Some Results in Stability Analysis of Hybrid Dynamical Systems

I.L.D. SANTOS ${ }^{1}$, G.N. SILVA ${ }^{2}$, Departamento de Ciências de Computação e Estatística, IBILCE, UNESP, 15054-000 São José do Rio Preto, SP, Brasil.

Abstract

In this paper we introduced a general model for the Hybrid Dynamical Systems and for such systems we introduced the usual concept of Lyapunov stability. Furthermore, we established two Principal Lyapunov Theorems and a converse theorem. Keywords. Hybrid dynamical systems, Lyapunov stability, discontinuous dynamical systems.

1. Introduction

Hybrid systems are capable of exhibiting simultaneously several kinds of dynamic behavior, such that continuous-time dynamics, discrete-time dynamics, logic commands, and so forth.
At the present time, there does not appear to exist a satisfactory general model for hybrid dynamical systems which is situable for the qualitative analysis of such systems.
In the present paper we give a definition of hybrid dynamical system which covers a very large number of classes of hybrid systems and which is suitable for the qualitative analysis of such systems.

2. Hybrid Systems

2.1. Hybrid dynamical systems

Definition 2.1. Given the set $X, \prec \subset X \times X$ it is an order relationship in X if for any $x, y, z \in X$ such that $(x, y) \in \prec \Leftrightarrow x \prec y$:
(i) $x \prec x$;
(ii) if $x \prec y$ and $y \prec x$ then $x=y$;
(iii) if $x \prec y$ and $y \prec z$ then $x \prec z$.

Definition 2.2. We say that a function $\phi \in C\left[[0, r], \mathbb{R}^{+}\right]$(respectively $\phi \in C\left[\mathbb{R}^{+}, \mathbb{R}^{+}\right]$) belongs to class $K(\phi \in K)$, if $\phi(0)=0$ and if ϕ is strictly increasing on $[0, r]$ (respectively on \mathbb{R}^{+}).

[^0]Furthermore, we say that a function $\phi \in K$ defined on \mathbb{R}^{+}belongs to class $K \mathbb{R}$ if $\lim _{r \rightarrow \infty} \phi(r)=+\infty$.

Definition 2.3. A metric space (T, ρ) is called a time space if:
(i) T is completely ordered with order \prec;
(ii) T has a minimal element $t_{\min } \in T$, that is, for any $t \in T$ and $t \neq t_{\min }$, it is true that $t_{\text {min }} \prec t$;
(iii) for any $t_{1}, t_{2}, t_{3} \in T$ such that $t_{1} \prec t_{2} \prec t_{3}$, it is true that $\rho\left(t_{1}, t_{3}\right)=\rho\left(t_{1}, t_{2}\right)+$ $\rho\left(t_{2}, t_{3}\right)$;
(iv) T is unbounded from above, that is, for any $M>0$, there exists a $t \in T$ such that $\rho\left(t, t_{\text {min }}\right)>M$.

Definition 2.4. Let (X, d) be a metric space and let $A \subset X$. Let (T, ρ) be a time space, and let $T_{0} \subset T$. For any fixed $a \in A$, $t_{0} \in T_{0}$, we call a mapping $p\left(., a, t_{0}\right): T_{a, t_{0}} \rightarrow X$ a motion if $p\left(t_{0}, a, t_{0}\right)=a$, where $T_{a, t_{0}}=\left\{t \in T: t_{0} \preceq t\right\}$.

Thus, we define hybrid dynamical systems:
Definition 2.5. Let S be a set of motions, that is, $S \subset\left\{p\left(., a, t_{0}\right) \in \Lambda: p\left(t_{0}, a, t_{0}\right)=\right.$ $a\}$, where $\Lambda=\cup_{\left(a, t_{0}\right) \in\left(A \times T_{0}\right)}\left\{T_{a, t_{0}} \rightarrow X\right\}$. The five-tuple $\left\{T, X, A, S, T_{0}\right\}$ is called a hybrid dynamical system.

2.2. Some qualitative characterizations

Definition 2.6. Let $\left\{T, X, A, S, T_{0}\right\}$ be a hybrid dynamical system. A set $M \subset A$ is said to be invariant with respect to system S (that is, (S, M) is invariant) if $a \in M$ implies that $p\left(t, a, t_{0}\right) \in M$ for all $t \in T_{a, t_{0}}$ and all $t_{0} \in T_{0}$ such that $p\left(., a, t_{0}\right) \in S$.

Definition 2.7. We call $x_{0} \in A$ an equilibrium of a hybrid dynamical system $\left\{T, X, A, S, T_{0}\right\}$ if $\left(S,\left\{x_{0}\right\}\right)$ is invariant.

