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1. Introduction

Abstract. We analyse a free boundary problem for a second order nonlinear or-

dinary differential equation. The asymptotic behavior of the solutions satisfying

certain boundary conditions is analysed at the endpoints of the interval where the

solution is sought. Based on this study, an efficient shooting method is introduced

and numerical results are obtained.

In this paper we consider the following equation

y′′ + g(x)y′ + f(y) = 0, 0 < x < +∞, (1.1)

where we assume that

g(x) =
N − 1

x
, N ≥ 2, (1.2)

f(y) = ayq − byp, 0 ≤ p < q ≤ 1, a, b > 0. (1.3)

We look for a finite point M > 0 and a solution y satisfying

y(x) > 0, 0 < x < M, y′(0) = 0, y(M) = y′(M) = 0, (1.4)

This kind of problems arise when we are looking for radial solutions of the elliptic
equation △y + f(y) = 0 in a ball B(0,M) ⊂ R

N , and has several applications in
physics.

Recently, the following model was proposed in plasma physics, for Tokamac
equilibria with magnetic islands [6]:

1

x
(xG′)′ = γ + α(Gs − G)

1

2 , 0 < x < xs (1.5)

G′(0) = 0, G(xs) = Gs, G′(xs) = 0, (1.6)
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where γ = −0.2066, α = 5.9 and β = −2.5, and constitutes the motivation for the
present work.

Performing the variable substitution y = Gs −G, problem (1.5)-(1.6) becomes a
particular case of the singular free boundary value problem (1.1)-(1.4), with p = 0,
q = 1

2 , a = α, b = −γ and N = 2.
The questions of existence and uniqueness of a finite point M > 0 and a positive

solution of problem (1.1)-(1.4), were studied, for example, by Kaper and Kwong,
[2]. These authors stated the following

Theorem 1.1. If in equation (1.1)

(H1) f is continuous on [0,∞) and locally Lipschitz on (0,∞);

(H2) there exists a β0 > 0 such that F (y) > 0 for all 0 < y < β0, F (β0) = 0, and
f(y) > 0 for y ≥ β0, where F (y) = −

∫ y

0
f(s)ds, y > 0;

(H3)
∫ β0

0
F− 1

2 (y)dy < ∞;

(H4) lim infy→∞ f(y) > 0;

(H5) y 7→ f(y)
y−β0

is nonincreasing for y > β0;

(H6) g(x) ≥ 0 for all x ≥ 0;

(H7) limx→∞ g(x) = 0;

(H8) g is continuous on (0,∞) and g(x) = O(x−1) as x → 0;

(H9) g is monotone nonincreasing;

(H10) x 7→ g(x)exp
(

2
∫

g(x)dx
)

is nondecreasing;

then problem (1.1)-(1.4) has one and only one solution.

When f and g in equation (1.1), are given by (1.2) and (1.3), conditions (H1),
(H4), (H6), (H7), (H8), (H9) and (H10) are automatically satisfied. Condition

(H2) is satisfied with β0 =
(

b(q+1)
a(p+1)

)
1

q−p

. The integral in condition (H3) will be

convergent if p < 1. Finally, condition (H5) holds iff d
dy

(

f(y)
y−β0

)

≤ 0,∀ y > β0, what

is equivalent to say that

h(y) = (aqyq−1 − bpyp−1)(y − β0) − (ayq − byp) ≤ 0, ∀y > β0. (1.7)

When q < 1, h attains a maximum at βM =
(

bp(p−1)
aq(q−1)

)
1

q−p

. If β0 ≥ βM , which holds

when 0 ≤ p < q ≤ 1√
3

or 1√
3

< q < 1 and 0 ≤ p < − q
2 + 1

2

√

4 − 3q2, (1.7) is satisfied

since h(β0) ≤ 0 and h(y) < h(β0), for every y > β0. If βM > β0, what happens

when 1√
3

< q < 1, − q
2 + 1

2

√

4 − 3q2 ≤ p < q, (1.7) will be satisfied if h(βM ) < 0. It

can be easily proved that this last condition holds if (q−1)(p−1)
pq −

(

q3−q
p3−p

)
1

q−p

< 0.
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Finally, if q = 1 and p 6= 0, since f(y) > 0 for y ≥ β0, we have

h(y) > (a − bpyp−1)(y − β0), ∀y ≥ β0.

