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Abstract. In this paper we introduced a general model for the Hybrid Dynamical

Systems and for such systems we introduced the usual concept of Lyapunov stability.

Furthermore, we established two Principal Lyapunov Theorems and a converse

theorem.
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1. Introduction

Hybrid systems are capable of exhibiting simultaneously several kinds of dynamic
behavior, such that continuous-time dynamics, discrete-time dynamics, logic com-
mands, and so forth.
At the present time, there does not appear to exist a satisfactory general model
for hybrid dynamical systems which is situable for the qualitative analysis of such
systems.
In the present paper we give a definition of hybrid dynamical system which cov-
ers a very large number of classes of hybrid systems and which is suitable for the
qualitative analysis of such systems.

2. Hybrid Systems

2.1. Hybrid dynamical systems

Definition 2.1. Given the set X, ≺ ⊂ X ×X it is an order relationship in X if
for any x, y, z ∈ X such that (x, y) ∈≺ ⇔ x ≺ y :
(i) x ≺ x;
(ii) if x ≺ y and y ≺ x then x = y;
(iii) if x ≺ y and y ≺ z then x ≺ z.

Definition 2.2. We say that a function φ ∈ C[[0, r],R+] (respectively φ ∈ C[R+,R+])
belongs to class K (φ ∈ K), if φ(0) = 0 and if φ is strictly increasing on [0, r] (re-
spectively on R

+).

1iguerluis@hotmail.com (financial support CAPES).
2gsilva@ibilce.unesp.br



454 Santos and Silva

Furthermore, we say that a function φ ∈ K defined on R
+ belongs to class KR if

limr→∞ φ(r) = +∞.

Definition 2.3. A metric space (T, ρ) is called a time space if:
(i) T is completely ordered with order ≺ ;
(ii) T has a minimal element tmin ∈ T , that is, for any t ∈ T and t 6= tmin, it is
true that tmin ≺ t ;
(iii) for any t1, t2, t3 ∈ T such that t1 ≺ t2 ≺ t3, it is true that ρ(t1, t3) = ρ(t1, t2)+
ρ(t2, t3);
(iv) T is unbounded from above, that is, for any M > 0, there exists a t ∈ T such
that ρ(t, tmin) > M .

Definition 2.4. Let (X, d) be a metric space and let A ⊂ X. Let (T, ρ) be a
time space, and let T0 ⊂ T . For any fixed a ∈ A, t0 ∈ T0, we call a mapping
p(., a, t0) : Ta,t0 → X a motion if p(t0, a, t0) = a, where Ta,t0 = {t ∈ T : t0 � t}.

Thus, we define hybrid dynamical systems:

Definition 2.5. Let S be a set of motions, that is, S ⊂ {p(., a, t0) ∈ Λ : p(t0, a, t0) =
a}, where Λ = ∪(a,t0)∈(A×T0){Ta,t0 → X}. The five-tuple {T,X,A, S, T0} is called
a hybrid dynamical system.

2.2. Some qualitative characterizations

Definition 2.6. Let {T,X,A, S, T0} be a hybrid dynamical system. A set M ⊂ A is
said to be invariant with respect to system S (that is, (S,M) is invariant) if a ∈M
implies that p(t, a, t0) ∈M for all t ∈ Ta,t0 and all t0 ∈ T0 such that p(., a, t0) ∈ S.

Definition 2.7. We call x0 ∈ A an equilibrium of a hybrid dynamical system
{T,X,A, S, T0} if (S, {x0}) is invariant.