Definition 2.8. (Lyapunov Stability) Let $\left\{T, X, A, S, T_{0}\right\}$ be a hybrid dynamical system and let $M \subset A$ be an invariant set of S.
(i) We say that (S, M) is stable if for every $\epsilon>0$, and $t_{0} \in T_{0}$ there exists a $\delta=$ $\delta\left(\epsilon, t_{0}\right)>0$ such that $d\left(p\left(t, a, t_{0}\right), M\right)<\epsilon$ for all $t \in T_{a, t_{0}}$ and for all $p\left(., a, t_{0}\right) \in S$, whenever $d(a, M)<\delta$.
(ii) We say that (S, M) is uniformly stable if $\delta=\delta(\epsilon)$.
(iii)If (S, M) is stable and if for any $t_{0} \in T_{0}$, there exists an $\eta=\eta\left(t_{0}\right)>0$ such that, for every $\epsilon>0$, there exists a $t_{\epsilon} \in T$ such that $d\left(p\left(t, a, t_{0}\right), M\right)<\epsilon$ whenever $t \in T$ and $t_{\epsilon} \preceq t$, for all $p\left(., a, t_{0}\right) \in S$ whenever $d(a, M)<\eta$, then (S, M) is called asymptotically stable.
(iv) We call (S, M) uniformly asymptotically stable if (S, M) is uniformly stable and if there exists a $\delta>0$ and for every $\epsilon>0$ there exists a $\tau=\tau(\epsilon)>0$ such that $d\left(p\left(t, a, t_{0}\right), M\right)<\epsilon$ for all $t \in\left\{t \in T_{a, t_{0}}: \rho\left(t, t_{0}\right) \geq \tau\right\}$, and all $p\left(., a, t_{0}\right) \in S$ whenever $d(a, M)<\delta$.
$(v)(S, M)$ is said to be exponentially stable if there exists $\alpha>0$ such that for every $\epsilon>0$ and $t_{0} \in T_{0}$, there exists a $\delta=\delta(\epsilon)>0$ such that $d\left(p\left(t, a, t_{0}\right), M\right)<\epsilon e^{-\alpha \rho\left(t, t_{0}\right)}$ for all $t \in T_{a, t_{0}}$ and for all $p\left(., a, t_{0}\right) \in S$, whenever $d(a, M)<\delta$.

Observation : The exponential stability of (S, M) implies the uniform asymptotic stability of (S, M).

Indeed, if (S, M) is exponentially stable then for every $\epsilon>0$ and $t_{0} \in T_{0}$, there exists $\alpha>0$ and $\delta=\delta(\epsilon)>0$ such that $d\left(p\left(t, a, t_{0}\right), M\right)<\epsilon e^{-\alpha \rho\left(t, t_{0}\right)}$ for all $t \in$ $T_{a, t_{0}}$ and for all $p\left(., a, t_{0}\right) \in S$, whenever $d(a, M)<\delta$, therefore $d\left(p\left(t, a, t_{0}\right), M\right)<$ $\epsilon e^{-\alpha \rho\left(t, t_{0}\right)} \leq \epsilon$ and (S, M) is uniformly stable.
Furthermore, for all $t \in T_{a, t_{0}}$ it is had $d\left(p\left(t, a, t_{0}\right), M\right)<\epsilon e^{-\alpha \rho\left(t, t_{0}\right)}$, thus, for any $\tau=\tau(\epsilon)>0$ such that $t \in\left\{t \in T_{a, t_{0}}: \rho\left(t, t_{0}\right) \geq \tau\right\}, d\left(p\left(t, a, t_{0}\right), M\right)<\epsilon e^{-\alpha \rho\left(t, t_{0}\right)}<$ ϵ and then (S, M) is uniformly asymptotically stable.

2.3. Embedding of hybrid dynamical systems into dynamical systems defined on \mathbb{R}^{+}

Any time space T can be embedded into the real space \mathbb{R}^{+}by means of a mapping $g: T \rightarrow \mathbb{R}^{+}$, having the following properties:
(i) $g\left(t_{\text {min }}\right)=0$, where $t_{\text {min }}$ denotes the minimum element in T;
(ii) $g(t)=\rho\left(t, t_{\text {min }}\right)$ for $t \neq t_{\text {min }}$.

If we let $R_{1}=g(T)$, then g is an isometric mapping from T to R_{1}. Indeed, given $r \in R_{1}$, there exists $t \in T$ such that $r=g(t)$ and if $g\left(t_{1}\right)=g\left(t_{2}\right)$, for $t_{1} \prec t_{2}$, since $\rho\left(t_{\text {min }}, t_{2}\right)=\rho\left(t_{\text {min }}, t_{1}\right)+\rho\left(t_{1}, t_{2}\right)$ it follows that $g\left(t_{2}\right)-g\left(t_{1}\right)=\rho\left(t_{1}, t_{2}\right)$ and then $t_{1}=t_{2}$. Thus, g is a bijection from T onto R_{1}, furthermore, for $t_{1} \prec t_{2}$ it is had $d\left(g\left(t_{1}\right), g\left(t_{2}\right)\right)=\left|g\left(t_{2}\right)-g\left(t_{1}\right)\right|=\left|\rho\left(t_{1}, t_{2}\right)\right|=\rho\left(t_{1}, t_{2}\right)$, therefore g is an isometric mapping from T to $R_{1}=g(T)$.

Definition 2.9. Let $\left\{T, X, A, S, T_{0}\right\}$ be a hybrid dynamical system, let $x \in A$ be fixed and let $g: T \rightarrow \mathbb{R}^{+}$be the embedding mapping defined previously. Suppose that $p\left(., a, t_{0}\right) \in S$ is a motion defined on $T_{a, t_{0}}$. Let $\tilde{p}\left(., a, r_{0}\right): \mathbb{R}_{r_{0}}^{+} \rightarrow X$, where $\mathbb{R}_{r_{0}}^{+}=\left\{r \in \mathbb{R}^{+}: r \geq r_{0}\right\}$, be a function having the following properties:
(i) $r_{0}=g\left(t_{0}\right)$;
(ii) $\tilde{p}\left(r, a, r_{0}\right)=p\left(g^{-1}(r), a, t_{0}\right)$ if $r \in R_{1}=g(T)$;
(iii) $\tilde{p}\left(r, a, r_{0}\right)=x$ if $r \notin R_{1}=g(T)$.