The point y∗ =
(

b(q+1)
ap

)
1

q−p

> β0 satisfies h(y∗) > a
(

1 − p2

2

)

(y∗ − β0) > 0,

∀ 0 < p < 1, so (1.7) will not be satisfied if q = 1 and p 6= 0. When p = 0 and
q = 1, (1.7) holds since h(y) = −b. Resuming,

Corollary 1.1. If in equation (1.1) f and g are defined by (1.2) and (1.3) and if
one of the following conditions is satisfied

(i) 0 ≤ p < q ≤ 1√
3
;

(ii) 1√
3

< q < 1 and 0 ≤ p ≤ − q
2 + 1

2

√

4 − 3q2;

(iii) 1√
3

< q < 1, − q
2 + 1

2

√

4 − 3q2 < p < q and (q−1)(p−1)
pq −

(

q3−q
p3−p

)
1

q−p ≤ 0;

(iv) p = 0 and q = 1;

then problem (1.1)-(1.4) has one and only one solution.

In order to obtain approximate solutions of the free boundary value problem
(1.1)-(1.4), singular at x = 0, we will extend the analytical-numerical approach
used in [5] and [4]. In particular, we will determine a one-parameter family of
solutions of equation (1.1) that satisfy the boundary condition at x = 0, and then
we introduce an iterative method which enable us to determine, simultaneously, the
value of the parameter of that family and the value of M , in such a way that the
boundary conditions at x = M are also satisfied.

2. Behavior of the Solutions in the Neighborhood

of the Singular Point x = 0

Consider the singular Cauchy problem

y′′ +
N − 1

x
y′ + ayq − byp = 0, 0 < x < +∞, (2.1)

y(0) = y0, y′(0) = 0. (2.2)

The questions of existence and uniqueness of solutions of singular Cauchy problems
of this kind were studied by Konyukhova [3], where asymptotic expansions of the
solution in the neighborhood of singular points were also presented. In order to
apply those results, we perform the variable substitution

ω1 = y − y0, ω2 = xy′.

(2.1), (2.2) can be rewritten as

xω′ = Aω + H(x, ω, y0) + G(x, y0)

ω(x, y0) = 0,
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where ω = (ω1, ω2)
t, H = (H1,H2)

t, G = (G1, G2)
t, H1 = G1 = 0, H2 =

−ax2 (ω1 + y0)
q

+ bx2 (ω1 + y0)
p

+ ax2yq
0 − bx2yp

0 , G2 = −ax2yq
0 + bx2yp

0 and A =
[

0 1
0 2 − N

]

, whose eigenvalues are λ1 = 0 and λ2 = 2 − N ≤ 0, ∀N ≥ 2.

As it can be easily seen, we are in conditions to use Theorem 5 of [3] to conclude
that for any fixed positive y0 and any N ≥ 2, problem (2.1), (2.2) has (for suffici-
ently small x) a unique solution, y(x, y0), holomorphic at x = 0, and that may be
represented by

y(x, y0) = y0 +

+∞
∑

k=1

y2k(y0)x
2k, 0 ≤ x ≤ δ, δ > 0, (2.3)

where the coefficients y2k may be determined substituting (2.3) in (2.1). The first
of these coefficients are

y2 =
byp

0 − ayq
0

2N
, y4 =

bpyp
0 − aqyq

0

4(2 + N)y0
y2

y6 =
bpyp

0

(

(p − 1)2y2
2 + 2y0y4

)

− aqyq
0

(

(q − 1)2y2
2 + 2y0y4

)

12(4 + N)y2
0

. (2.4)

We have just proved the following

Proposition 2.1. For any N ≥ 2 and y0 > 0, problem (2.1), (2.2) has a unique
solution which is holomorphic in the neighborhood of x = 0 and may be represented
in the form of the series (2.3). The first coefficients of this series are given by (2.4).

3. Behavior of the Solutions in the Neighborhood

of x = M

Consider now the Cauchy problem

y′′ +
N − 1

x
y′ + ayq − byp = 0, (3.1)

y(M) = y′(M) = 0, (3.2)

where M is a fixed positive number. Since q > p ≥ 0, from the conditions (3.2) it
follows that any solution y of this problem satisfies:

lim
x→M−

y(x)

(M − x)2
= C < ∞.