Definition 2.8. (Lyapunov Stability) Let {T,X,A, S, T0} be a hybrid dynamical
system and let M ⊂ A be an invariant set of S.
(i) We say that (S,M) is stable if for every ǫ > 0, and t0 ∈ T0 there exists a δ =
δ(ǫ, t0) > 0 such that d(p(t, a, t0),M) < ǫ for all t ∈ Ta,t0 and for all p(., a, t0) ∈ S,
whenever d(a,M) < δ.
(ii) We say that (S,M) is uniformly stable if δ = δ(ǫ).
(iii)If (S,M) is stable and if for any t0 ∈ T0, there exists an η = η(t0) > 0 such
that, for every ǫ > 0, there exists a tǫ ∈ T such that d(p(t, a, t0),M) < ǫ whenever
t ∈ T and tǫ � t, for all p(., a, t0) ∈ S whenever d(a,M) < η, then (S,M) is called
asymptotically stable.
(iv) We call (S,M) uniformly asymptotically stable if (S,M) is uniformly stable
and if there exists a δ > 0 and for every ǫ > 0 there exists a τ = τ(ǫ) > 0 such
that d(p(t, a, t0),M) < ǫ for all t ∈ {t ∈ Ta,t0 : ρ(t, t0) ≥ τ}, and all p(., a, t0) ∈ S
whenever d(a,M) < δ.
(v) (S,M) is said to be exponentially stable if there exists α > 0 such that for every
ǫ > 0 and t0 ∈ T0, there exists a δ = δ(ǫ) > 0 such that d(p(t, a, t0),M) < ǫe−αρ(t,t0)

for all t ∈ Ta,t0 and for all p(., a, t0) ∈ S, whenever d(a,M) < δ.
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Observation : The exponential stability of (S,M) implies the uniform asymptotic
stability of (S,M).

Indeed, if (S,M) is exponentially stable then for every ǫ > 0 and t0 ∈ T0, there
exists α > 0 and δ = δ(ǫ) > 0 such that d(p(t, a, t0),M) < ǫe−αρ(t,t0) for all t ∈
Ta,t0 and for all p(., a, t0) ∈ S, whenever d(a,M) < δ, therefore d(p(t, a, t0),M) <
ǫe−αρ(t,t0) ≤ ǫ and (S,M) is uniformly stable.
Furthermore, for all t ∈ Ta,t0 it is had d(p(t, a, t0),M) < ǫe−αρ(t,t0), thus, for any
τ = τ(ǫ) > 0 such that t ∈ {t ∈ Ta,t0 : ρ(t, t0) ≥ τ}, d(p(t, a, t0),M) < ǫe−αρ(t,t0) <
ǫ and then (S,M) is uniformly asymptotically stable.

2.3. Embedding of hybrid dynamical systems into dynamical

systems defined on R
+

Any time space T can be embedded into the real space R
+ by means of a mapping

g : T → R
+, having the following properties:

(i) g(tmin) = 0, where tmin denotes the minimum element in T ;
(ii) g(t) = ρ(t, tmin) for t 6= tmin .

If we let R1 = g(T ), then g is an isometric mapping from T to R1. Indeed, given
r ∈ R1, there exists t ∈ T such that r = g(t) and if g(t1) = g(t2), for t1 ≺ t2, since
ρ(tmin, t2) = ρ(tmin, t1) + ρ(t1, t2) it follows that g(t2) − g(t1) = ρ(t1, t2) and then
t1 = t2. Thus, g is a bijection from T onto R1, furthermore, for t1 ≺ t2 it is had
d(g(t1), g(t2)) = |g(t2) − g(t1)| = |ρ(t1, t2)| = ρ(t1, t2), therefore g is an isometric
mapping from T to R1 = g(T ).

Definition 2.9. Let {T,X,A, S, T0} be a hybrid dynamical system, let x ∈ A be
fixed and let g : T → R

+ be the embedding mapping defined previously . Suppose
that p(., a, t0) ∈ S is a motion defined on Ta,t0 . Let p̃(., a, r0) : R

+
r0

→ X, where
R

+
r0

= {r ∈ R
+ : r ≥ r0}, be a function having the following properties:

(i) r0 = g(t0);
(ii) p̃(r, a, r0) = p(g−1(r), a, t0) if r ∈ R1 = g(T );
(iii) p̃(r, a, r0) = x if r 6∈ R1 = g(T ).
We call p̃(., a, r0) the embedding of p(., a, t0) from T to R

+ with respect to x.