We call $\tilde{p}\left(., a, r_{0}\right)$ the embedding of $p\left(., a, t_{0}\right)$ from T to \mathbb{R}^{+}with respect to x.
Definition 2.10. Let $\left\{T, X, A, S, T_{0}\right\}$ be a hybrid dynamical system and let $x \in$ A. The hybrid dynamical system $\left\{\mathbb{R}^{+}, X, A, \tilde{S}, \mathbb{R}_{0}^{+}\right\}$is called the embedding of $\left\{T, X, A, S, T_{0}\right\}$ from T to \mathbb{R}^{+}with respect to x, where $\mathbb{R}_{0}^{+}=g\left(T_{0}\right)$ and \tilde{S} is the set of all $\tilde{p}\left(., a_{0}, r_{0}\right)$, such that $\tilde{p}\left(., a_{0}, r_{0}\right)$ is the embedding of $p\left(., a_{0}, t_{0}\right)$ with respect to x and $p\left(., a_{0}, t_{0}\right) \in S$.

In view of the previous definitions, any hybrid dynamical system defined on an abstract time space T can be embedded into another hybrid dynamical system defined on real time space \mathbb{R}^{+}.
Furthermore, it should be noted that the various stability definitions given in subsection 2.2 for general hybrid dynamical systems $\left\{T, X, A, S, T_{0}\right\}$ with invariant set $M \subset A$ translate in a natural manner to the case of dynamical systems $\left\{\mathbb{R}^{+}, X, A, \tilde{S}, \mathbb{R}_{0}^{+}\right\}$. For this is enough take the metric space $\left(\mathbb{R}^{+}, d\right)$ with usual metric $d(x, y)=|x-y|, x, y \in \mathbb{R}^{+}$and $\prec=\leq$.

Proposition 2.1. Suppose that $\left\{T, X, A, S, T_{0}\right\}$ is a hybrid dynamical system. Let $M \subset A$ be an invariant subset for S, and let x be any fixed point in M. Let $\left\{\mathbb{R}^{+}, X, A, \tilde{S}, \mathbb{R}_{0}^{+}\right\}$be the embedding of $\left\{T, X, A, S, T_{0}\right\}$ from T to \mathbb{R}^{+}with respect to x. Then M is also an invariant subset for system $\tilde{S},(S, M)$ and (\tilde{S}, M) possess identical stability properties and S and \tilde{S} have identical boundedness properties.

Proof. See [5].

2.4. An example

Consider the following problem of initial value

$$
\left\{\begin{array}{c}
\dot{x}(t)-b x(t)=0 \\
x(0)=x_{0} \geq 0
\end{array}\right.
$$

where $x \in C\left[\mathbb{R}^{+}, \mathbb{R}\right]$ and $b<0$. This differential equation determine the dynamical system $\left\{T, X, A, S, T_{0}\right\}=\left\{\mathbb{R}^{+}, \mathbb{R}^{+},\left\{x_{0}\right\}, S, 0\right\}$, with $S=\left\{p\left(., x_{0}, 0\right): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\right\}$ such that $p\left(t, x_{0}, 0\right)=x_{0} e^{b t}$. We have the follows results:
(i) $(S,\{0\})$ is invariant, since $p\left(t, x_{0}, 0\right)=p(t, 0,0)=0 e^{b t}=0 \in\{0\}$ for all $t \in \mathbb{R}^{+}$.
(ii) For every $\epsilon>0$, let $0<\delta=\epsilon$ and then $d\left(p\left(t, x_{0}, 0\right),\{0\}\right)=x_{0} e^{b t}<\delta e^{b t}=$ $\epsilon e^{b t} \leq \epsilon$, whenever $d\left(x_{0},\{0\}\right)=x_{0}<\delta$. Therefore $(S,\{0\})$ is uniformly stable.
(iii) $(S,\{0\})$ is asymptotically estable, since if $d\left(x_{0},\{0\}\right)=x_{0}<\eta<1$ then $\lim _{t \rightarrow \infty} d\left(p\left(t, x_{0}, 0\right),\{0\}\right)=\lim _{t \rightarrow \infty} p\left(t, x_{0}, 0\right)=\lim _{t \rightarrow \infty} x_{0} e^{b t}=0$.
(iv) Given $\epsilon>0$, for $\alpha>0$ and $\alpha>-b$, let $\delta=\delta(\epsilon)>0$ such that $\delta=\epsilon$. Then, $d\left(p\left(t, x_{0}, 0\right),\{0\}\right)=p\left(t, x_{0}, 0\right)=x_{0} e^{b t}<\epsilon e^{b t} \leq \epsilon e^{-\alpha t}$, whenever $d\left(x_{0},\{0\}\right)=$ $x_{0}<\delta$. Thus $(S,\{0\})$ is exponentially estable, and then uniformly asymptotically estable.

3. Principal Lyapunov Theorems

To follow we presented two Principal Lyapunov Theorems for the class of discontinuous dynamical systems.

