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Abstract. In this work a novel meshless technique for mold filling simulation is

presented. The governing equation for this kind of problem is named Hele-Shaw

and it is derivated applying some simplifications on the 3D conservation equations.

This approach is also commonly called 21/2D, referring to limitations of the mold

geometry to narrow and weakly curved channels. Since products manufactured by

injection molding in real life, as for example buckets, automobiles bumpers and

cell phone casings, are not expected to be planar, in this work the mold cavity is

modeled by point set surfaces. Thus, no computational effort referring to either

mesh generation or mesh maintenance is required for the numerical solution of

the governing equations. The developed technique for simulating the free surface

position, velocity and pressure distribution in the injection molding process using

this 21/2D approach is presented and discussed. The details of our framework, which

is based on Smoothed Particle Hydrodynamics Method and a Meshless Volume of

Fluid Method is also presented.

1. Introduction

Injection molding is one of the most important industrial processes for the man-
ufacturing of thin plastic products. Examples of such products are cassette tape
boxes, children masks, and computer keyboards. In the production process, molten
polymer is injected with high velocity/pressure into a thin mold. The mold is cooled
during the filling processes and the following packing stage. The product is ejected
from the mold as soon as the polymer has completely solidified. Normally the whole
production process takes a couple of seconds [6, 9].

Mathematical modeling is an important tool for the analysis and the prediction
of the product’s physical properties. The complete model for injection molding
process involves mass, momentum and energy balance equations, combined with
constitutive laws for non-Newtonian fluids. The locations of the advancing fluid

1kemelli@icmc.usp.br, Ph.D. student financially supported by FAPESP grant 05/51040-6
2gnonato@icmc.usp.br, CNPq grant 308292/2006-5
3norberto@uerj.br, CNPq grants 307230/2006-6, 486153/2006-1 and PROCIÊNCIA-UERJ
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front (free surface) must be determined as part of solution. Since products are very
thin, a Hele-Shaw type approximation can be used for the flow. This simplifies the
momentum balance equation dramatically and results in a 2D flow problem. The
heat transfer problems is, nevertheless, 3D. For this reason this approach is called
21/2D [10, 13]. In the present work we shall, however, solve the differential equations
considering Newtonian and isothermal fluid flows.

The purpose of the present contribution is to formulate and evaluate a mesh-
less simulation framework for the filling stage of injection molding process, where
no mesh is applied for the set of field variables, such as mass, momentum, energy,
position, etc. Meshless methods use a finite number of scattered particles, also de-
nominated nodes or points, within the problem domain and on the boundaries of
the domain to represent – not discretize – the problem domain, its boundaries and
such flow variables [1, 4, 11]. The discretization method applied for approximate
the flow variables is based on an Eulerian frame of the Smoothed Particle Hydrody-
namics (SPH) formulation [7, 12]. The governing equation for free-surface position
is solved based on a meshless adaptation of Volume of Fluid Method [8].

2. The Governing Equations

The 3D conservation equations, governing the motion of an isothermal fluid flow,
can be written as follow

Continuity Equation
∂ρ

∂t
+ ∇ · ρv = 0. (2.1)

Momentum Equation

∂

∂t
(ρv) = ρg + ∇ · σ −∇ · ρvv. (2.2)

where ρ is the fluid density, t is time, v = (vx, vy, vz) is the fluid velocity, g is
the total body force per unit mass and σ is the stress tensor. These equations are
quite general and hold for common fluids. However, even with current computers,
solving them in complicated domains as injection molds with cavities is considered
a very difficult task. Consistently with most injection mold applications some sim-
plifications can be applied over those governing equations, regarding the following
assumptions

i. During the filling phase, the fluid is considered to be incompressible;

ii. The fluid is considered a Generalized Newtonian Fluid;

iii. Simplification by dimensional analysis: the idea is to obtain estimates for the
order of magnitude of each term in the governing equations – terms of suffi-
ciently low order have little influence and, therefore, can be neglected. This
analysis is made using characteristic values of the variables [10].

iv. Simplification by mathematical analysis: since the molds are represented by
weakly curved surfaces, local coordinate systems restricted to the surfaces
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can the defined providing 2D manipulations and allowing integration of mo-
mentum and continuity equations across the thickness. The resulting equation
is called Hele-Shaw equation

∇ · (S2∇p) = 0, (2.3)

where p is the pressure and the quantity S2 is called fluidity. For symmetrical
molds S2 is defined by

S2 =

∫ h

0

z′2

η
dz′,

where h is the mold thickness and η is the viscosity of the fluid.

