On the Representation of a PI-Graph ${ }^{1}$

S.M. ALMEIDA ${ }^{2}$, C.P. de MELLO 3, A. GOMIDE ${ }^{4}$, Institute of Computing, UNICAMP, 13084-971 Campinas, SP, Brazil.

Abstract

Consider two parallel lines (denoted r_{1} and r_{2}). A graph is a PI graph (Point-Interval graph) if it is an intersection graph of a family \mathcal{F} of triangles between r_{1} and r_{2} such that each triangle has an interval with two endpoints on r_{1} and a vertex (a point) on r_{2}. The family \mathcal{F} is the PI representation of G. The PI graphs are an extension of interval and permutation graphs and they form a subclass of trapezoid graphs. In this paper, we characterize the PI graphs in terms of its trapezoid representation. Also we show how to construct a family of trapezoid graphs but not PI graphs from a trapezoid representation of a known graph in this class.

1. Introduction

We consider simple, undirected, finite graphs $G=(V(G), E(G))$, where $V(G)$ and $E(G)$ are the vertex and edge sets, respectively.

A graph is an intersection graph if its vertices can be put in a one-to-one correspondence with a family of sets in such way that two vertices are adjacent if and only if the corresponding sets have non-empty intersection.

Consider two parallel real lines (denoted r_{1} and r_{2}). A graph is a permutation graph if it is an intersection graph of straight lines (one per vertex) between r_{1} and r_{2}. A graph is a PI graph (Point-Interval graph) if it is an intersection graph of triangles between r_{1} and r_{2} such that each triangle has an interval with two endpoints on r_{1} and a vertex (a point) on r_{2}. The intersection graph of a family of trapezoids that have an interval with two endpoints on r_{1} and another one with two endpoints on r_{2} is called trapezoid graph.

A well known class of intersection graphs is the interval graphs, the intersection graph of intervals on a real line.

The class of PI graphs was defined by Corneil and Kamula [6] as an extension of the classes of interval and permutation graphs and as a subclass of trapezoid graphs.

Permutation and interval graphs have been extensively studied since their inception $[7,9,12,16]$ and both have linear-time algorithm for the recognition problem $[1,11,13]$.

[^0]Trapezoid graphs class is equivalent to the complements of interval dimension two partial orders. Since Cogis [5], in the early 80s, developed a polynomial time algorithm for the recognition of interval dimension two partial orders, trapezoid graphs recognition may be done in polynomial time too. In [15], Ma presents a trapezoid graph recognition algorithm which runs in time $\mathrm{O}\left(n^{2}\right)$. Habib and Möhring [10] and Cheah [3] have also developed polynomial time algorithms for the trapezoid graphs recognition. But PI graphs recognition problem remains still open [2]. This is a motivation to study this class. In Section 2., we characterize the PI graphs in terms of its trapezoid representation and in Section 3., given a graph G that is trapezoid graph but not PI graph, we show how to construct a family of graphs in this class from a trapezoid representation of this known graph.

2. A PI Representation

We denote by Π a trapezoid between two parallel real lines r_{1} and r_{2} such that Π has one line segment with endpoints on r_{1} and another one on r_{2} and by Δ a triangle between two parallel lines r_{1} and r_{2} with a line segment on r_{1} and a vertex on r_{2}.

A trapezoid representation R of a graph G is a family \mathcal{F} of trapezoids between two parallel lines r_{1} and r_{2} and G is the intersection graph of \mathcal{F}. A PI representation R of a graph G is a family \mathcal{F} of triangles between two parallel lines r_{1} and r_{2} and G is the intersection graph of \mathcal{F}. Let G be a graph and $v \in V(G)$. We denote by Π_{v} the trapezoid of R that corresponds to v and by $\Omega_{v}^{i}=\left[L_{v}^{i}, R_{v}^{i}\right]$ the line segment of Π_{v} that lies on $r_{i}, i \in\{1,2\}$. We also denote by $\Omega_{u}^{i} \ll \Omega_{v}^{i}$ when $\Omega_{u}^{i} \cap \Omega_{v}^{i}=\emptyset$ and Ω_{u}^{i} lies to the left of the Ω_{v}^{i}. The segment Ω_{v}^{2} is denoted by T_{v} when $L_{v}^{2}=R_{v}^{2}$ and thus we have a triangle $\Delta_{v}=\left(T_{v}, L_{v}^{1}, R_{v}^{1}\right)$.