Definition 3.1. We will call a dynamical system defined on \mathbb{R}^{+}whose motions are not continuous with respect to time a discontinuous dynamical system.

Theorem 3.1. Let $\left\{\mathbb{R}^{+},(X, d), A, S, \mathbb{R}_{0}^{+}\right\}$be a discontinuous dynamical system and let $M \subset A$ be closed. Assume that there exists a function $V: X \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and functions $\psi_{1}, \psi_{2} \in K \mathbb{R}$ such that

$$
\psi_{1}(d(x, M)) \leq V(x, t) \leq \psi_{2}(d(x, M))
$$

for all $x \in X$ and $t \in \mathbb{R}^{+}$.
(a) Assume that for every $p\left(., a, \tau_{0}^{p}\right) \in S, V\left(p\left(t, a, \tau_{0}^{p}\right), t\right)$ is continuous on $\mathbb{R}_{\tau_{0}^{p}}^{+}=$ $\left\{t \in \mathbb{R}^{+}: t \geq \tau_{0}^{p}\right\}$ except on a set of discontinuities $E_{V(p)} \subset E_{p}$, where $E_{p}=$ $\left\{\tau_{0}^{p}, \tau_{1}^{p}, \ldots: 0 \leq \tau_{0}^{p}<\tau_{1}^{p}<\ldots\right\}$ is the set of points of discontinuities of $p\left(., a, \tau_{0}^{p}\right)$.

Also, assume that there exists a neighborhood $U \subset A$ of M such that $V\left(p\left(t, a, \tau_{0}^{p}\right), t\right)$ is nonincreasing for all $a \in U$ and all $t \geq \tau_{0}^{p}$, and assume that there exists a increasing function $h \in C\left[\mathbb{R}^{+}, \mathbb{R}^{+}\right]$, with $h(0)=0$ such that

$$
V\left(p\left(t, a, \tau_{0}^{p}\right), t\right) \leq h\left(V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right), t \in\left(\tau_{k}^{p}, \tau_{k+1}^{p}\right)
$$

Then (S, M) is invariant and uniformly stable.
(b) If in addition to the assumptions given in (a) there exists a function $\psi_{3} \in K$ defined on \mathbb{R}^{+}such that

$$
D V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right) \leq-\psi_{3}\left(d\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), M\right)\right)
$$

for all $a \in U, k \in \mathbb{N}$, where

$$
\begin{gather*}
D V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right):= \\
\frac{1}{\tau_{k+1}^{p}-\tau_{k}^{p}}\left[V\left(p\left(\tau_{k+1}^{p}, a, \tau_{0}^{p}\right), \tau_{k+1}^{p}\right)-V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right] \tag{3.1}
\end{gather*}
$$

then (S, M) is uniformly asymptotically stable.
Proof. (a) We will prove that (S, M) is invariant. If $a \in M$, then
$V\left(p\left(\tau_{0}^{p}, a, \tau_{0}^{p}\right), \tau_{0}^{p}\right)=0$ since $V\left(p\left(\tau_{0}^{p}, a, \tau_{0}^{p}\right), \tau_{0}^{p}\right)=V\left(a, \tau_{0}^{p}\right) \leq \psi_{2}(d(a, M))$ and $d(a, M)=0$. Therefore, we know that $V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)=0$ for all $k \geq 0$ since $V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)$ is nonincreasing for all $a \in M$ and $\tau_{k+1}^{p} \geq \tau_{0}^{p}$ and $V(X \times$ $\left.\mathbb{R}^{+}\right) \subset \mathbb{R}^{+}$. Furthermore $V\left(p\left(t, a, \tau_{0}^{p}\right), t\right)=0$ for all $t \geq \tau_{0}^{p}$ since $V\left(p\left(t, a, \tau_{0}^{p}\right), t\right) \leq$ $h\left(V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right)=h(0)=0$. This implies that $\psi_{1}\left(d\left(p\left(t, a, \tau_{0}^{p}\right), M\right)\right) \leq$
$V\left(p\left(t, a, \tau_{0}^{p}\right), t\right)=0$ and then $d\left(p\left(t, a, \tau_{0}^{p}\right), M\right)=0$, that is, $p\left(t, a, \tau_{0}^{p}\right) \in M$ for all $t \geq \tau_{0}^{p}$, since M is closed. Therefore (S, M) is invariant.
Since h is continuous and $h(0)=0$, then for any $\epsilon>0$ there exists $\delta=\delta(\epsilon)>0$ such that $h(y)<\psi_{1}(\epsilon)$ as long as $0 \leq y \leq \delta$. We can assume that $\delta<\psi_{1}(\epsilon)$. Thus, for any motion $p\left(., a, \tau_{0}^{p}\right) \in S$, as long as the initial condition $d(a, M)<\psi_{2}^{-1}(\delta)$ is satisfied, with $a \in U$, it follows that $V\left(p\left(\tau_{0}^{p}, a, \tau_{0}^{p}\right), \tau_{0}^{p}\right)=V\left(a, \tau_{0}^{p}\right) \leq \psi_{2}(d(a, M))<$ $\psi_{2}\left(\psi_{2}^{-1}(\delta)\right)=\delta$ and $V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)<\delta$ for all k, since $V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)$ is nonincreasing and then

$$
d\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), M\right) \leq \psi_{1}^{-1}\left(V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right)<\psi_{1}^{-1}(\delta)<\epsilon
$$