In injection molding process the fluid is usually modeled as a Generalized New-
tonian fluid, however, in this work we assume that the fluid is Newtonian. This
assumption allows extra simplifications in both fluidity and velocity field

S2 =
h3

3η
, vx =

1

2η

∂p

∂x
(z + h)(z − h) and vy =

1

2η

∂p

∂y
(z + h)(z − h).

where z is the current mold layer where the velocities are computed and for symmet-
rical molds, 0 ≤ z ≤ h. Finally, Eq. (2.3) should be solved subject to the following
boundary conditions: i) the pressure is zero on the free surface; ii) the pressure
or the flow rate is defined in the inlet regions and iii) the pressure gradient in the
normal direction is zero in any impermeable boundary.

The numerical solution of the governing equation for the filling phase with a
Newtonian fluid is made in two main stages: calculation of the pressure field and
the free surface motion [10]. In our method, the pressure equation is solved by
an Eulerian approach based on Smoothed Particle Hydrodynamics Method. The
prediction of the free surface position is obtained by a meshless Volume of Fluid
Method. It is important to notice that the literature does not present a similar
approach as the one described in the following section.

3. Solution of Pressure Equation

The Smoothed Particle Hydrodynamics (SPH) theory is based on integral represen-
tation of functions and it was developed by Lucy [12] and Gingold and Monaghan
[7]. The SPH creators noticed that any function f , defined over a domain of interest
and representing some physical variable, can be expressed in terms of its values at a
discrete set of disordered points (SPH particle positions) by suitable definition of a
specially smoothing kernel (weight) function with compact support. Therefore, the
partial differential equations describing the conservation laws can be transformed
into corresponding integral form using this approach.

Given a function f defined over the entire domain Ω, we can always write

f(x) =

∫

Ω

f(x′)δ(x − x′) dx′,
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where δ(x) is the 3D Dirac delta distribution. Since the Dirac delta is not a function,
it should be replaced with an interpolating kernel W (x, r), resulting in

< f(x) > =

∫

Ω

f(x′)W (x − x′, r) dx′,

which clearly represents an approximation for f(x), since the kernel does not exactly
substitute the Dirac delta. Next, the interpolant integral can be replaced by

< f(x) > ≈
∑

b

mb

fb

ρb

W (x − xb, r),

where the summation index b denotes the particle labels, and the summation is over
all elements. Particle b has mass mb, position xb, density ρb and velocity vb, f(xb)
is denoted as fb and r is the support radius. Since the Eulerian reference frame is
used, the particle density and mass are constants, and are incorporated in W .

The finite integral representation is valid and converges when the weight function
satisfies certain conditions [1, 4]

W (x, r) > 0 on a subdomain of Ω, ΩI ,

W (x, r) = 0 outside the subdomain ΩI ,
∫

Ω

W (x, r) dΩ = 1 normality property,

W (x, r) is a monotonically decreasing function,

W (x, r) → δ(x) as r → 0.

Three weight functions commonly used are the exponential, the cubic spline and
the quartic spline. They are illustrated in Fig. 1.
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Figure 1: Three commonly used weight functions: exponential, cubic spline and
quartic spline.

In this work, we employ the exponential function

w(u) =

{

e−
u2

α if u ≤ 1
0 if u > 1

, (3.1)
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where α is a constant commonly taken as α = 0.3 [11] and the argument of w(u) is
u = ‖x − x′‖/r, where r is the support radius.

A differentiable interpolant of a function can be constructed from its values at
the particles (interpolation points) by using a differentiable kernel. Consequently,
the derivatives of this interpolant are obtained by ordinary differentiation of the
kernel function. Therefore, the SPH approximation of Eq. (2.3) is given by

∑

b

pb ∇ ·
(

S2∇w(x − xb, r)
)

= 0. (3.2)

Eq. (3.2) can be expressed as a linear system, Lp = f , where L is the co-
efficient matrix, p is a vector with unknown values of pressure and f is a vector
associated to the boundary conditions. Matrix L is sparse and symmetric, thus the
resulting linear system can be solved using efficient computational methods, such
as the Conjugate Gradients Method with Incomplete Cholesky Pre-Conditioner.
Moreover, the dimension of matrix L is of the order of number of particles. Each
diagonal element is associated with a particle part, and the non zeros elements of
the matrix row are associated with the nearest neighbors to particle part, according
to Eq. (3.1) for the support radius.

