3.2. Sejam f e g as funções definidas nos Lemas 3.1 e 3.2, respectivamente. A função abaixo é sobrejetora e, para $z \neq 0$, também é injetora.

0

$$\begin{array}{rcccc} \mathcal{V}:SE^2 & \rightarrow & S^2 \\ (x,y,z) & \mapsto & g(f^{-1}(x,y,z)) & ((x,y,z)\in\overline{SE}^2) \\ (0,0,1) & \mapsto & (0,0,1) \ e & (x,y,0) \mapsto (0,0,-1) \end{array}$$

Demonstração. Usando os Lemas 3.1 e 3.2 e observando que o domínio da função g é igual ao contra-domínio da função f^{-1} , obtemos uma bijeção entre \overline{SE}^2 e \overline{S}^2 , dada por $g \circ f^{-1}$, já que a composição de bijeções, nessas condições, é uma bijeção. A função \mathcal{V} , definida entre SE^2 e S^2 , é, então, uma função sobrejetora e, para $z \neq 0$, também é injetora, pela sua própria construção.

Figura 1: Semi-esfera e esfera de Bloch.

Corolário 3.1. A função \mathcal{V} tem uma formulação analítica explícita dada por

$$\begin{array}{rcl} \mathcal{V}:SE^2 & \to & S^2 \\ (x,y,z) & \mapsto & (2xz,2yz,2z^2-1) \end{array}$$

Cada elemento da imagem de \mathcal{V} será chamado de vetor de Bloch.

Definição 3.1 (Esfera de Bloch). A esfera de Bloch é o lugar geométrico de todos os vetores de Bloch.

Observações:

- 1. Os elementos da base computacional $\{|0\rangle, |1\rangle\}$ são representados na esfera de Bloch pelos pólos norte (0,0,1) e sul (0,0,-1), respectivamente.
- 2. \mathcal{V} leva todos os pontos do equador de SE^2 no pólo sul (0, 0, -1) de S^2 .
- 3. Fazendo a mudança de variável $\xi \to \frac{\theta}{2}$, na equação (2.1), chegamos à forma para a representação polar de um q-bit mais comum na literatura da área:

$$|\psi\rangle = e^{i\gamma} [\cos(\frac{\theta}{2})|0\rangle + e^{i\varphi} \sin(\frac{\theta}{2})|1\rangle].$$

E, para o vetor de Bloch, teremos:

 $|\psi\rangle_B = (\cos\varphi \sin\theta, \sin\varphi \sin\theta, \cos\theta), \quad 0 \le \varphi < 2\pi, \quad 0 \le \theta \le \pi.$ (3.1)

4. Cada ponto da esfera de Bloch representa todos os q-bits de formato $e^{i\gamma} |\psi\rangle$, para $|\psi\rangle = [\cos(\theta/2) |0\rangle + e^{i\varphi} \sin(\theta/2) |1\rangle]$ fixado e $0 \le \gamma < 2\pi$.

Na Figura 1(b), apresentamos uma representação da esfera de Bloch.

Figura 2: Representação gráfica das Propriedades 4.1 e 4.2.

4. Algumas Propriedades da Esfera de Bloch

O principal objetivo da representação de um q-bit na esfera de Bloch é possibilitar alguma visualização da evolução desse q-bit no tempo. Pela sua própria construção, a esfera de Bloch apresenta várias propriedades que não são intuitivas. Dentre essas, destacaremos duas.

Propriedade 4.1 (q-bits equiprováveis). Na esfera de Bloch, usando a parametrização apresentada em (3.1), quaisquer dois vetores de Bloch que pertençam a um mesmo plano, paralelo ao plano XY, representam q-bits que têm probabilidades iguais de produzirem $|0\rangle$ ou $|1\rangle$, ao serem medidos.

Demonstração. Os representantes dos q-bits

$$|\psi\rangle_1 = \alpha_1|0\rangle + \beta_1|1\rangle$$
 e $|\psi\rangle_2 = \alpha_2|0\rangle + \beta_2|1\rangle$,

que estão em um mesmo plano paralelo a XY, têm, respectivamente, θ_1 associado a $|\psi\rangle_1$ e θ_2 associado a $|\psi\rangle_2$, relativos à equação (3.1). Então, $\theta_1 = \theta_2$ e

$$|\alpha_1| = \cos(\frac{\theta_1}{2}) = \cos(\frac{\theta_2}{2}) = |\alpha_2|$$
 e $|\beta_1| = \sin(\frac{\theta_1}{2}) = \sin(\frac{\theta_2}{2}) = |\beta_2|.$

Ver representação na Figura 2(a).

Propriedade 4.2 (vetores de Bloch antípodas e ortogonais). Na esfera de Bloch, usando a parametrização apresentada em (3.1), quaisquer dois vetores de Bloch antípodas são representantes de dois q-bits ortogonais.

Demonstração. As famílias de q-bits relativas a vetores de Bloch antípodas são definidas por

$$\begin{aligned} |\phi\rangle_1 &= e^{(i\gamma_1)}(\cos(\frac{\theta_1}{2})|0\rangle + e^{(i\varphi_1)}\sin(\frac{\theta_1}{2})|1\rangle) &e \\ |\phi\rangle_2 &= e^{(i\gamma_2)}(\cos(\frac{\pi-\theta_1}{2})|0\rangle + e^{i(\varphi_1+\pi)}\sin(\frac{\pi-\theta_1}{2})|1\rangle). \end{aligned}$$

Observe que esses q-bits, quando representados na esfera de Bloch, são antípodas no sentido usual do termo.