Furthermore, for any $t \in\left(\tau_{k}^{p}, \tau_{k+1}^{p}\right)$, we can conclude that

$$
V\left(p\left(t, a, \tau_{0}^{p}\right), t\right) \leq h\left(V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right) \leq h(\delta)<\psi_{1}(\epsilon)
$$

and

$$
d\left(p\left(t, a, \tau_{0}^{p}\right), M\right) \leq \psi_{1}^{-1}\left(V\left(p\left(t, a, \tau_{0}^{p}\right), t\right)\right)<\psi_{1}^{-1}\left(\psi_{1}(\epsilon)\right)=\epsilon
$$

Therefore (S, M) is uniformly stable.
(b) Letting $z_{k}^{p}=V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)$, with $a \in U$, we obtain from the assumptions of the theorem that

$$
-\left(\tau_{k+1}^{p}-\tau_{k}^{p}\right) \psi_{3}\left(\psi_{2}^{-1}\left(z_{k}^{p}\right)\right)=-\left(\tau_{k+1}^{p}-\tau_{k}^{p}\right) \psi_{3}\left(\psi_{2}^{-1}\left(V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right)\right) \geq
$$

$$
\begin{gathered}
-\left(\tau_{k+1}^{p}-\tau_{k}^{p}\right) \psi_{3}\left(d\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), M\right)\right) \geq \\
V\left(p\left(\tau_{k+1}^{p}, a, \tau_{0}^{p}\right), \tau_{k+1}^{p}\right)-V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)=z_{k+1}^{p}-z_{k}^{p}
\end{gathered}
$$

If we denote $\psi=\psi_{3} \circ \psi_{2}^{-1}$, then $\psi \in K$ and the last inequality becomes

$$
z_{k+1}^{p}-z_{k}^{p} \leq-\left(\tau_{k+1}^{p}-\tau_{k}^{p}\right) \psi\left(z_{k}^{p}\right)
$$

It follows that

$$
\begin{equation*}
\psi\left(z_{k}^{p}\right) \leq \frac{z_{k}^{p}-z_{k+1}^{p}}{\tau_{k+1}^{p}-\tau_{k}^{p}} \leq \frac{z_{0}^{p}-z_{k+1}^{p}}{\tau_{k+1}^{p}-\tau_{k}^{p}} \leq \frac{z_{0}^{p}}{\tau_{k+1}^{p}-\tau_{k}^{p}} \tag{3.2}
\end{equation*}
$$

Now, consider a fixed $\delta>0$. For any $\epsilon>0$, we can choose a $\tau>0$ such that

$$
\max \left\{\psi_{1}\left(\psi^{-1}\left(\frac{\psi_{2}(\delta)}{\tau}\right)\right), \psi_{1}^{-1}\left(h\left(\psi^{-1}\left(\frac{\psi_{2}(\delta)}{\tau}\right)\right)\right)\right\}<\epsilon
$$

and $\tau_{k+1}^{p}-\tau_{k}^{p}>\tau$ for all k. Let $a \in U \subset A$ with $d(a, M)<\delta$ and $\tau_{0}^{p} \in \mathbb{R}_{0}^{+}$any. For any $t \geq \tau_{0}^{p}+\tau$, t must belong to some interval $\left[\tau_{k}^{p}, \tau_{k+1}^{p}\right)$ for some k. It follows from (3.2) that

$$
\begin{gathered}
\psi\left(z_{k}^{p}\right) \leq \frac{z_{0}^{p}}{\tau_{k+1}^{p}-\tau_{k}^{p}}=\frac{V\left(p\left(\tau_{0}^{p}, a, \tau_{0}^{p}\right), \tau_{0}^{p}\right)}{\tau_{k+1}^{p}-\tau_{k}^{p}}=\frac{V\left(a, \tau_{0}^{p}\right)}{\tau_{k+1}^{p}-\tau_{k}^{p}}< \\
<\frac{V\left(a, \tau_{0}^{p}\right)}{\tau} \leq \frac{\psi_{2}(d(a, M))}{\tau}<\frac{\psi_{2}(\delta)}{\tau}
\end{gathered}
$$

which implies that

$$
\begin{equation*}
z_{k}^{p}=V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)<\psi^{-1}\left(\frac{\psi_{2}(\delta)}{\tau}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
V\left(p\left(t, a, \tau_{0}^{p}\right), t\right) \leq h\left(V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right) \leq h\left(\psi^{-1}\left(\frac{\psi_{2}(\delta)}{\tau}\right)\right) \tag{3.4}
\end{equation*}
$$

if $t \in\left(\tau_{k}^{p}, \tau_{k+1}^{p}\right)$. In the case when $t=\tau_{k}^{p}$, it follows from (3.3) that

$$
d\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), M\right) \leq \psi_{1}^{-1}\left(V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right)<\psi_{1}^{-1}\left(\psi^{-1}\left(\frac{\psi_{2}(\delta)}{\tau}\right)\right)<\epsilon
$$