If p = 0 then C = b/2 > 0 and y(x) = b/2(M − x)2 + o((M − x)2) as x → M−.
When p > 0, we have C = 0 and it is obvious that the function y(x) ≡ 0 satisfies
(3.1), (3.2). However, it is possible to verify that for each M this problem has also
a positive solution, which can be the solution of our free boundary problem. Let us
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obtain the main term of the series expansion of this solution. Let us assume that,
for a certain positive k, we have

y(x) = C(M − x)k (1 + o(1)) ; (3.3)

then

y′(x) = Ck(M − x)k−1 (1 + o(1)) ; (3.4)

y′′(x) = Ck(k − 1)(M − x)k−2 (1 + o(1)) . (3.5)

Substituting (3.3), (3.4), (3.5) in equation (3.1) and taking into account (3.2), we
conclude that

lim
x→M−

y′′(x) + (N−1)/xy′(x)+ay(x)q

y(x)p
= lim

x→M−

Ck(k − 1)(M − x)k−2+o((M−x)k−2)

Cp(M−x)kp + o((M − x)k−2)
=b,

from where it follows that k = 2/(1 − p), C =
(

b(1−p)2

2(1+p)

)1/(1−p)

. Hence, for p > 0,

in the neighborhood of x = M , we have

y(x) =

(

b(1 − p)2

2(1 + p)

)1/(1−p)

(M − x)2/(1−p)(1 + o(1)). (3.6)

Remark: Note that since q < 1, f(y) is not lipschitzian when y = 0 and this
explains the multiplicity of solutions of the Cauchy problem (3.1),(3.2).

4. Parameter Estimates

According to lemma 1.2.1 in [1], any solution y(x) of (1.1),(1.4) satisfies F (y(0)) >
0, therefore

y0 = y(0) > β0 =

(

b(q + 1)

a(p + 1)

)
1

q−p

. (4.1)

Let us consider the family of functions

ȳ(x, y0) = y0 +
byp

0 − ayq
0

2N
x2, y0 > 0. (4.2)

Each one of these functions vanishes at

M̃(y0) =

√

2N

ayq−1
0 − byp−1

0

. (4.3)

Let us minimize (4.3) taking (4.1) into account. When 0 ≤ p < q < 1, M̃(y0) attains

a minimum at the point y0 =
(

b(p−1)
a(q−1)

)
1

q−p

, and in this case miny0>β0
M̃(y0) =
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√

2N
(

b(p−1)
a(q−1)

)

1−p

q−p 1−q
b(q−p) . When q = 1 and p = 0, M̃(y0) is strictly decreasing for

all y0 > β0, so infy0>β0
M̃(y0) = limy0→+∞ M̃(y0) =

√

2N/a. Define

Mmin =







√

2N
(

b(p−1)
a(q−1)

)

1−p

q−p 1−q
b(q−p) , if 0 ≤ p < q < 1;

√

2N/a, if q = 1, p = 0.

(4.4)

We shall now show that this value is actually a lower bound of M . With this
purpose we shall begin by deducing some auxiliary results.

Lemma 4.1. Let y(x, y0) be a solution of the Cauchy problem (2.1),(2.2), with
y0 > β0. If x̂ is the least positive value of x, such that y′(x̂, y0) = 0, then

1. there exists x1 < x̂, such that y(x1, y0) = u0, where u0 is the positive root of
f ;

2. there exists x2 < x1, such that y′′(x2, y0) = 0.

Proof. First of all, let us remark that since x̂ is a point of local minimum of y, then
y(x̂, y0) < u0, where u0 is the positive root of f(y). Actually, from equation (2.1)
it follows that y′′(x̂, y0) = −f(y(x̂, y0)) ≥ 0 and therefore y(x̂, y0) ≤ u0. Moreover,
we must have y(x̂, y0) 6= u0 (otherwise we would have y′′(x̂, y0) = y′(x̂, y0) = 0
and y would be constant: y(x, y0) ≡ u0). Hence we have y(x1, y0) = u0, for a
certain x1 < x̂. This proves the first part of the lemma. Now, since y′(x1, y0) < 0
and f(y(x1, y0)) = 0, from equation (2.1) it follows that y′′(x1, y0) > 0. From the
continuity of y′′ we conclude that there exists x2 < x1 such that y′′(x2, y0) = 0.