Definition 2.10. Let {T,X,A, S, T0} be a hybrid dynamical system and let x ∈
A. The hybrid dynamical system {R+,X,A, S̃,R+

0 } is called the embedding of
{T,X,A, S, T0} from T to R

+ with respect to x, where R
+
0 = g(T0) and S̃ is the set

of all p̃(., a0, r0), such that p̃(., a0, r0) is the embedding of p(., a0, t0) with respect to
x and p(., a0, t0) ∈ S.

In view of the previous definitions, any hybrid dynamical system defined on an
abstract time space T can be embedded into another hybrid dynamical system de-
fined on real time space R

+.
Furthermore, it should be noted that the various stability definitions given in sub-
section 2.2 for general hybrid dynamical systems {T,X,A, S, T0} with invariant set
M ⊂ A translate in a natural manner to the case of dynamical systems
{R+,X,A, S̃,R+

0 } . For this is enough take the metric space (R+, d) with usual
metric d(x, y) = |x− y|, x, y ∈ R

+ and ≺ = ≤ .
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Proposition 2.1. Suppose that {T,X,A, S, T0} is a hybrid dynamical system. Let
M ⊂ A be an invariant subset for S, and let x be any fixed point in M . Let
{R+,X,A, S̃,R+

0 } be the embedding of {T,X,A, S, T0} from T to R
+ with respect

to x. Then M is also an invariant subset for system S̃, (S,M) and (S̃,M) possess
identical stability properties and S and S̃ have identical boundedness properties.

Proof. See [5].

2.4. An example

Consider the following problem of initial value







ẋ(t) − bx(t) = 0

x(0) = x0 ≥ 0
,

where x ∈ C[R+,R] and b < 0. This differential equation determine the dynamical
system {T,X,A, S, T0} = {R+,R+, {x0}, S, 0}, with S = {p(., x0, 0) : R

+ → R
+}

such that p(t, x0, 0) = x0e
bt. We have the follows results:

(i) (S, {0}) is invariant, since p(t, x0, 0) = p(t, 0, 0) = 0ebt = 0 ∈ {0} for all t ∈ R
+.

(ii) For every ǫ > 0, let 0 < δ = ǫ and then d(p(t, x0, 0), {0}) = x0e
bt < δebt =

ǫebt ≤ ǫ, whenever d(x0, {0}) = x0 < δ. Therefore (S, {0}) is uniformly stable.
(iii) (S, {0}) is asymptotically estable, since if d(x0, {0}) = x0 < η < 1 then
limt→∞ d(p(t, x0, 0), {0}) = limt→∞ p(t, x0, 0) = limt→∞ x0e

bt = 0.
(iv) Given ǫ > 0, for α > 0 and α > −b, let δ = δ(ǫ) > 0 such that δ = ǫ.
Then, d(p(t, x0, 0), {0}) = p(t, x0, 0) = x0e

bt < ǫebt ≤ ǫe−αt, whenever d(x0, {0}) =
x0 < δ. Thus (S, {0}) is exponentially estable, and then uniformly asymptotically
estable.

3. Principal Lyapunov Theorems

To follow we presented two Principal Lyapunov Theorems for the class of discon-
tinuous dynamical systems.

Definition 3.1. We will call a dynamical system defined on R
+ whose motions are

not continuous with respect to time a discontinuous dynamical system.

Theorem 3.1. Let {R+, (X, d), A, S,R+
0 } be a discontinuous dynamical system and

let M ⊂ A be closed. Assume that there exists a function V : X × R
+ → R

+ and
functions ψ1, ψ2 ∈ KR such that

ψ1(d(x,M)) ≤ V (x, t) ≤ ψ2(d(x,M)),

for all x ∈ X and t ∈ R
+.

(a) Assume that for every p(., a, τp
0 ) ∈ S, V (p(t, a, τp

0 ), t) is continuous on R
+
τ

p

0

=

{t ∈ R
+ : t ≥ τp

0 } except on a set of discontinuities EV (p) ⊂ Ep, where Ep =
{τp

0 , τ
p
1 , ... : 0 ≤ τp

0 < τp
1 < ...} is the set of points of discontinuities of p(., a, τp

0 ).
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Also, assume that there exists a neighborhood U ⊂ A of M such that V (p(t, a, τp
0 ), t)

is nonincreasing for all a ∈ U and all t ≥ τp
0 , and assume that there exists a

increasing function h ∈ C[R+,R+], with h(0) = 0 such that

V (p(t, a, τp
0 ), t) ≤ h(V (p(τp

k , a, τ
p
0 ), τp

k )), t ∈ (τp
k , τ

p
k+1).