In the case when $t \in\left(\tau_{k}^{p}, \tau_{k+1}^{p}\right)$, we can conclude from (3.4) that

$$
d\left(p\left(t, a, \tau_{0}^{p}\right), M\right) \leq \psi_{1}^{-1}\left(V\left(p\left(t, a, \tau_{0}^{p}\right), t\right)\right) \leq \psi_{1}^{-1}\left(h\left(\psi^{-1}\left(\frac{\psi_{2}(\delta)}{\tau}\right)\right)\right)<\epsilon
$$

This prove that (S, M) is uniformly asymptotically stable.
Theorem 3.2. Let $\left\{\mathbb{R}^{+},(X, d), A, S, \mathbb{R}_{0}^{+}\right\}$be a discontinuous dynamical system and let $M \subset A$ be closed. Assume that there exists a function $V: X \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and positive constants c_{1}, c_{2} and b such that

$$
c_{1}(d(x, M))^{b} \leq V(x, t) \leq c_{2}(d(x, M))^{b}
$$

for all x in some neighborhood X_{1} of M and $t \in \mathbb{R}^{+}$.
(i) Assume that for every $p\left(., a, \tau_{0}^{p}\right) \in S, V\left(p\left(t, a, \tau_{0}^{p}\right), t\right)$ is continuous on $\mathbb{R}_{\tau_{0}^{p}}^{+}=$ $\left\{t \in \mathbb{R}^{+}: t \geq \tau_{0}^{p}\right\}$ except on a set of discontinuities $E_{V(p)} \subset E_{p}$, where $E_{p}=$ $\left\{\tau_{0}^{p}, \tau_{1}^{p}, \ldots: 0 \leq \tau_{0}^{p}<\tau_{1}^{p}<\ldots\right\}$ is the set of points of discontinuities of $p\left(., a, \tau_{0}^{p}\right)$. Moreover, assume that there exists a function $h \in C\left[\mathbb{R}^{+}, \mathbb{R}^{+}\right]$, with $h(0)=0$ such that

$$
V\left(p\left(t, a, \tau_{0}^{p}\right), t\right) \leq h\left(V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right)
$$

for $t \in\left(\tau_{k}^{p}, \tau_{k+1}^{p}\right)$, and such that for some positive constant q, h satisfies

$$
\lim _{r \rightarrow 0} \frac{h(r)}{|r|^{q}}=0
$$

(ii) Suppose that there exists a constant $c_{3}>0$ such that

$$
D V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right) \leq-c_{3}\left[d\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), M\right)\right]^{b}
$$

for all $a \in X_{1}$ and $k \in \mathbb{N}$, where $D V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)$ is defined in (3.1).
Then (S, M) is exponentially stable.
Proof. See [5].

4. Converse Theorem

Now we presented a converse theorem of the theorem 3.2 in the following sense:
Theorem 4.1. Let $\left\{\mathbb{R}^{+},(X, d), A, S, \mathbb{R}_{0}^{+}=\mathbb{R}^{+}\right\}$be a discontinuous dynamical system and let $M \subset A$ be a closed invariant set, where A is a neighborhood of M. Suppose that:
(i) every $p\left(., a, \tau_{0}^{p}\right) \in S$ is continuous everywhere on $\left[\tau_{0}^{p}, \infty\right)$, except on a set $E_{p}=\left\{\tau_{0}^{p}, \tau_{1}^{p}, \ldots: \tau_{0}^{p}<\tau_{1}^{p}<\ldots\right\}$, being $l=\inf _{p \in S}\left\{\tau_{k+1}^{p}-\tau_{k}^{p}\right\}>0$ and $L=$ $\sup _{p \in S}\left\{\tau_{k+1}^{p}-\tau_{k}^{p}\right\}<\infty$;
(ii) for any $p\left(., a, \tau_{0}^{p}\right) \in S$ is true that $p\left(t^{\prime}, p\left(t, a, \tau_{0}^{p}\right), t\right)=p\left(t^{\prime}, a, \tau_{0}^{p}\right)$ for all $t \in \mathbb{R}_{0}^{+}$ and $t^{\prime} \geq t$. Furthermore, $p\left(t^{\prime}, a, t\right) \notin M$ if $a \notin M$, therefore $d\left(p\left(t^{\prime}, a, t\right), M\right)>0$ for all $t^{\prime} \geq t$ if a $\notin M$, since M is closed.
Let (S, M) be exponentially stable. Then there exists a neighborhood X_{1} of M such that $X_{1} \subset A$, and a mapping $V: X_{1} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$which satisfies the following conditions:
(a)there exist $\psi_{1}, \psi_{2} \in K$ defined on \mathbb{R}^{+}such that

$$
\psi_{1}(d(x, M)) \leq V(x, t) \leq \psi_{2}(d(x, M))
$$

for all $(x, t) \in X_{1} \times \mathbb{R}^{+}$.
(b) there exists a constant $c>0$ such that for every $p\left(., a, \tau_{0}^{p}\right) \in S$,

$$
D V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right) \leq-c V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)
$$

for $k \in \mathbb{N}$, where $a \in X_{1}$.
(c) there exists a function $h \in C\left[\mathbb{R}^{+}, \mathbb{R}^{+}\right]$, with $h(0)=0$ and $\lim _{\theta \rightarrow 0^{+}} \frac{h(\theta)}{\theta^{q}}=0$ for some constant $q>0$, such that

$$
V\left(p\left(t, a, \tau_{0}^{p}\right), t\right) \leq h\left(V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right.
$$