Reescrevendo $|\phi\rangle_2$, temos:

$$|\phi\rangle_2 = e^{(i\gamma_2)}(\operatorname{sen}(\frac{\theta_1}{2})|0\rangle + e^{i(\varphi_1 + \pi)}\cos(\frac{\theta_1}{2})|1\rangle).$$

Calculando o produto interno usual em $\mathbb{C}^2(\mathbb{C})$ entre $|\phi\rangle_1 \in |\phi\rangle_2$, obtemos:

$$\begin{split} \mathrm{e}^{\mathrm{i}(\gamma_1-\gamma_2)}(\cos(\frac{\theta_1}{2})\sin(\frac{\theta_1}{2}) + \mathrm{e}^{\mathrm{i}(\varphi_1-\varphi_1-\pi)}\cos(\frac{\theta_1}{2})\sin(\frac{\theta_1}{2})) &= \\ &= \mathrm{e}^{\mathrm{i}(\gamma_1-\gamma_2)}(\cos(\frac{\theta_1}{2})\sin(\frac{\theta_1}{2})(1+\mathrm{e}^{-\,\mathrm{i}\,\pi})) = 0. \end{split}$$

Ou seja, $|\phi\rangle_1 \in |\phi\rangle_2$ são ortogonais (ver representação na Figura 2(b)).

Com isso, apresentamos uma descrição matemática e algumas propriedades da esfera de Bloch. Em outros trabalhos, estudaremos a ação de algumas portas quânticas em q-bits usando a visualização permitida pela esfera de Bloch. Em paralelo, estamos estudando outras representações para 1 e 2 q-bits.

Agradecimentos

Os autores agradecem o apoio da FAPERJ, da FAPESP, do CNPq, e da aluna Virgínia Silva da Costa, pela rotina que produziu as representações gráficas dos q-bits na esfera de Bloch. Agradecem também a um revisor pois seus comentários contribuíram para aclarar alguns pontos nebulosos do texto.

Abstract. We present a mathematical description of the Bloch sphere and discuss some properties of this representation. Also, using the Bloch sphere, we represent some qubits with special properties.

Referências

- [1] W.E. Baylis, R. Cabrera, C. Rangan, Control and representation of n-qubit quantum systems, arxiv.org, quant-ph/0606019, June 2006.
- [2] B.A. Bernevig, H.-D. Chen, Geometry of the three-qubit state, entanglement and division algebras, J. Ph. A: Math. and Gen.l, 36 (2003), 8325–8339.
- [3] K. Dietz, Generalized Bloch spheres for m-qubit states, Journal of Physics A: Mathematical and General, 3 (2006), 1433–1447.
- [4] R.P. Feynman, F.L. Vernon, R.W. Hellwarth, Geometrical representation of the Schröedinger equation for solving the MASER problem, *Journal of Applied Physics*, 28, No. 1 (1957), 49–52.
- [5] T. Havel, C. Doran, A Bloch-sphere-type model for two qubits in the geometric algebra of a 6-D Euclidean vector space, *Proceedings of SPIE*, 5436 (2004), 93–106.

- [6] M. Hirvensalo, "Quantum Computing", Springer, New York, 2001.
- [7] K. Kato, M. Oto, H. Imai, K. Imai, Voronoi diagrams for pure 1-qubit quantum states, arxiv.org, Quantum Physics, quant-ph/0604101, April 2006.
- [8] G. Kimura, A. Kossakowski, The Bloch-vector space for n-level systems: the spherical-coordinate point of view, Open Systems & Information Dynamics, 12, No. 3 (2005), 207–229.
- [9] A. Y. Kitaev, A. Shen, M. Vyalyi, "Classical and Quantum Computing", volume 47 of Graduate Studies in Mathematics, AMS, 2002.
- [10] P. Kurzynski, A. Grudka, Graphical representation of generalized quantum measurements, arxiv.org, Quantum Physics, quant-ph/0604189, April 2006.
- [11] A. Maitra, P. Parashar, Hadamard type operations for qubits, arxiv.org, Quantum Physics, quant-ph/0505068, May 2005.
- [12] R. Mosseri, Two and three qubits geometry and Hopf fibrations, arxiv.org, Quantum Physics, quant-ph/0310053, 2003.
- [13] M. A. Nielsen, I. L. Chuang, "Quantum Computation and Quantum Information", Cambridge University Press, Cambridge, 2000.
- [14] R. Portugal, C. Lavor, L. M. Carvalho, N. Maculan, "Uma Introdução à Computação Quântica", Notas em Matemática Aplicada, Vol. 8, SBMAC, São Carlos, 2004.
- [15] J. Preskill, "Quantum Information and Computation", Lecture Notes, California Institute of Technology, unpublished 1998.
- [16] J. Zhang, J. Vala, S. Sastry, K.B. Whaley, Geometric theory of nonlocal twoqubit operations, *Phys. Rev. A*, 67, No. 4 (2003), 042313.