Then (S,M) is invariant and uniformly stable.
(b) If in addition to the assumptions given in (a) there exists a function ψ3 ∈ K
defined on R

+ such that

DV (p(τp
k , a, τ

p
0 ), τp

k ) ≤ −ψ3(d(p(τ
p
k , a, τ

p
0 ),M)),

for all a ∈ U , k ∈ N, where

DV (p(τp
k , a, τ

p
0 ), τp

k ) :=

1

τp
k+1 − τp

k

[

V (p(τp
k+1, a, τ

p
0 ), τp

k+1) − V (p(τp
k , a, τ

p
0 ), τp

k )
]

(3.1)

then (S,M) is uniformly asymptotically stable.

Proof. (a) We will prove that (S,M) is invariant. If a ∈M , then
V (p(τp

0 , a, τ
p
0 ), τp

0 ) = 0 since V (p(τp
0 , a, τ

p
0 ), τp

0 ) = V (a, τp
0 ) ≤ ψ2(d(a,M)) and

d(a,M) = 0. Therefore, we know that V (p(τp
k , a, τ

p
0 ), τp

k ) = 0 for all k ≥ 0
since V (p(τp

k , a, τ
p
0 ), τp

k ) is nonincreasing for all a ∈ M and τp
k+1 ≥ τp

0 and V (X ×
R

+) ⊂ R
+. Furthermore V (p(t, a, τp

0 ), t) = 0 for all t ≥ τp
0 since V (p(t, a, τp

0 ), t) ≤
h(V (p(τp

k , a, τ
p
0 ), τp

k )) = h(0) = 0. This implies that ψ1(d(p(t, a, τ
p
0 ),M)) ≤

V (p(t, a, τp
0 ), t) = 0 and then d(p(t, a, τp

0 ),M) = 0, that is, p(t, a, τp
0 ) ∈ M for all

t ≥ τp
0 , since M is closed. Therefore (S,M) is invariant.

Since h is continuous and h(0) = 0, then for any ǫ > 0 there exists δ = δ(ǫ) > 0
such that h(y) < ψ1(ǫ) as long as 0 ≤ y ≤ δ. We can assume that δ < ψ1(ǫ). Thus,
for any motion p(., a, τp

0 ) ∈ S, as long as the initial condition d(a,M) < ψ−1
2 (δ) is

satisfied, with a ∈ U , it follows that V (p(τp
0 , a, τ

p
0 ), τp

0 ) = V (a, τp
0 ) ≤ ψ2(d(a,M)) <

ψ2(ψ
−1
2 (δ)) = δ and V (p(τp

k , a, τ
p
0 ), τp

k ) < δ for all k, since V (p(τp
k , a, τ

p
0 ), τp

k ) is
nonincreasing and then

d(p(τp
k , a, τ

p
0 ),M) ≤ ψ−1

1 (V (p(τp
k , a, τ

p
0 ), τp

k )) < ψ−1
1 (δ) < ǫ .

Furthermore, for any t ∈ (τp
k , τ

p
k+1), we can conclude that

V (p(t, a, τp
0 ), t) ≤ h(V (p(τp

k , a, τ
p
0 ), τp

k )) ≤ h(δ) < ψ1(ǫ)

and
d(p(t, a, τp

0 ),M) ≤ ψ−1
1 (V (p(t, a, τp

0 ), t)) < ψ−1
1 (ψ1(ǫ)) = ǫ.

