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Rothe’s Method for Phase Field Problem
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Abstract In this paper, a phase-field model is considered. Analysis of a time

discretization for an initial-boundary value problem for this phase-field model is

presented. Convergence is proved and existence, uniqueness and regularity results

are derived.
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1. Introduction

Let Ω ∈ IRn (n ≤ 3) be an open bounded domain with a C2 boundary and Q =
Ω× (0, T ) the space-time cylinder with lateral surface S = ∂Ω× (0, T ). We consider
the phase field equations (P):

∂ϕ

∂t
− ξ2∆ϕ = ϕ(ϕ− 1)(1 − 2ϕ) + (ϕ− ϕ2)F (θ) in Q,

∂θ

∂t
− α∆θ + v.∇θ = −ℓ

∂ϕ

∂t
in Q,

∂ϕ

∂η
= 0, θ = 0 on S,

ϕ(x, 0) = ϕ0(x), θ(x, 0) = θ0(x) in Ω.

Here, ξ, α, ℓ are positive constants associated to material properties; v(x, y) is a
given function weakly solenoidal; g(s) = s(s− 1)(1− 2s) is the classical double-well
potential; θ represents the temperature while ϕ is the phase field function determing
the liquid or solid phase (we refer to [1] for a complete description of the phase-field
type model).

As essential tool for the analysis and the numerical treatment of the problem (P)
is Rothe’s Method (see [5]), which essentially reduces such problem to a boundary
value problems of elliptic type. For the stationary phase-field problem we prove
an existence result applying Leray-Schauder degree theory (see [2]), compactness
arguments and Lp-theory of the elliptic linear equations.

This paper is organized as follows. In the next section, we introduce a time-
discretization scheme and state the main results of the paper. Section 2. brings
the proof of existence of the discrete solution that is, solution of the corresponding
discretized scheme, as well as certain regularity results. Section 3., contains a col-
lection of estimates, uniform with respect to the time-discretization step. In section
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4. we prove existence, uniqueness and regularity of the solution of the problem (P).
The solution will be found in the space

W 2,1
q (Q) = {u ; u, ut,Dxu,D

2
xu ∈ Lq(Q)}.

More details about the other classical functional spaces will also be used, with
standard notations and definitions are given in [5].

Moreover, all along this work we will be using the following technical hypotheses:

(H0) Ω ⊂ IRn, n = 2 or 3, is an open and bounded domain with a C2 boundary; T
is a finite positive number. Q = Ω × (0, T ) denotes the space-time cylinder
with lateral surface S = ∂Ω × (0, T ).

(H1) v(x, t) is given function in L∞(0, T ;L2(Ω))∩L2(0, T ;W 2
2 (Ω)) with div v = 0.

(H2) F ∈ C(IR) is such that |F (·)| ≤ c1 < +∞.

(H3) ϕ0 ∈ W
(3/2)+δ
2 (Ω) for some δ ∈ (0, 1);

∂ϕ0

∂η
= 0 on ∂Ω; θ0 ∈

0

W 1
2(Ω), where

W p
q (Ω) = {u ∈ Lq(Ω) ; Dmu ∈ Lq(Q), |m| ≤ p} is the usual Sobolev space.

Finally, we remark that, as usual in this kind of context, throughout the article
we will denote by c and sometimes c1, c2, . . . constants depending only on known
quantities.

1.1. Time discretization

We introduce a time-discretization scheme (see [5] p. 241) for the phase-field equa-
tions (P).

For any N positive integer, we divide the interval [0,T] into N parts by setting
0 = t0 < t1 < ... < tm < ... < tN = T where time-step τ = T/N and tm = mτ ,
0 ≤ m ≤ N . For m = 1, 2, ..., N , we consider the differential-difference equations
(PD):

δtϕ
m − ξ2∆ϕm = ϕm(ϕm − 1)(1 − 2ϕm) + (ϕm − (ϕm)2)F (θm) a.e. in Ω,

δtθ
m − α∆θm + vm.∇θm = −ℓδtϕ

m a.e. in Ω,

∂ϕm

∂η
= 0, θm = 0 a.e. on ∂Ω,

with given initial values ϕ0 = ϕ0 and θ0 = θ0.