for every $p\left(., a, \tau_{0}^{p}\right) \in S, t \in\left(\tau_{k}^{p}, \tau_{k+1}^{p}\right)$, $a \in X_{1}$ and $\tau_{0}^{p} \in \mathbb{R}^{+}$.
Proof. Since (S, M) exponentially stable, for every $\epsilon>0$ there exists $\alpha>0$ and $r_{0}=$ $r_{0}(\epsilon)$ such that $d\left(p\left(t, a, \tau_{0}^{p}\right), M\right)<\epsilon e^{-\alpha\left(t-\tau_{0}^{p}\right)}$ for all $p\left(., a, \tau_{0}^{p}\right) \in S$ and all $t \in T_{a, \tau_{0}^{p}}$, whenever $d(a, M)<r_{0}$. Let $\phi \in K$ defined on [0, $\left.r_{0}\right]$ such that $\phi(d(a, M)) \geq \epsilon$ if $a \notin M$, then $d\left(p\left(t, a, \tau_{0}^{p}\right), M\right)<\epsilon e^{-\alpha\left(t-\tau_{0}^{p}\right)} \leq \phi(d(a, M)) e^{-\alpha\left(t-\tau_{0}^{p}\right)}$. If $a \in M$, $p\left(t, a, \tau_{0}^{p}\right) \in M$ therefore $d\left(p\left(t, a, \tau_{0}^{p}\right), M\right)=0 \leq \phi(d(a, M)) e^{-\alpha\left(t-\tau_{0}^{p}\right)}=0$, thus

$$
\begin{equation*}
d\left(p\left(t, a, \tau_{0}^{p}\right), M\right) \leq \phi(d(a, M)) e^{-\alpha\left(t-\tau_{0}^{p}\right)} \tag{4.1}
\end{equation*}
$$

Let $X_{1}=\left\{x \in A: d(x, M)<r_{0}\right\}$. For $(x, t) \in X_{1} \times \mathbb{R}^{+}$, define

$$
V(x, t)=\sup _{t^{\prime} \geq t}\left\{d\left(p\left(t^{\prime}, x, t\right), M\right) \cdot e^{\alpha\left(t^{\prime}-t\right)}\right\}
$$

For $a \in X_{1}$ and $\tau_{0}^{p} \in \mathbb{R}^{+}$, we have

$$
\begin{align*}
V\left(p\left(t, a, \tau_{0}^{p}\right)\right. & , t)=\sup _{t^{\prime} \geq t}\left\{d\left(p\left(t^{\prime}, p\left(t, a, \tau_{0}^{p}\right), t\right), M\right) \cdot e^{\alpha\left(t^{\prime}-t\right)}\right\} \\
& =\sup _{t^{\prime} \geq t}\left\{d\left(p\left(t^{\prime}, a, \tau_{0}^{p}\right), M\right) \cdot e^{\alpha\left(t^{\prime}-t\right)}\right\} \tag{4.2}
\end{align*}
$$

therefore

$$
\begin{aligned}
& V\left(p\left(\tau_{k+1}^{p}, a, \tau_{0}^{p}\right), \tau_{k+1}^{p}\right)=\sup _{t^{\prime} \geq \tau_{k+1}^{p}}\left\{d\left(p\left(t^{\prime}, a, \tau_{0}^{p}\right), M\right) e^{\alpha\left(t^{\prime}-\tau_{k+1}^{p}\right)}\right\} \\
& =\sup _{t^{\prime} \geq \tau_{k+1}^{p}}\left\{d\left(p\left(t^{\prime}, a, \tau_{0}^{p}\right), M\right) e^{\alpha\left(t^{\prime}-\tau_{k}^{p}\right)} e^{-\alpha\left(\tau_{k+1}^{p}-\tau_{k}^{p}\right)}\right\} \\
& =e^{-\alpha\left(\tau_{k+1}^{p}-\tau_{k}^{p}\right)} \sup _{t^{\prime} \geq \tau_{k+1}^{p}}\left\{d\left(p\left(t^{\prime}, a, \tau_{0}^{p}\right), M\right) e^{\alpha\left(t^{\prime}-\tau_{k}^{p}\right)}\right\} \\
& \quad \leq e^{-\alpha l} \sup _{t^{\prime} \geq \tau_{k+1}^{p}}\left\{d\left(p\left(t^{\prime}, a, \tau_{0}^{p}\right), M\right) e^{\alpha\left(t^{\prime}-\tau_{k}^{p}\right)}\right\} \\
& \leq e^{-\alpha l} \sup _{t^{\prime} \geq \tau_{k}^{p}}\left\{d\left(p\left(t^{\prime}, a, \tau_{0}^{p}\right), M\right) e^{\alpha\left(t^{\prime}-\tau_{k}^{p}\right)}\right\}=e^{-\alpha l} V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)
\end{aligned}
$$

Letting $c=(1 / L)\left(1-e^{-\alpha l}\right)$, we obtain

$$
\begin{aligned}
& D V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)=\frac{1}{\tau_{k+1}^{p}-\tau_{k}^{p}}\left(V\left(p\left(\tau_{k+1}^{p}, a, \tau_{0}^{p}\right), \tau_{k+1}^{p}\right)-V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right) \\
& \leq-\frac{1}{\tau_{k+1}^{p}-\tau_{k}^{p}}\left(1-e^{-\alpha l}\right) V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)
\end{aligned}
$$

$$
\leq-\frac{1}{L}\left(1-e^{-\alpha l}\right) V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)=-c V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)
$$