Therefore (S,M) is uniformly stable.
(b) Letting zp

k = V (p(τp
k , a, τ

p
0 ), τp

k ), with a ∈ U , we obtain from the assumptions of
the theorem that

−(τp
k+1 − τp

k )ψ3(ψ
−1
2 (zp

k)) = −(τp
k+1 − τp

k )ψ3(ψ
−1
2 (V (p(τp

k , a, τ
p
0 ), τp

k ))) ≥



458 Santos and Silva

−(τp
k+1 − τp

k )ψ3(d(p(τ
p
k , a, τ

p
0 ),M)) ≥

V (p(τp
k+1, a, τ

p
0 ), τp

k+1) − V (p(τp
k , a, τ

p
0 ), τp

k ) = zp
k+1 − zp

k

If we denote ψ = ψ3 ◦ ψ
−1
2 , then ψ ∈ K and the last inequality becomes

zp
k+1 − zp

k ≤ −(τp
k+1 − τp

k )ψ(zp
k).

It follows that

ψ(zp
k) ≤

zp
k − zp

k+1

τp
k+1 − τp

k

≤
zp
0 − zp

k+1

τp
k+1 − τp

k

≤
zp
0

τp
k+1 − τp

k

. (3.2)

Now, consider a fixed δ > 0. For any ǫ > 0, we can choose a τ > 0 such that

max{ψ1(ψ
−1(

ψ2(δ)

τ
)), ψ−1

1 (h(ψ−1(
ψ2(δ)

τ
)))} < ǫ

and τp
k+1 − τp

k > τ for all k. Let a ∈ U ⊂ A with d(a,M) < δ and τp
0 ∈ R

+
0 any.

For any t ≥ τp
0 + τ , t must belong to some interval [τp

k , τ
p
k+1) for some k. It follows

from (3.2) that

ψ(zp
k) ≤

zp
0

τp
k+1 − τp

k

=
V (p(τp

0 , a, τ
p
0 ), τp

0 )

τp
k+1 − τp

k

=
V (a, τp

0 )

τp
k+1 − τp

k

<

<
V (a, τp

0 )

τ
≤
ψ2(d(a,M))

τ
<
ψ2(δ)

τ

which implies that

zp
k = V (p(τp

k , a, τ
p
0 ), τp

k ) < ψ−1(
ψ2(δ)

τ
) (3.3)

and

V (p(t, a, τp
0 ), t) ≤ h(V (p(τp

k , a, τ
p
0 ), τp

k )) ≤ h(ψ−1(
ψ2(δ)

τ
)) (3.4)

if t ∈ (τp
k , τ

p
k+1). In the case when t = τp

k , it follows from (3.3) that

d(p(τp
k , a, τ

p
0 ),M) ≤ ψ−1

1 (V (p(τp
k , a, τ

p
0 ), τp

k )) < ψ−1
1 (ψ−1(

ψ2(δ)

τ
)) < ǫ.

In the case when t ∈ (τp
k , τ

p
k+1), we can conclude from (3.4) that

d(p(t, a, τp
0 ),M) ≤ ψ−1

1 (V (p(t, a, τp
0 ), t)) ≤ ψ−1

1 (h(ψ−1(
ψ2(δ)

τ
))) < ǫ.

This prove that (S,M) is uniformly asymptotically stable.

Theorem 3.2. Let {R+, (X, d), A, S,R+
0 } be a discontinuous dynamical system and

let M ⊂ A be closed. Assume that there exists a function V : X × R
+ → R

+ and
positive constants c1, c2 and b such that

c1(d(x,M))b ≤ V (x, t) ≤ c2(d(x,M))b,
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for all x in some neighborhood X1 of M and t ∈ R
+.

(i) Assume that for every p(., a, τp
0 ) ∈ S, V (p(t, a, τp

0 ), t) is continuous on R
+
τ

p

0

=

{t ∈ R
+ : t ≥ τp

0 } except on a set of discontinuities EV (p) ⊂ Ep, where Ep =
{τp

0 , τ
p
1 , ... : 0 ≤ τp

0 < τp
1 < ...} is the set of points of discontinuities of p(., a, τp

0 ).
Moreover, assume that there exists a function h ∈ C[R+,R+], with h(0) = 0 such
that

V (p(t, a, τp
0 ), t) ≤ h(V (p(τp

k , a, τ
p
0 ), τp

k )),

for t ∈ (τp
k , τ

p
k+1), and such that for some positive constant q, h satisfies

lim
r→0

h(r)

|r|q
= 0.