Here, ϕm, θm and vm, m = 1, . . . , N , mean to be approximations of ϕ(x, tm),

θ(x, tm) and v(x, tm), respectively, where vm =
1

τ

∫ mτ

(m−1)τ

v(x, t) dt. Also, we used

the notation

δtϕ
m = (ϕm − ϕm−1)/τ, δtθ

m = (θm − θm−1)/τ,

Moreover, we will understand a generalized solution of (PD) in the same as given
in [4].

The following existence result for discrete scheme (PD) will be proved in the
next section.
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Theorem 1.1. For sufficienty small τ there is a unique generalized solution of the
discrete scheme (PD).

With this result we may introduce the corresponding piecewise constant inter-
polator functions ϕτ , θτ and also the corresponding linear interpolator functions
ϕ̃τ , θ̃τ :

Definition 1.1. Consider a partition P = {t0, t1, ..., tN−1, tN} such that τ = T/N
and tm = mτ , 1 ≤ m ≤ N . Then, given γm ∈ L2(Ω) for m = 0, · · · , N , we define
the interpolations functions γτ , γ̃τ : [0, T ] → L2(Ω) as follows: for a.e x ∈ Ω, and
for t ∈ [(m− 1)τ,mτ ], we set

γτ (x, t) = γm, γ̃τ (x, t) = γm +

(
t− tm
τ

)
(γm − γm−1).

In section 4., we will prove the following result

Theorem 1.2. Assume that (H0), (H1), (H2) and (H3) holds. Let ϕτ , ϕ̃τ , θτ ,

θ̃τ be functions given by Definition 1.1, and corresponding to the solution of the
discrete scheme (PD), obtained in Theorem 1.1. Then, as τ → 0, we have the
following convergences:

ϕτ ⇀ ϕ in L2(0, T,W 2
2 (Ω)), ϕτ

∗
⇀ ϕ in L∞(0, T,W 1

2 (Ω)),

θτ ⇀ θ in L2(0, T,W 1
2 (Ω)), θτ

∗
⇀ θ in L∞(0, T, L2(Ω)),

ϕτ ⇀ ϕ in L4(Q),
∂ϕ̃τ

∂t
⇀

∂ϕ

∂t
in L2(Q)

ϕτ → ϕ in L2(Q),

and the pair (ϕ, θ) is a unique generalized solution of the problem (P). Moreover, if

ϕ0 ∈ W 2
q (Ω) ∩W

3/2+δ
2 (Ω) for some δ ∈ (0,1), and θ0 ∈ W 2

q (Ω) then this solution
satisfies ϕ ∈W 2,1

q (Q) and θ ∈W 2,1
q (Q) with 2 ≤ q ≤ ∞.

2. Discrete Solution

Our aim in this section is to prove the existence of solution ϕm, θm for a fixed m,
assuming that ϕm−1 and θm−1 are already known. For this, consider the nonlinear
system (P)1:

−τξ2∆ϕ+ ϕ = τϕ(ϕ− 1)(1 − 2ϕ) + τ(ϕ− ϕ2)F (θ) + f(x) in Ω, (2.1)

−τα∆θ + τv.∇θ + θ = −ℓϕ+ g(x) in Ω, (2.2)

∂ϕ

∂η
= 0, θ = 0 on ∂Ω, (2.3)

where (ϕ, θ) = (ϕm, θm), f(x) = ϕm−1 and g(x) = θm−1 + ℓϕm−1.