Figure 1: A trapezoid graph and a trapezoid representation for this graph.

Figure 1 (a) shows an example of a trapezoid graph that is also a PI graph and Figure 1 (b) presents a trapezoid representation for this graph. A PI representation of this graph is presented in Figure 2.

Figure 2: A PI representation for the graph presented in Figure 1 (a).

Note that a trapezoid representation of a graph allows triangles (PI graphs are trapezoid graphs). From now on, given R, a trapezoid representation of a graph, we consider that any two endpoints on $r_{i}, i \in\{1,2\}$, are distinct. It is possible, since r_{1} and r_{2} are real lines.

Let R be a trapezoid representation of a graph G and let Π_{u}, Π_{v} and Π_{w} trapezoids in R such that

$$
L_{u}^{2}<R_{v}^{2}<L_{w}^{2}<R_{u}^{2} \text { and } R_{v}^{1}<L_{u}^{1}<R_{u}^{1}<L_{w}^{1}
$$

This triple of trapezoids is called an obstruction on r_{2} and Π_{u} is the center of the obstruction on r_{2}. The exchange between r_{1} and r_{2} gives an obstruction on r_{1}. We call this triple only by obstruction, when there is no confusion. The triple Π_{u}, Π_{v} and Π_{w} in Figure 3 is an obstruction on r_{2}. Note that the correspondent vertices v and w of an obstruction are non-adjacent vertices of G. Cheah presents in [3] representations of permutation graphs with similar constructions that he uses to produce a conjecture for the PI graphs recognition.

Figure 3: An obstruction on r_{2}.

A graph G has a trapezoid representation R with obstructions on r_{2} if, and only if, G has a trapezoid representation R^{\prime} with obstructions on r_{1}. In fact, we can exchange r_{1} and r_{2}.

Given R a trapezoid representation of a graph G and $u \in V(G)$ such that Π_{u} is not the center of any obstruction of R, the next algorithm constructs another trapezoid representation of G from R where the vertex u is represented by a triangle Δ_{u}.

Algorithm TRAPtoTRIANG(R,u);
Input: R is a trapezoid representation of a graph G and $u \in V(G)$ such that Π_{u} is not a center of obstructions of R.
Output: R^{\prime}, a trapezoid representation of a graph G where the vertex u is represented by a triangle Δ_{u}.

Step 1. If $L_{u}^{2} \neq R_{u}^{2}$, then
Step 1.1 $T_{l}:=L_{u}^{2} ; T_{r}:=R_{u}^{2} ;$
Step 1.2 if there is Π_{v} such that $\Omega_{v}^{1} \ll \Omega_{u}^{1}$ and $L_{u}^{2}<R_{v}^{2}<R_{u}^{2}$,
then $T_{r}:=R_{k}^{2}$, where R_{k}^{2} is the leftmost vertex among every R_{v}^{2}.
Step 1.3 if there is Π_{w} such that $\Omega_{u}^{1} \ll \Omega_{w}^{1}$ and $L_{u}^{2}<L_{w}^{2}<R_{u}^{2}$,
then $T_{l}:=L_{k}^{2}$, where L_{k}^{2} is the rightmost vertex among every L_{w}^{2}.
Step 1.4 choose T_{u} such that $T_{l}<T_{u}<T_{r}$ and do $\Omega_{u}^{2}:=T_{u}$.
Step $1.5 R:=\left(R \backslash\left\{\Pi_{u}\right\}\right) \cup\left\{\Delta_{u}\right\}$, where $\Delta_{u}=\left(T_{u}, L_{u}^{1}, R_{u}^{1}\right)$.
Step 2. $R^{\prime}:=R$ and return R^{\prime}.
Lemma 2.1. Let R be a trapezoid representation of a graph G and u a vertex of G such that Π_{u} is not a center of any obstruction of R. Then the Algorithm TRAPtoTRIANG (R, u) transforms Π_{u} to a triangle Δ_{u}.