(ii) Suppose that there exists a constant c3 > 0 such that

DV (p(τp
k , a, τ

p
0 ), τp

k ) ≤ −c3[d(p(τ
p
k , a, τ

p
0 ),M)]b,

for all a ∈ X1 and k ∈ N, where DV (p(τp
k , a, τ

p
0 ), τp

k ) is defined in (3.1).
Then (S,M) is exponentially stable.

Proof. See [5].

4. Converse Theorem

Now we presented a converse theorem of the theorem 3.2 in the following sense:

Theorem 4.1. Let {R+, (X, d), A, S,R+
0 = R

+} be a discontinuous dynamical sys-
tem and let M ⊂ A be a closed invariant set, where A is a neighborhood of M .
Suppose that :
(i) every p(., a, τp

0 ) ∈ S is continuous everywhere on [τp
0 ,∞), except on a set

Ep = {τp
0 , τ

p
1 , ... : τp

0 < τp
1 < ...}, being l = infp∈S{τ

p
k+1 − τp

k } > 0 and L =
supp∈S{τ

p
k+1 − τp

k } <∞;

(ii) for any p(., a, τp
0 ) ∈ S is true that p(t′, p(t, a, τp

0 ), t) = p(t′, a, τp
0 ) for all t ∈ R

+
0

and t′ ≥ t. Furthermore, p(t′, a, t) 6∈M if a 6∈M , therefore d(p(t′, a, t),M) > 0 for
all t′ ≥ t if a 6∈M , since M is closed.
Let (S,M) be exponentially stable. Then there exists a neighborhood X1 of M such
that X1 ⊂ A, and a mapping V : X1 × R

+ → R
+ which satisfies the following

conditions:
(a)there exist ψ1, ψ2 ∈ K defined on R

+ such that

ψ1(d(x,M)) ≤ V (x, t) ≤ ψ2(d(x,M)),

for all (x, t) ∈ X1 × R
+.

(b) there exists a constant c > 0 such that for every p(., a, τp
0 ) ∈ S,

DV (p(τp
k , a, τ

p
0 ), τp

k ) ≤ −cV (p(τp
k , a, τ

p
0 ), τp

k ),
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for k ∈ N, where a ∈ X1 .

(c) there exists a function h ∈ C[R+,R+], with h(0) = 0 and limθ→0+
h(θ)
θq = 0 for

some constant q > 0, such that

V (p(t, a, τp
0 ), t) ≤ h(V (p(τp

k , a, τ
p
0 ), τp

k ),

for every p(., a, τp
0 ) ∈ S, t ∈ (τp

k , τ
p
k+1), a ∈ X1 and τp

0 ∈ R
+.

Proof. Since (S,M) exponentially stable, for every ǫ > 0 there exists α > 0 and r0 =
r0(ǫ) such that d(p(t, a, τp

0 ),M) < ǫe−α(t−τ
p

0
) for all p(., a, τp

0 ) ∈ S and all t ∈ Ta,τ
p

0
,

whenever d(a,M) < r0. Let φ ∈ K defined on [0, r0] such that φ(d(a,M)) ≥ ǫ
if a 6∈ M , then d(p(t, a, τp

0 ),M) < ǫe−α(t−τ
p

0
) ≤ φ(d(a,M))e−α(t−τ

p

0
). If a ∈ M ,

p(t, a, τp
0 ) ∈M therefore d(p(t, a, τp

0 ),M) = 0 ≤ φ(d(a,M))e−α(t−τ
p

0
) = 0, thus

d(p(t, a, τp
0 ),M) ≤ φ(d(a,M))e−α(t−τ

p

0
). (4.1)

Let X1 = {x ∈ A : d(x,M) < r0}. For (x, t) ∈ X1 × R
+, define

V (x, t) = sup
t′≥t

{d(p(t′, x, t),M).eα(t′−t)}.