We will apply the Leray-Schauder degree theory (see [2]) to prove the solvability
of problem (P)1. For this, we reformulate the problem as T (1, ϕ, θ) = (ϕ, θ), where
T (λ, .) is a compact homotopy depending on a parameter λ ∈ [0, 1] defined as
follows.
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Consider the nonlinear operator

T : [0, 1] ×W 1
2 (Ω)×

0

W 1
2(Ω) →W 1

2 (Ω)×
0

W 1
2(Ω)

defined as
T (λ, φ, ω) = (ϕ, θ), (2.4)

where (ϕ, θ) is the unique solution of the following problem (Pλ)1:

−τξ2∆ϕ+ ϕ = λτφ(φ− 1)(1 − 2φ) + λτ(φ− φ2)F (ω) + λf(x), in Ω,

−τα∆θ + τv.∇θ + θ = −λℓϕ+ λg(x), in Ω,

∂ϕ

∂η
= 0, θ = 0. on ∂Ω.

To verify that T (λ, ·) is well defined, we observe that φ(φ − 1)(1 − 2φ) + (φ −
φ2)F (ω) + f ∈ L2(Ω); thus, by the Lp-regularity theory for elliptic linear equations
(see [4] Chapter 3), we conclude that the equation (Pλ)1 has a unique solution
ϕ ∈ W 2

2 (Ω) ∩ L2
0(Ω). In addition, v ∈ L4(Ω)n with n=2 or 3, ϕ ∈ L∞(Ω) and

g ∈ L6(Ω) imply again by Lp-regularity theory for elliptic linear equation that
there is a unique solution θ ∈W 2

4 (Ω) for the equation of (Pλ)1.

To check the continuity of T (λ, ·), let λn → λ in [0,1] and (φn, ωn) → (φ, ω)

in W 1
2 (Ω)×

0

W 1
2(Ω). Denote T (λn, φn, ωn) = (ϕλn

n , θλn

n ), T (λ, φn, ωn) = (ϕλ
n, θ

λ
n)

and T (λ, φ, ω) = (ϕλ, θλ). Thus, from (ϕλn

n − ϕλ
n, θ

λn

n − θλ
n) and Lp-regularity

theory for elliptic linear equations, observing that by Sobolev imbedding (n ≤ 3),
φ ∈ W 1

2 (Ω) ⊂ L6(Ω) and using the assumptions (H1) and (H2), we obtain the
following estimates:

∥∥ϕλn

n − ϕλ
n

∥∥
W 1

2
(Ω)

≤ cτ |λn − λ|
(
‖φn‖

2
4,Ω + (1 + c1)(||φn||2,Ω + ||φn||

3
6,Ω)

)
+

+c |λn − λ| ‖f‖2,Ω ,

∥∥θλn

n − θλ
n

∥∥
W 1

2
(Ω)

≤ c|λn − λ|
(∥∥ϕλn

n

∥∥
2,Ω

+ ‖g‖2,Ω

)
+ λℓ

∥∥ϕλn

n − ϕλ
n

∥∥
2,Ω

.

Since the sequence {λn, φn} is bounded in [0, 1] ×W 1
2 (Ω), we conclude that, as

n→ +∞,
∥∥ϕλn

n − ϕλ
n

∥∥
W 1

2
(Ω)

→ 0 and, consequently
∥∥θλn

n − θλ
n

∥∥
W 1

2
(Ω)

→ 0.

Again, from (ϕλ
n − ϕλ, θλ

n − θλ) as before we have the following estimates:
∥∥ϕλ

n − ϕλ
∥∥

W 1

2
(Ω)

≤ c
(
‖dn‖3,Ω ‖φn − φ‖6,Ω

)

+
(
‖φ‖3,Ω + ‖φ‖

3
6,Ω

)(
‖F (ωn) − F (ω)‖6,Ω

)
,

∥∥θλ
n − θλ

∥∥
W 1

2
(Ω)

≤ c
(∥∥ϕλ

n − ϕλ
∥∥

2,Ω

)
.

where dn = 3τ(φn + φ) − 2τ(φ2
n + φnφ+ φ2) − τ + τF (ωn)(1 − φn − φ) ∈ L3(Ω).