Proof. If $L_{u}^{2}=R_{u}^{2}$, then Π_{u} is a triangle, only Step 2 is executed, and the lemma follows.

Now, we consider $L_{u}^{2}<R_{u}^{2}$ and we suppose that is not possible to choose T_{u} such that $T_{l}<T_{u}<T_{r}$, in the Step 1.4. Thus, $T_{r}<T_{l}$ since all vertices of R are distinct. Since, in Step 1.1, $T_{l}=L_{u}^{2}<R_{u}^{2}=T_{r}$, the condition $T_{r}<T_{l}$ says that the Step 1.2 or Step 1.3 of the algorithm are executed. If only Step 1.2 (or Step $1.3)$ is executed, $T_{r}=R_{v}^{2}$, for some Π_{v}, and $T_{l}=L_{u}^{2}\left(T_{l}=L_{w}^{2}\right.$, for some Π_{w}, and $T_{r}=R_{u}^{2}$). In this case, by condition of Step 1.2 (Step 1.3), $T_{l}=L_{u}^{2}<R_{v}^{2}=T_{r}$ $\left(T_{l}=L_{w}^{2}<R_{u}^{2}=T_{r}\right)$, a contradiction. Hence both Step 1.2 and Step 1.3 are executed. Therefore, there is Π_{v} with $\Omega_{v}^{1} \ll \Omega_{u}^{1}, L_{u}^{2}<R_{v}^{2}<R_{u}^{2}$ and $T_{r}=R_{v}^{2}$ and there is Π_{w} such that $\Omega_{u}^{1} \ll \Omega_{w}^{1}, L_{u}^{2}<L_{w}^{2}<R_{u}^{2}$ and $T_{l}=L_{w}^{2}$. Since $T_{r}<T_{l}$, the triple Π_{v}, Π_{u} and Π_{w} would be an obstruction of R with Π_{u} the center of this obstruction, a contradiction. So, $T_{l}<T_{r}$ and thus it is possible to choose a vertex T_{u} such that $T_{l}<T_{u}<T_{r}$ and the Algorithm TRAPtoTRIANG (R, u) makes Π_{u} into a triangle $\Delta_{u}=\left(T_{u}, L_{u}^{1}, R_{u}^{1}\right)$.

Lemma 2.2. Let R be a trapezoid representation of a graph G and u a vertex of G such that Π_{u} is not a center of any obstruction of R. Then the representation obtained by Algorithm TRAPtoTRIANG(R,u) is a trapezoid representation of G.

Proof. By Lemma 2.1 the Algorithm TRAPtoTRIANG($R, u)$ transforms Π_{u} to a triangle $\Delta_{u}=\left(T_{u}, L_{u}^{1}, R_{u}^{1}\right)$ with $L_{u}^{2}<T_{u}<R_{u}^{2}$. We will show that the Algorithm TRAPtoTRIANG (R, u) preserves the adjacencies of G.

If condition of Step 1 is not satisfied, then $\Pi_{u}=\Delta_{u}$ and only Step 2 is executed, and the Lemma 2.2 follows. Otherwise, steps 1.1 to 1.5 are executed.

Since these steps of the algorithm only reduces Ω_{u}^{2} to T_{u} and $T_{u} \in \Omega_{u}^{2}$, no new intersection is created. So, it is sufficient to consider trapezoids of R that have nonempty intersection with Π_{u}. The algorithm acts only on r_{2}, then the intersections of the trapezoids with Π_{u} on r_{1} are maintained. Therefore, we can consider only trapezoids Π_{v} (and Π_{w}) such that $\Pi_{u} \cap \Pi_{v} \neq \emptyset\left(\Pi_{u} \cap \Pi_{w} \neq \emptyset\right)$ and $\Omega_{v}^{1} \ll \Omega_{u}^{1}$ $\left(\Omega_{u}^{1} \ll \Omega_{w}^{1}\right)$. By Step 1.1, we have $T_{l}=L_{u}^{2}<R_{u}^{2}=T_{r}$. If Step 1.2 and Step 1.3 of the Algorithm are not executed, then the vertices R_{v}^{2} and L_{w}^{2} are not between L_{u}^{2} and R_{u}^{2}. Since $L_{u}^{2}<T_{u}<R_{u}^{2}$, the adjacencies are preserved.