Lemma 4.2. Let y(x, y0) be a solution of the Cauchy problem (2.1),(2.2), with
y0 > β0, and such that y′(x̂, y0) = 0, for some x̂ > 0. Then y(x, y0) > ȳ(x, y0), for
0 < x ≤ x̂, where ȳ is given by (4.2).

Proof. From formula (2.3) it follows that y′′(0, y0) = ȳ′′(0, y0) = 2y2(y0) < 0.
Moreover, from formulae (2.4), we have y′′′(0, y0) = 0 and y(4)(x, y0) > 0 in the
neighborhood of x = 0, and therefore y′′(x, y0) is increasing with respect to x. By
lemma 4, there exists x2 < x̂, such that y′′(x2, y0) = 0, that is, y′(x, y0) has a local
minimum at x = x2. Moreover, y′′(x, y0) > 0, and therefore y′ is increasing, for
x2 < x < x̂, because y(x, y0) < u0, for such values of x. Hence we have

y′(x, y0) > ȳ′(x, y0) = 2y2(y0)x,

for 0 < x < x̂, and

y(x, y0) = y0 +

∫ x

0

y′(t, y0)dt > y0 +

∫ x

0

ȳ′(t, y0)dt = ȳ(x, y0),

for 0 < x ≤ x̂.

Finally, from lemma 4 and lemma 5, we obtain the needed result.
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Corollary 4.2. If M and ȳ0 are such that y(M, ȳ0) = y′(M, ȳ0) = 0, where y is a
solution of the Cauchy problem (2.1), (2.2), then M > Mmin.

Proof. Since ȳ0 ≥ β0 and y(x, ȳ0) has a local minimum at some M , y(x, ȳ0) satisfies
the conditions of lemma 5, with M = x̂. Therefore we can assure that y(x, ȳ0) >
ȳ(x, ȳ0), for 0 < x ≤ M . In particular, since ȳ(M̃(ȳ0), ȳ0) = 0, by construction, we
conclude that

M > M̃(ȳ0) ≥ Mmin,

which concludes the proof of the corollary.

5. Numerical Results

In order to compute a numerical solution of the free boundary problem (1.1)-(1.4)
we consider the Cauchy problems (2.1)-(2.2) and (3.1)-(3.2) separately.

The numerical solution of the singular CP (2.1)-(2.2) is obtained by replacing
the boundary conditions (2.2) by

y(δ) = y0 + y2(y0)δ
2 + y4(y0)δ

4 + y6(y0)δ
6

y′(δ) = 2y2(y0)δ + 4y4(y0)δ
3 + 6y6(y0)δ

5,
(5.1)

where δ is sufficiently close to 0 and y0 is a fixed positive number. The functions
y2, y4 and y6 are defined by (2.4). According to Proposition 2.1, if δ is close to 0,
the right-hand side of the first condition (5.1) gives an accurate representation of
the exact solution of (2.1)-(2.2).

In our computations, we have used the NDSolve subroutine of Mathematica to
solve the regular Cauchy problem (2.1),(5.1). Some numerical solutions obtained by
this method, for a particular case of problem (2.1)-(2.2), are displayed in fig.1-a).

2 4 6 8 10 12 14
x
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6

ylHy0,xL

y0 =7.5

y0 =5.5

y0 =2.5

y0 =0.00005

2 4 6 8 10
x

5

10

15

20

25
yrHM,xL

M =10

M =8

M =7

M =6

M =4

a) b)

Figure 1: Solution of problem a)(2.1), (2.2) for different values of y0, with a = b = 1,
p = 0, q = 1 and N = 3; b)(3.1), (3.2) for different values of M , with a = b = 1,
p = 0.2, q = 0.8 and N = 4.

On the other hand, the approximate solution of the Cauchy problem near x =
M can be obtained in different ways. When p = 0, as we have seen in Section
3, the problem has a unique solution for each M > 0, which can be computed
straightforward using again the NDSolve routine. In the case p > 0 the use of
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NDSolve (or any other standard routine for Cauchy problems) will produce the
trival solution y ≡ 0 which is not the solution of our problem. In order to obtain
the needed solution, we need to use the information about its asymptotics, obtained
in Section 3. Namely, we must replace the boundary conditions (3.2) by

y(M − ǫ) = w(M − ǫ), (5.2)

y′(M − ǫ) = w′(M − ǫ), (5.3)

where ǫ is sufficiently close to 0 and w(x) is the main term of the series expansion
(3.6). Then we use NDSolve to compute the Cauchy problem (3.1),(5.2),(5.3).
Figure 1-b) shows the graphics of the solutions computed for a particular case of
the Cauchy problem (3.1)-(3.2), using this method.