Using the assumption (H2) and (φn, ωn) → (φ, ω) in W 1
2 (Ω)×

0

W 1
2(Ω), we get∥∥ϕλ

n − ϕλ
∥∥

W 1

2
(Ω)

→ 0 as n → +∞. Consequently,
∥∥θλ

n − θλ
∥∥

W 1

2
(Ω)

→ 0 as n →

+∞, and we obtain the continuity of T .

The mapping T given by (2.4) is also compact. In fact, if {(λn, φn, ωn)} is any

bounded sequence in [0, 1]×W 1
2 (Ω)×

0

W 1
2(Ω), the previous arguments can be applied
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to obtain exactly the same sort of estimates for T (λn, φn, ωn) = (ϕn, θn). These
estimates imply that ‖ϕn‖W 1

2
(Ω) ≤ c and ‖θn‖W 1

2
(Ω) ≤ c.

Applying again the Lp-regularity theory for elliptic equations, we obtain, for all
n, that ‖ϕn‖W 2

2
(Ω) ≤ c and ‖θn‖W 2

2
(Ω) ≤ c. These estimates show that the norms of

the elements of the sequence {T (λn, φn, ωn)} = {(ϕn, θn)} are uniformly bounded
with respect to n in the functional space W 2

2 (Ω) ×W 2
2 (Ω). Since the imbedding

of W 2
2 (Ω) × (W 2

2 (Ω)∩
0

W 1
2(Ω)) into W 1

2 (Ω)×
0

W 1
2(Ω) is compact, there exists a

subsequence of T (λn, φn, ωn) converging in W 1
2 (Ω)×

0

W 1
2(Ω) and the compactness

of T is proved.
In the following, we will show that any possible fixed point of T (λ, ·) can be

estimated independently of λ ∈ [0, 1], that is, we will show that if (ϕ, θ) ∈W 1
2 (Ω)×

0

W 1
2(Ω) is such that T (λ, ϕ, θ) = (ϕ, θ), for some λ ∈ [0, 1], then there exists a

constant β > 0 such that

‖(ϕ, θ)‖W 1

2
(Ω)×W 1

2
(Ω) < β. (2.5)

For this, we recall that such fixed point (ϕ, θ) ∈W 1
2 (Ω)×

0

W1
2(Ω) solves the problem

(Pλ)2:

−τξ2∆ϕ+ ϕ = λτϕ(ϕ− 1)(1 − 2ϕ) + λτ(ϕ− ϕ2)F (θ) + λf(x) in Ω,

−τα∆θ + τv.∇θ + θ = λℓϕ+ λg(x) in Ω,

∂ϕ

∂η
= 0, θ = 0 on ∂Ω.

If we multiply these differential equations by ϕ and θ, respectively, integrate
by parts and use Young’s inequality we obtain in the usual manner the following
estimates:

τξ2
∫

Ω

|∇ϕ|2 dx+
1

2

∫

Ω

|ϕ|2 dx+
λτ

2

∫

Ω

|ϕ|4 dx ≤ τc2 ‖ϕ‖
2
2,Ω + c3 ‖f‖

2
2,Ω,

τα

∫

Ω

|∇θ|2 dx+
1

4

∫

Ω

|θ|2 dx ≤ c4

(
‖ϕ‖

2
2,Ω + ‖g‖

2
2,Ω

)
.

Here we also used the assumption (H2) and that max
s∈IR

(3s− s2 − 1) is finite.

Thus, by taking τ < 1/2c2, we conclude that ‖ϕ‖W 1

2
(Ω) ≤ c ‖f‖2,Ω and, conse-

quently ‖θ‖W 1

2
(Ω) ≤ c

(
‖f‖2,Ω + ‖g‖2,Ω

)
, where c depends on Ω, ℓ, ξ, α, τ ‖F‖∞

and max
s∈IR

(3s− s2 − 1).