4. Moving the Free Surface

In order to identify and advance the free surface of the fluid, a Meshless adaptation
of Volume of Fluid technique (VOF) is used [8]. The main idea in VOF method is
to introduce a function φ whose average value represents the fractional volume of
the cell occupied by the fluid. This filling factor ranges in the interval [0, 1]: if φ
of a particle is equal to 1, this means that the control volume associated with that
particle is completely full of fluid and if φ of the particle is equal to 0, then the
control volume associated with the particle is completely empty. Intermediate values
of φ indicate that the control volume is partially full, evidencing the free surface
position. The time dependence of φ is governed by a pure advection equation whose
integral form is

∫

V

(

∂φ

∂t
+ ∇ · (v φ)

)

dV = 0. (4.1)

In case of meshless methods there are no cells, elements or control volumes, so
it is necessary to associate a fictitious volume to each discretization particle, as the
one illustrated in Figure 2.

Applying Gauss Theorem, Eq. (4.1) turns to be

∂

∂t

∫

V

φ dV +

∫

S

φv · n dS = 0,

where V is the “meshless volume” and S is the “meshless boundary” of V .

Related to finite volume Vi, the rate of volume of the fluid in particle i (abbrevi-
ated by parti) is equal to the sum of the contributions proceeding from neighboring
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free surface

0<φ<1

φ=1
φ=1

φ=1
volume V

boundary S of V

<0<φ<1i
i

Figure 2: “Meshless” volume V and boundary S of V associated to particle i.

particles j where φ(partj) = 1. Furthermore, considering that φ is uniform inside
the volume of parti, it is possible to approximate the above equations as

Vi

∂φ(parti)

∂t
= −

∫

S

φ(partj)v · n dS,

where the surface integral includes the contribution of all volumes associated to full
particles, φ(partj) = 1. Therefore, approximating the time derivative using finite
differences, we have

φ(parti)
n+1 = φ(parti)

n −
∆t

Vi

∫

S

φ(partj)v · n dS. (4.2)

where ∆t is the time-step and index n is related to time discretization.
The term v · n is the velocity in ji-direction, i.e.,

v · n = −k
pj − pi

‖xj − xi‖
,

where k = S2/h. Considering an isotropic random distribution of particles, we
define the average radius, volume and area for particle i, respectively, as

Ri =
1

np

np
∑

j=1

‖xj − xi‖, Vi = πR2
i and Aij = 2πRi.

where np is the number of particles in the neighborhood of particle i. Finally
substituting these values on Eq. (4.2), the resulting equation for the filling factor,
φ, associated to particle i is obtained

φ(parti)
n+1 = φ(parti)

n +
2∆t

Ri

∑

j

kij

pj − pi

‖xj − xi‖
, (4.3)

where kij is an average value, given by

kij =











2
hi

S2i

+
hj

S2j

if φ(partj) = 1

0 if φ(partj) 6= 1
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The harmonic mean is preferable over the arithmetic mean because it produces
the exact solution in case of a sharp variation of S2/h located half way between
particles i and j.

After computation of the φ factor variation in time for all particles, it is possible
to calculate the time step, ∆tfilli , that is necessary to accurately fill the control vol-
ume associated with particle i where 0 ≤ φ ≤ 1. For that purpose, φ(parti)

n+1 = 1
is imposed on Eq. (4.3) therefore providing an expression for ∆tfill

∆tfill =
Ri(1 − φ(parti)

n)
∑

j kij

pj − pi

‖xj − xi‖

.

At each time step, the time interval is chosen such that only one control volume
is filled, or, in other words, the time step is calculated for all non-filled particles
and the smallest one is chosen for advancement of the free-surface. This strategy
results in a scheme with low numerical diffusion.