Let us now denote by yl(y0, x) the solution of equation (1.1) which satisfies
the boundary conditions (5.1), for a certain y0. By yr(M,x) we shall denote the
solution of equation (1.1) which satisfies the condition (3.2) (if p = 0) or (5.2),(5.3)
(if p > 0), for a certain M . We shall look for the solution of the free boundary
problem in the form

y(x) =

{

yl(y0, x), δ ≤ x ≤ M/2;
yr(M,x), M/2 ≤ x ≤ M − ǫ.

By construction, a function of this form will be a solution of the free boundary
problem (1.1)-(1.4) if and only if the following conditions are satisfied

yl(y0,M/2) = yr(M,M/2); y′
l(y0,M/2) = y′

r(M,M/2). (5.4)

The conditions (5.4) form a nonlinear set of two equations with respect to the
unknowns y0 and M , which can be efficiently solved, for example, by the Newton’s
method.

In our computations we have used δ = 0.001, ǫ = 0.001 and as initial values for
M and y0 we used the estimates obtained in Section 4. The stopping condition for
the Newton’s method was

max {|yl(y0,M/2) − yr(M,M/2)|, |y′
l(y0,M/2) − y′

r(M,M/2)|} < 10−15

Under these conditions, the Newton’s method converged after 9 iterations (in ave-
rage).

To illustrate our numerical results, we compute the solution of problem (1.1)-
(1.4) for several cases corresponding to different values of a, b, p, q and N . The
approximate values of M and y0, M and y0, respectively, are displayed in tables 1
and 2 . In figure 2, we plot the corresponding solutions.

Note that when q = 1, p = 0, and for example N = 2, the general solution of
equation (2.1) is given by the exact formula y(x) = b

a + CJ0(
√

ax), where J0 is the
Bessel function, and C is a constant. Taking into account the boundary conditions
at x = M , we obtain the values of M and C, and therefore the value y0 = y(0),
for some given values of a and b. In table 3 we compare these values with those
obtained by our numerical algorithm. From this comparison we conclude that all
the obtained approximations of y0 and M have eight digits of accuracy.
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q y0 β0 M Mmin

0.3 6.04623 2.19112 22.7135 15.3767
0.4 5.86222 2.12873 12.9553 8.5582
0.6 5.56924 2.02448 8.31109 5.13538
0.7 5.44974 1.98040 7.26542 4.29187

Table 1: a = b = 1, p = 0.25, N = 3

p y0 β0 M Mmin

0.0 8.64506 2.08493 6.09792 3.86697
0.2 8.14901 1.96556 7.07127 4.11489
0.3 7.96416 1.91716 7.82395 4.29955
0.4 7.81274 1.87440 8.89730 4.55901

Table 2: a = b = 1, q = 0.8, N = 4

5 10 15 20
x

1

2

3

4

5

6

y

q =0.7

q =0.6
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p =0.4

p =0.3

p =0.2
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a) b)

Figure 2: a)a = b = 1, p = 0.25, N = 3; b)a = b = 1, q = 0.8, N = 4.

a, b y0 y0 M M
1,1 3.48287194 3.48287197 3.83170597 3.83170599
1,2 6.96574387 6.96574378 3.83170597 3.83170599
2,1 1.74143597 1.74143593 2.70942528 2.70942529
2,2 3.48287194 3.48287199 2.70942528 2.70942530
2,4 6.96574387 6.96574385 2.70942528 2.70942529

Table 3: Comparison between the exact values of M and y0 with those obtained
numerically, for N = 2, q = 1 and p = 0
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6. Conclusions and Future Work

This work continues the investigation in [4] and [5] where singular boundary value
problems were studied on limited and non limited domains. Here, we had to adapt
the numerical algorithms introduced before to the case of free boundary problems.
In the future, we are planning to extend all these results to the equation △my +
f(y) = 0, where △m is the degenerate laplacian operator (with m 6= 2).
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