Thus, to obtain the stated result, it is enough to take any constant

β > max
{
c ‖f‖2,Ω , c

(
‖f‖2,Ω + ‖g‖2,Ω

)}
. By denoting

Bβ =

{
(ϕ, θ) ∈W 1

2 (Ω)×
0

W1
2(Ω) ; ‖(ϕ, θ)‖W 1

2
(Ω)×W 1

2
(Ω) < β

}

(2.5) ensures in particular that T (λ, ϕ, θ) 6= (ϕ, θ), ∀(ϕ, θ) ∈ ∂Bβ , ∀λ ∈ [0, 1].
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According to property above and the compacteness of T (λ, ·), we may consider
the Leray-Schauder degree D(Id−T (λ, ·), Bβ , 0), ∀λ ∈ [0, 1] (see Deimling [2]). The
homotopy invariance of the degree implies

D(Id− T (0, ·), Bβ , 0) = D(Id− T (1, ·), Bβ , 0). (2.6)

Now, by choosing β > 0 large enough so that the ball Bβ contains the unique
solution of the equation T (0, ϕ, θ) = (ϕ, θ). ThereforeD(Id−T (0, ·), Bβ , 0) = 1, and

from (2.6) we conclude that problem (P)1 has a solution (ϕ, θ) ∈W 1
2 (Ω)×

0

W1
2(Ω).

Using the assumption (H2) and Lp-regularity theory for elliptic linear equations
it is easy to conclude that ϕ ∈W 2

2 (Ω)∩C1,σ(Ω) with σ = 1−n/4. Now, appplying
the Lp-regularity theory for elliptic linear equations in (2.2) with v ∈ L4(Ω)n,
ϕ ∈ L2(Ω) and g ∈ L2(Ω), we obtain θ ∈W 2

2 (Ω) ∩ C1,σ(Ω) with σ = 1 − n/4.

Moreover, using a standard contradition argument, we can prove the unique-
ness of solutions of problem (P)1 for sufficienty small τ , completing the proof the
Theorem 1.1

3. A Priori Estimates

In this section we will be interested in obtaining a priori estimates, which are
uniform with respect to τ . For this, if we multiply the first equation of problem
(PD) by δtϕ

m, ϕm and −∆ϕm, respectively, integrate by parts, we obtain in the
usual manner the following estimates:
∫

Ω

(δtϕ
m)

2
dx+

ξ2

τ

∫

Ω

∇ϕm(∇ϕm −∇ϕm−1) dx+
2

τ

∫

Ω

(ϕm)4 dx

≤ 3

∫

Ω

|ϕm|2|δtϕ
m| dx+

∫

Ω

|ϕm||δtϕ
m| dx+

2

τ

∫

Ω

|ϕm|3|ϕm−1| dx

+

∫

Ω

|F (θm)| |ϕm||δtϕ
m| dx+

∫

Ω

|ϕm|2|F (θm)| |δtϕ
m| dx,

1

τ

∫

Ω

(
ϕm − ϕm−1

)
ϕm dx+ ξ2

∫

Ω

|∇ϕm|2 dx+

∫

Ω

(ϕm)4 dx

≤

∫

Ω

(
3ϕm − 1 − (ϕm)2

)
(ϕm)2 dx+

∫

Ω

|F (θm)||ϕm|2 dx+

∫

Ω

|ϕm|2|F (θm)||ϕm| dx,

ξ2
∫

Ω

|∆ϕm| dx+ 9

∫

Ω

|∇ϕm|2(ϕm)2 dx ≤

∫

Ω

|ϕm||∆ϕm| dx +

∫

Ω

|ϕm|2|∆ϕm| dx

+

∫

Ω

|ϕm||F (θm)||∆ϕm| dx+

∫

Ω

|ϕm|2|F (θm)||∆ϕm| dx+

∫

Ω

|δtϕ
m| |∆ϕm| dx.