5. Results

The implemented numerical method has been validated considering constant thick-
ness and fluidity with Dirichlet and Neumann boundary conditions, against both
analytical and numerical solution obtained by Finite Volume Method (FVM) [5].
In this section, we present some results of numerical solution of equations (2.3) and
(4.1) for general situations. In these simulations, we use prescribed pressure at the
mold inlet, as p = 105 N/m2, and the mold thickness is h = 10−2 m.

In the first simulation we present a comparison between results obtained through
FVM and the implemented one during the filling of a key-shaped mold with one
circular insertion. Figure 3 shows the mold dimensions, the unstructured triangular
mesh used in FVM and the scattered points used in our method, respectively.

1cm

2.5cm

2.5cm

0.5cm

0.1cm
0.25cm

0.75 cm

Figure 3: Dimensions of the complex key-shaped mold, unstructured mesh used in
FVM and scattered points for implemented method.

The unstructured triangular mesh was built by a free 2D quality mesh generator
based on Delaunay triangulation called Easymesh [3] and has 1713 elements and
942 control volumes. Only these 942 points defining the control volumes were used
in the presented approach.

Figure 4 shows the pressure and velocity vector, respectively. The snapshots
represent the fluid flow during the mold filling at 6.45, 21.95 and 39.81 seconds.
The predicted injection time is 39.82 seconds. Notice that the results obtained
through both methods are quite similar.
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Implemented Method Finite Volume Method

Figure 4: Three stages of pressure distribution and velocity field during mold filling.
The values of pressure are scaled by p0 = 105N/m2.

In the second simulation, a mold of Tweety Bird was filled aiming to illustrate the
capability of the presented method to deal with complex non planar geometries. The
scattered points representing the Tweety Bird are 3D and they range of 0.2355m
in x-direction, 0.3675m in y-direction and 0.0180m in z-direction, as illustrated in
Figure 5. In this case, the inlet region is the biggest hair of Tweety Bird.

Figure 5: Three views of point set surface defining Tweety Bird’s mold.

Figures 6 and 7 show the pressure and velocity fields, respectively, at five stages:
right after the flow had started, at three intermediate times and at its end. The
total predicted filling time is 0.12 seconds. Although the implemented numerical
method avoids completely the use of meshes, a 3D mesh was built with iMesh, a
quality mesh generator from images [2], aiming depict the pressure field.

6. Conclusion

This work presented a meshless framework for solving the governing equations of
fluid flow during the filling phase of injection molding based on adaptations of SPH
and VOF methods. For the pressure field an Eulerian approach of SPH method was
employed and for predicting the free surface position a meshless scheme of VOF
method, considering meshless areas and volumes, also was deduced. This method-
ology allows to simulate complex geometries, in 21/2D, without excessive computa-
tional efforts, regarding specially to mesh generation/maintenance. Therefore, this
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Figure 6: Five stages of pressure distribution during mold filling. The values are
scaled by p0 = 105N/m2.

Figure 7: Five stages of velocity field.

work may be considered an useful tool for the design, analysis and troubleshooting
of injection molding process, which is sufficiently accurate for most applications.

Resumo. Neste trabalho uma técnica meshless para a simulação do preenchi-

mento de moldes é apresentada. A equação governante para este tipo de problema

é nomeada Hele-Shaw e obtida por meio de algumas simplificações nas equações

de conservção 3D. Esta aproximação é também chamada 21/2D, referindo-se às

limitações da geometria do molde como sendo estreito e pouco curvado. Como

produtos manufaturados por moldagem por injeção na vida real, como por exem-

plo baldes, pára-choques de automóveis e carcaças de telefones celulares, não são

planares, neste trabalho a cavidade do molde é modelada por superf́ıcies definidas

por pontos. Desta forma, nenhum esforço computacional relacionado à geração e

à manutenção de malhas é requerido para a solução numérica das equações go-

vernantes do escoamento. A técnica desenvolvida para simular a posição da su-

perf́ıcie livre, o campo de velocidades e a distribuição de pressão em processos de

moldagem por injeção usando-se esta aproximação 21/2D é apresentada e discutida.

Os detalhes de nossa aproximação, que é baseada nos métodos Smoothed Particle

Hydrodynamics e Meshless Volume of Fluid, também são apresentados.
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