If Step 1.2 (Step 1.3) of the Algorithm is executed, we have $L_{u}^{2}<R_{v}^{2}<R_{u}^{2}$ $\left(L_{u}^{2}<L_{w}^{2}<R_{u}^{2}\right)$. In this case, the algorithm chooses $T_{r}=R_{k}^{2}\left(T_{l}=L_{k^{\prime}}^{2}\right)$, where R_{k}^{2} $\left(L_{k^{\prime}}^{2}\right)$ is the leftmost (rightmost) vertex on r_{2} among every $R_{v}^{2}\left(L_{w}^{2}\right)$. This implies, by the selection of $R_{k}^{2}\left(L_{k^{\prime}}^{2}\right)$, that in Step $1.4 L_{u}^{2}<T_{u}<R_{k}^{2} \leq R_{v}^{2}\left(L_{w}^{2} \leq L_{k^{\prime}}^{2}<\right.$ $\left.T_{u}<R_{u}^{2}\right)$ and the adjacencies are preserved.

If both Step 1.2 and Step 1.3 of the Algorithm are executed, then we have $T_{r}=R_{k}^{2} \leq R_{v}^{2}$ and $L_{w}^{2} \leq L_{k^{\prime}}^{2}=T_{l}$ where R_{k}^{2} and $L_{k^{\prime}}^{2}$ satisfy the condition of these steps. Since, by hypothesis, Π_{u} is not a center of any obstruction of R, then $L_{k^{\prime}}^{2}<R_{k}^{2}$. Hence, by Step 1.4, $L_{w}^{2} \leq L_{k^{\prime}}^{2}=T_{l}<T_{u}<T_{r}=R_{k}^{2} \leq R_{v}^{2}$ and, again, the adjacencies are preserved.

So, the new representation obtained by Algorithm TRAPtoTRIANG (R, u) is a trapezoid representation of G.

Lemma 2.3. Let R be a trapezoid representation of a graph G without obstructions on r_{2}. The trapezoid representation obtained by Algorithm TRAPtoTRIANG(R,u) does not have obstructions on r_{2}.

Proof. Let R^{\prime} be a trapezoid representation of a graph G obtained from R by Algorithm TRAPtoTRIANG (R, u), where vertex u of G is represented by Δ_{u}. Suppose by a moment that R^{\prime} has an obstruction \mathcal{O} generated by the Algorithm TRAPtoTRIANG (R, u). Since the algorithm modifies only Ω_{u}^{2}, the triangle Δ_{u} belongs to \mathcal{O}. But Δ_{u} can not be the center of obstructions of R^{\prime}, since all the vertices of r_{2} are distinct.

Suppose that $\mathcal{O}=\left\{\Pi_{v}, \Delta_{u}, \Pi_{w}\right\}$ with Π_{v} the center of \mathcal{O} and consider $\Omega_{u}^{1} \ll$ Ω_{v}^{1}. (When $\Omega_{v}^{1} \ll \Omega_{u}^{1}$, the proof is analogous.) So, in R^{\prime}, the obstruction satisfies $\Omega_{u}^{1} \ll \Omega_{v}^{1} \ll \Omega_{w}^{1}$ and $L_{v}^{2}<T_{u}<L_{w}^{2}<R_{v}^{2}$.