Using the assumption (H2) with max
s∈IR, x∈Ω

(3s− 1 − s2) is finite, Hölder’s, Young’s

and Poincarè inequalities, and applying the following relation

2

∫

Ω

χ(χ− ψ) dx =

∫

Ω

|χ|2 dx−

∫

Ω

|ψ|2 dx+

∫

Ω

|χ− ψ|2dx, (3.1)
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we find

τ ‖δtϕ
m‖

2
2,Ω +

1

τ

(
‖∇ϕm‖

2
2,Ω −

∥∥∇ϕm−1
∥∥2

2,Ω
+
∥∥∇ϕm −∇ϕm−1

∥∥2

2,Ω

)

+
1

2τ

(
‖ϕm‖

4
4,Ω −

∥∥ϕm−1
∥∥4

4,Ω

)
≤ c2 ‖ϕ

m‖
4
4,Ω + c ‖ϕm‖

2
2,Ω , (3.2)

1

τ

(
‖ϕm‖

2
2,Ω −

∥∥ϕm−1
∥∥2

2,Ω
+
∥∥ϕm − ϕm−1

∥∥2

2,Ω

)
+ ξ2 ‖∇ϕm‖

2
2,Ω +

1

2
‖ϕm‖

4
4,Ω

≤ c ‖ϕm‖
2
2,Ω , (3.3)

τ ‖∆ϕm‖
2
2,Ω ≤ cτ

(
‖∇ϕm‖

2
2,Ω + ‖ϕm‖

4
4,Ω + ‖δtϕ

m‖
2
2,Ω

)
. (3.4)

By multiplying (3.3) by 4c2 and adding the result to estimate (3.2), we get

1

τ

(
‖ϕm‖

2
2,Ω −

∥∥ϕm−1
∥∥2

2,Ω
+
∥∥ϕm − ϕm−1

∥∥2

2,Ω

)

+
1

τ

(
‖∇ϕm‖

2
2,Ω −

∥∥∇ϕm−1
∥∥2

2,Ω
+
∥∥∇ϕm −∇ϕm−1

∥∥2

2,Ω

)

+ ‖∇ϕm‖
2
2,Ω + ‖ϕm‖

4
4,Ω + ‖δtϕ

m‖
2
2,Ω +

1

2τ

(
‖ϕm‖

4
4,Ω −

∥∥ϕm−1
∥∥4

4,Ω

)

≤ c ‖ϕm‖
2
2,Ω .

By adding these relations and (3.4) for m = 1, 2, ..., r, with 1 ≤ r ≤ N , we finally
get

‖ϕr‖
2
W 1

2
(Ω) + ‖ϕr‖

4
4,Ω +

r∑

m=1

∥∥ϕm − ϕm−1
∥∥2

W 1

2
(Ω)

+ τ

r∑

m=1

‖∇ϕm‖
2
2,Ω

+τ

r∑

m=1

‖ϕm‖
4
4,Ω + τ

r∑

m=1

‖δtϕ
m‖

2
2,Ω ≤ c ‖ϕ0‖

2
W 1

2
(Ω) + cτ

r∑

m=1

‖ϕm‖
2
2,Ω ,

τ
r∑

m=1

‖∆ϕm‖
2
2,Ω ≤ c

(
τ

r∑

m=1

‖∇ϕm‖
2
2,Ω + τ

r∑

m=1

‖ϕm‖
4
4,Ω + τ

r∑

m=1

‖δtϕ
m‖

2
2,Ω

)
.

Now, we apply Gronwall’s lemma in a discrete form (see for instance [7] p.413)
to conclude that

‖ϕr‖W 1

2
(Ω) ≤ c ‖ϕ0‖W 1

2
(Ω) for r = 0, 1, ..., N. (3.5)

By going back to (3.5), we obtain the following estimates:

max
1≤r≤N

‖ϕr‖
2
W 1

2
(Ω) ≤ c, τ

r∑

m=1

‖∇ϕm‖
2
2,Ω ≤ c, (3.6)

r∑

m=1

∥∥ϕm − ϕm−1
∥∥2

W 1

2
(Ω)

≤ c, τ

r∑

m=1

‖ϕm‖
4
4,Ω ≤ c, (3.7)