Also, for all $(x, t) \in X_{1} \times \mathbb{R}^{+}$(4.1) imply that

$$
\begin{gathered}
V(x, t)=\sup _{t^{\prime} \geq t}\left\{d\left(p\left(t^{\prime}, x, t\right), M\right) e^{\alpha\left(t^{\prime}-t\right)}\right\} \\
\left.\leq \sup _{t^{\prime} \geq t}\left\{\phi(d(x, M)) e^{-\alpha\left(t^{\prime}-t\right)} e^{\alpha\left(t^{\prime}-t\right)}\right)\right\}=\sup _{t^{\prime} \geq t}\{\phi(d(x, M))\}=\phi(d(x, M)) .
\end{gathered}
$$

Letting $\psi_{2} \in K$ defined on \mathbb{R}^{+}such that $\psi_{2}(r)=\phi(r)$ if $r \in\left[0, r_{0}\right]$, then

$$
V(x, t) \leq \psi_{2}(d(x, M))
$$

Furthermore

$$
V(x, t)=\sup _{t^{\prime} \geq t}\left\{d\left(p\left(t^{\prime}, x, t\right), M\right) e^{\alpha\left(t^{\prime}-t\right)}\right\} \geq d\left(p\left(t^{\prime}, x, t\right), M\right) \geq \psi_{1}(d(x, M))
$$

for some $\psi_{1} \in K$ defined on \mathbb{R}^{+}. By (4.2) we have for every $t \in\left(\tau_{k}^{p}, \tau_{k+1}^{p}\right), \tau_{0}^{p} \in \mathbb{R}^{+}$ and $a \in X_{1}$

$$
\begin{gathered}
V\left(p\left(t, a, \tau_{0}^{p}\right), t\right)=\sup _{t^{\prime} \geq t}\left\{d\left(p\left(t^{\prime}, a, \tau_{0}^{p}\right), M\right) e^{\alpha\left(t^{\prime}-t\right)}\right\} \\
=\sup _{t^{\prime} \geq t}\left\{d\left(p\left(t^{\prime}, a, \tau_{0}^{p}\right), M\right) e^{\alpha\left(t^{\prime}-\tau_{k}^{p}\right)} e^{-\alpha\left(t-\tau_{k}^{p}\right)}\right\} \leq \sup _{t^{\prime} \geq t}\left\{d\left(p\left(t^{\prime}, a, \tau_{0}^{p}\right), M\right) e^{\alpha\left(t^{\prime}-\tau_{k}^{p}\right)}\right\} \\
\leq \sup _{t^{\prime} \geq \tau_{k}^{p}}\left\{d\left(p\left(t^{\prime}, a, \tau_{0}^{p}\right), M\right) e^{\alpha\left(t^{\prime}-\tau_{k}^{p}\right)}\right\}=V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right) .
\end{gathered}
$$

Letting $h \in C\left[\mathbb{R}^{+}, \mathbb{R}^{+}\right]$such that $h(r)=r$ and $q=\frac{1}{2}$, it follows that $\lim _{\theta \rightarrow 0^{+}} \frac{h(\theta)}{\theta^{q}}=$ $\frac{\theta}{\theta^{\frac{1}{2}}}=0$ and

$$
V\left(p\left(t, a, \tau_{0}^{p}\right), t\right) \leq V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)=h\left(V\left(p\left(\tau_{k}^{p}, a, \tau_{0}^{p}\right), \tau_{k}^{p}\right)\right)
$$

Resumo. Neste trabalho introduzimos um modelo geral para os Sistemas Dinâmicos Híbridos e para tais sistemas introduzimos o conceito usual de estabilidade de Lyapunov. Além disso, estabelecemos dois Teoremas Principais de Lyapunov e um teorema de conversão.

References

[1] L. Hou, "Qualitative Analysis of Discontinuous Deterministic and Stochastic Dynamical Systems", Ph.D. Thesis, University of Notre Dame, Indiana, 2000.
[2] A.N. Michel, Recent trends in the stability analysis of hybrid dynamical systems, IEEE Transactions on Circuits and Systems, 45, No. 1 (1999), 120-134.
[3] A.N. Michel, L. Hou, Stability analysis of a general class of hybrid dynamical systems, in "Proceedings of the American Control Conference", pp. 2805-2809, Albuquerque, New Mexico, 1997.
[4] A.N. Michel, B. Hu, Towards a stability theory of general hybrid dynamical systems, Automatica, 35 (1999), 371-384.
[5] A.N. Michel, B. Hu, K. Wang, "Qualitative Theory of Dynamical Systems", Marcel Dekker, New York, 2001.
[6] H. Ye, A.N. Michel, Stability theory for hybrid dynamical systems, IEEE Transactions on Automatic Control, 43, No. 4 (1998), 461-474.
[7] H. Ye, A.N. Michel, A general model for the qualitative analysis of hybrid dynamical systems, in "Proceedings of the 34th Conference on Decision and Control", pp. 1473-1477, IEEE, New Orleans, 1995.

[^0]: ${ }^{1}$ iguerluis@hotmail.com (financial support CAPES).
 ${ }^{2}$ gsilva@ibilce.unesp.br