Thus, in $R^{\prime}, \Delta_{u} \cap \Pi_{w}=\emptyset$ and $\Delta_{u} \cap \Pi_{v} \neq \emptyset$. Then, by Lemma 2.2, $\Pi_{u} \cap \Pi_{w}=\emptyset$ and $\Pi_{u} \cap \Pi_{v} \neq \emptyset$ in R. So, we have $L_{v}^{2}<R_{u}^{2}<L_{w}^{2}<R_{v}^{2}$ in R. Therefore, there was in R an obstruction $\left\{\Pi_{u}, \Pi_{v}, \Pi_{w}\right\}$ with center Π_{v}, contradicting the fact that R has no obstructions on r_{2}.

Theorem 2.1. A graph G is a PI graph if, and only if, G has a trapezoid representation without obstruction on r_{2}.

Proof. Let G be a PI graph. Then G has a PI representation R such that each triangle Δ_{v} has a top vertex $T_{v}, v \in V(G)$, on r_{2}. Recall $T_{v} \neq T_{u}$ for $v \neq u$. For each $T_{v}, v \in V(G)$, it is possible to construct a segment $\left[L_{v}^{2}, R_{v}^{2}\right]$ obtaining a trapezoid representation R^{\prime} of G. To do this, it is sufficient to construct for each two consecutive top vertices T_{v} and T_{u}, two disjoint segments $\left[L_{v}^{2}, R_{v}^{2}\right]$ and $\left[L_{u}^{2}, R_{u}^{2}\right]$ such that if $T_{v}<T_{u}$ on $R, \Omega_{v}^{2} \ll \Omega_{u}^{2}$ on R^{\prime}. This is possible because r_{2} is a real line. Hence we conclude that R^{\prime} is a trapezoid representation of G without obstructions on r_{2}.

Let $R=R_{1}$ be a trapezoid representation of a graph G without obstructions on r_{2}. The Algorithm TRAPtoTRIANG (R, u) acts only at trapezoids Π_{u} that are not centers of obstructions. By Lemma 2.1, the Algorithm transforms Π_{u} into Δ_{u}. By Lemma 2.2, this new trapezoid representation, R_{2}, is also a trapezoid representation of G. Since, by hypothesis, R_{1} has no obstructions on r_{2}, then by Lemma $2.3, R_{2}$ has no obstructions on r_{2} too. Then, we use R_{2} in the input of the algorithm and so on.

After $|V(G)|$ applications of Algorithm TRAPtoTRIANG $\left(R_{i}, v\right)$ on distinct vertices v of G, we have a PI representation of G.

3. The Trapezoid Graphs that are not PI Graphs

In this section we consider graphs that are trapezoid graphs but not PI graphs. We give properties of trapezoid representations of a graph in this class. Recall that from a trapezoid representation of a graph we obtain another one by exchanging r_{1} and r_{2}. Thus, by Theorem 2.1, a graph G is a trapezoid graph but it is not PI graph if, and only if, every trapezoid representation of G has obstructions on r_{1} and on r_{2}.

Given a trapezoid representation R of a graph such that R has an obstruction, the next theorem exhibits an structure that is necessary not to destroy the obstruction of R.

Theorem 3.1. Let R be a trapezoid representation of a graph G and let $\mathcal{O}=$ $\left\{\Pi_{u}, \Pi_{v}, \Pi_{w}\right\}$ be an obstruction in R. If at least one of $\Pi_{x}, \Pi_{y}, \Pi_{t}$ and Π_{z} satisfying

$$
\begin{gather*}
R_{v}^{1}<L_{x}^{1}<R_{y}^{1}<L_{u}^{1} \quad \text { and } R_{y}^{2}<L_{u}^{2}<R_{v}^{2}<L_{x}^{2} \tag{3.1}\\
\text { and } \\
R_{u}^{1}<L_{z}^{1}<R_{t}^{1}<L_{w}^{1} \quad \text { and } R_{t}^{2}<L_{w}^{2}<R_{u}^{2}<L_{z}^{2} \tag{3.2}
\end{gather*}
$$

does not exist, then it is possible to construct from R a trapezoid representation of a graph G without the obstruction \mathcal{O}.

Proof. First we consider the trapezoids Π_{x}, Π_{y} and the condition (3.1). (See Figure 4.) The proof for trapezoids Π_{z}, Π_{t} and the condition (3.2) is analogous.