τ

r∑

m=1

‖δtϕ
m‖

2
2,Ω ≤ c, τ

r∑

m=1

‖∆ϕm‖
2
2,Ω ≤ c. (3.8)
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Now, by multiplying the second equation of (PD) by θm, integrating over Ω,
using Green’s formula and relation (3.1) together with Young’s inequality, we get

1

2τ

(
‖θm‖

2
2,Ω −

∥∥θm−1
∥∥2

2,Ω
+
∥∥θm − θm−1

∥∥2

2,Ω

)
+ α ‖∇θm‖

2
2,Ω

≤
ℓ2

2
‖δtϕ

m‖
2
2,Ω +

1

2
‖θm‖

2
2,Ω .

By adding these relations for m = 1, 2, ..., r, with 1 ≤ r ≤ N and by combining
the result with estimate (3.8) and again applying Gronwall’s lemma in a discrete
form we conclude that

‖θr‖2,Ω ≤ C
(
‖θ0‖2,Ω + ‖ϕ0‖2,Ω

)
for r = 0, 1, ..., N.

We can treat this expression as we did before to obtain the following estimates:

max
1≤r≤N

‖θr‖
2
2,Ω ≤ c, τ

r∑

m=1

‖∇θm‖
2
2,Ω ≤ c,

r∑

m=1

∥∥θm − θm−1
∥∥2

2,Ω
≤ c. (3.9)

4. Proof of Theorem 1.2

We start by observing that with the notations of Definition 1.1, we may rewrite the
scheme (P) in terms of ϕτ , ϕ̃τ , θτ , θ̃τ as follows.

∂ϕ̃τ

∂t
− ξ2∆ϕτ = ϕτ (ϕτ − 1)(1 − 2ϕτ ) + (ϕτ − ϕ2

τ )F (θτ ) in Q, (4.1)

∂θ̃τ

∂t
− α∆θτ + vτ .∇θτ = −ℓ

∂ϕ̃τ

∂t
in Q, (4.2)

∂ϕτ

∂η
= 0, θτ = 0 on S, (4.3)

ϕ̃τ (x, 0) = ϕ0(x), θ̃τ (x, 0) = θ0(x) in Ω. (4.4)

Here vτ denotes the interpolation function as in Definition 1.1.

By rewriting the estimates obtained in the last section in terms of the interpo-
lations functions ϕτ , ϕ̃τ , θτ , ϕ̃τ , we obtain

Lemma 4.1.

‖ϕτ‖L∞(0,T ;W 1

2
(Ω)) + ‖ϕ̃τ‖L∞(0,T ;W 1

2
(Ω)) + ‖ϕτ‖W 2,0

2
(Q) + ‖ϕ̃τ‖W 2,0

2
(Q) ≤ c,

‖θτ‖L∞(0,T ;W 1

2
(Ω)) + ‖θτ‖W 1,0

2
(Q) ≤ c,

‖ϕτ‖4,Q +

∥∥∥∥
∂ϕ̃τ

∂t

∥∥∥∥
2,Q

≤ c,

where W 2,0
2 (Q) = L2(0, T,W 2

2 (Ω)).

Proof. From (3.6)-(3.8), we obtain

∥∥∥∥
∂ϕ̃τ

∂t

∥∥∥∥
2

2,Q

=

N∑

m=1

∫ mτ

(m−1)τ

‖δtϕ
m‖

2
2,Ω dt ≤ τ

N∑

m=1

‖δtϕ
m‖

2
2,Ω ≤ c.
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‖∇ϕτ‖
2
2,Q =

N∑

m=1

∫ mτ

(m−1)τ

‖∇ϕm‖
2
2,Ω dt ≤ τ

N∑

m=1

‖∇ϕm‖
2
2,Ω ≤ c.

By similar arguments, using estimates (3.6)-(3.8) and (3.9), we obtain the other
estimates of the statement.