For a ∈ X1 and τp
0 ∈ R

+, we have

V (p(t, a, τp
0 ), t) = sup

t′≥t

{d(p(t′, p(t, a, τp
0 ), t),M).eα(t′−t)}

= sup
t′≥t

{d(p(t′, a, τp
0 ),M).eα(t′−t)} (4.2)

therefore

V (p(τp
k+1, a, τ

p
0 ), τp

k+1) = sup
t′≥τ

p

k+1

{d(p(t′, a, τp
0 ),M)eα(t′−τ

p

k+1
)}

= sup
t′≥τ

p

k+1

{d(p(t′, a, τp
0 ),M)eα(t′−τ

p

k
)e−α(τp

k+1
−τ

p

k
)}

= e−α(τp

k+1
−τ

p

k
) sup

t′≥τ
p

k+1

{d(p(t′, a, τp
0 ),M)eα(t′−τ

p

k
)}

≤ e−αl sup
t′≥τ

p

k+1

{d(p(t′, a, τp
0 ),M)eα(t′−τ

p

k
)}

≤ e−αl sup
t′≥τ

p

k

{d(p(t′, a, τp
0 ),M)eα(t′−τ

p

k
)} = e−αlV (p(τp

k , a, τ
p
0 ), τp

k ).

Letting c = (1/L)(1 − e−αl), we obtain

DV (p(τp
k , a, τ

p
0 ), τp

k ) =
1

τp
k+1 − τp

k

(

V (p(τp
k+1, a, τ

p
0 ), τp

k+1) − V (p(τp
k , a, τ

p
0 ), τp

k )
)

≤ −
1

τp
k+1 − τp

k

(

1 − e−αl
)

V (p(τp
k , a, τ

p
0 ), τp

k )
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≤ −
1

L

(

1 − e−αl
)

V (p(τp
k , a, τ

p
0 ), τp

k ) = −cV (p(τp
k , a, τ

p
0 ), τp

k ).

Also, for all (x, t) ∈ X1 × R
+ (4.1) imply that

V (x, t) = sup
t′≥t

{d(p(t′, x, t),M)eα(t′−t)}

≤ sup
t′≥t

{φ(d(x,M))e−α(t′−t)eα(t′−t))} = sup
t′≥t

{φ(d(x,M))} = φ(d(x,M)).

Letting ψ2 ∈ K defined on R
+ such that ψ2(r) = φ(r) if r ∈ [0, r0], then

V (x, t) ≤ ψ2(d(x,M)).

Furthermore

V (x, t) = sup
t′≥t

{d(p(t′, x, t),M)eα(t′−t)} ≥ d(p(t′, x, t),M) ≥ ψ1(d(x,M))

for some ψ1 ∈ K defined on R
+. By (4.2) we have for every t ∈ (τp

k , τ
p
k+1), τ

p
0 ∈ R

+

and a ∈ X1

V (p(t, a, τp
0 ), t) = sup

t′≥t

{d(p(t′, a, τp
0 ),M)eα(t′−t)}

= sup
t′≥t

{d(p(t′, a, τp
0 ),M)eα(t′−τ

p

k
)e−α(t−τ

p

k
)} ≤ sup

t′≥t

{d(p(t′, a, τp
0 ),M)eα(t′−τ

p

k
)}

≤ sup
t′≥τ

p

k

{d(p(t′, a, τp
0 ),M)eα(t′−τ

p

k
)} = V (p(τp

k , a, τ
p
0 ), τp

k ).

Letting h ∈ C[R+,R+] such that h(r) = r and q = 1
2 , it follows that limθ→0+

h(θ)
θq =

θ

θ
1
2

= 0 and

V (p(t, a, τp
0 ), t) ≤ V (p(τp

k , a, τ
p
0 ), τp

k ) = h(V (p(τp
k , a, τ

p
0 ), τp

k )).

Resumo. Neste trabalho introduzimos um modelo geral para os Sistemas Dinâmicos

Hı́bridos e para tais sistemas introduzimos o conceito usual de estabilidade de Lya-

punov. Além disso, estabelecemos dois Teoremas Principais de Lyapunov e um

teorema de conversão.
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