Now, by using the estimates from Lemma 4.1, there exist subsequences, which
for simplicity we still denote ϕτ , θτ , ϕ̃τ , θ̃τ , such that as τ → 0 they satisfy

ϕτ ⇀ ϕ in L2(0, T,W 2
2 (Ω)), ϕτ

∗
⇀ ϕ in L∞(0, T,W 1

2 (Ω)), (4.5)

θτ ⇀ θ in L2(0, T,W 1
2 (Ω)), θτ

∗
⇀ θ in L∞(0, T, L2(Ω)), (4.6)

ϕ̃τ ⇀ ϕ̃ in L2(0, T,W 1
2 (Ω)), ϕτ ⇀ ϕ in L4(Q), (4.7)

θ̃τ ⇀ θ̃ in L2(0, T,W 1
2 (Ω)),

∂ϕ̃τ

∂t
⇀

∂ϕ̃

∂t
in L2(Q). (4.8)

We must control the differences ϕ̃τ −ϕτ with respect to suitable norms. From their
definitions,

‖ϕ̃τ − ϕτ‖
2
2,Q =

N∑

m=1

∫ mτ

(m−1)τ

(t− tm)2 ‖δtϕ
m‖

2
2,Ω =

τ

3

2
(
τ

N∑

m=1

‖δtϕ
m‖

2
2,Ω

)
.

Therefore, from (3.8), we conclude that ‖ϕ̃τ − ϕτ‖L2(Q) ≤ cτ . Thus, from (4.5)

and (4.7), we obtain ϕ = ϕ̃, a.e. in Q. This, (4.5) and (4.7) in particular imply
ϕ̃τ ⇀ ϕ in L2(0, T ;W 1

2 (Ω)).
Using (4.8) and the Aubin-Lions Compactness Lemma (see [8], for instante,) we

derive also the strong convergence ϕτ → ϕ in L2(Q).
Now we are ready to pass to the limit in scheme (4.1), (4.2), (4.3), (4.4) and to

verify that (ϕ, θ) is in fact a generalized solution in the same sense as given in [5,
p. 26].

For this, we take φ and ψ in C1(Q) such that φ(·, T ) = ψ(·, T ) = 0. We use
them to multiply the suitable equations and integrate over Q. Due to the kind of
convergences we have already established, passing to the limit in these terms are
rather standard. So, we briefly describe the process for the nonlinear terms. For
instance, by using the strong convergence, we obtain

∫

Q

ϕτ (ϕτ − 1)(1 − 2ϕτ )φdxdt→

∫

Q

ϕ(ϕ− 1)(1 − 2ϕ)φdxdt.

Consider hτ = |F (θτ ) − F (θ)|6. Since F (y) is continuous and (4.6) is valid,
passing to a subsequence if necessary, we know tha hτ → 0 almost everywhere in Q.
Also, |hτ | ≤ ‖F (θ)‖

6
∞ a.e. and therefore hτ → 0 in L1(Q) by Lebesgue dominated

convergence theorem. Thus, F (θτ ) → F (θ) in L6(Q), what together with (4.7)
implies ∫

Q

(ϕτ − ϕ2
τ )F (θτ )φdx dt→

∫

Q

(ϕ− ϕ2)F (θ)φdx dt

Also, it is easily show that vτ → v in L4(Q) (see [6]), by using this convergence,
the fact that div v = 0 and (4.6), we can pass to the limit as τ → 0 in (4.1), (4.2),
(4.3), (4.4) and conclude that (ϕ, θ) is a generalized solution of (P).
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By a bootstrap argument, an interpolation argument (see [5] p. 466) and ap-
plying Lp-theory of parabolic linear equations (see [5] p. 351), recalling the given
smoothness of (ϕ0, θ0) we conclude that (ϕ, θ) ∈ W 2,1

q (Q) × W 2,1
q (Q) with

2 ≤ q ≤ ∞.
Moreover, by using the same arguments of [3], we can be prove uniqueness of

solutions of problem (P), completing the proof of Theorem 1.2.
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