Let $\mathcal{O}=\left\{\Pi_{u}, \Pi_{v}, \Pi_{w}\right\}$ be an obstruction of a trapezoid representation R of a graph G with center Π_{u}. Suppose that there are not trapezoids Π_{y} such that $R_{y}^{2}<L_{u}^{2}<R_{v}^{2}$ and $R_{v}^{1}<R_{y}^{1}<L_{u}^{1}$.

Figure 4: The trapezoids Π_{x} and Π_{y} satisfy the condition (3.1).

Let P be the first endpoint of Ω_{p}^{1} such that $P<R_{v}^{1}$. We move the left endpoint of Π_{u} on r_{1} such that the new position of L_{u}^{1} is $P<L_{u}^{1}<R_{v}^{1}$ and we call by R^{\prime} the new trapezoid representation.

Now, we will prove that R^{\prime} is also a trapezoid representation of G.
The only difference between R and R^{\prime} is at trapezoid Π_{u} and on $r_{1}: \Omega_{u}^{1}$ is greater in R^{\prime} than Ω_{u}^{1} in R but Ω_{u}^{2} was not changed. Hence, if $\Pi \cap \Pi_{u} \neq \emptyset$ in R, for some trapezoid Π, then $\Pi \cap \Pi_{u} \neq \emptyset$ in R^{\prime}.

Now, we shall show that if $\Pi \cap \Pi_{u}=\emptyset$ in R, for some trapezoid Π, then $\Pi \cap \Pi_{u}=\emptyset$ in R^{\prime}. For that, suppose there is a trapezoid Π_{k} such that $\Pi_{k} \cap \Pi_{u}=\emptyset$ in R and $\Pi_{k} \cap \Pi_{u} \neq \emptyset$ in R^{\prime}. Then, $R_{v}^{1}<R_{k}^{1}<L_{u}^{1}$ in R. Moreover, since $\Pi_{k} \cap \Pi_{u}=\emptyset$ in R, then $R_{k}^{2}<L_{u}^{2}$ in R. It follows that Π_{k} satisfies the condition (3.1) for trapezoid Π_{y} in R, a contradiction.

Therefore, R^{\prime} is a trapezoid representation of G. Moreover, in $R^{\prime}, \Omega_{v}^{1} \cap \Omega_{u}^{1} \neq \emptyset$, so the obstruction \mathcal{O} of R was removed.

Now we suppose that there are not trapezoids Π_{x} in R such that $R_{v}^{1}<L_{x}^{1}<L_{u}^{1}$ and $R_{v}^{2}<L_{x}^{2}$.

Let P be the first endpoint of Ω_{p}^{1} such that $L_{u}^{1}<P$. Note that P can be equal to R_{u}^{1}. We move the right endpoint of Π_{v} on r_{1} such that the new position of R_{v}^{1} is $L_{u}^{1}<R_{v}^{1}<P$ and we call by $R^{\prime \prime}$ the new trapezoid representation.

The only difference between R and $R^{\prime \prime}$ is at trapezoid Π_{v} and on $r_{1}: \Omega_{v}^{1}$ is greater in $R^{\prime \prime}$ than Ω_{v}^{1} in R (note that the endpoint L_{v}^{1} and Ω_{v}^{2} were not changed). Hence, if $\Pi \cap \Pi_{v} \neq \emptyset$ in R, for some trapezoid Π, then $\Pi \cap \Pi_{v} \neq \emptyset$ in $R^{\prime \prime}$.

Suppose that there is a trapezoid Π_{k} such that $\Pi_{k} \cap \Pi_{v}=\emptyset$ in R and $\Pi_{k} \cap \Pi_{v} \neq \emptyset$ in $R^{\prime \prime}$. Since $\Pi_{k} \cap \Pi_{v} \neq \emptyset$ in $R^{\prime \prime}, \Pi_{k}$ has an endpoint on the interval $\left(R_{v}^{1}, P\right)$. Then, $R_{v}^{1}<L_{k}^{1}<P \leq R_{u}^{1}$ in R. By choosing of P, the interval $\left(L_{u}^{1}, P\right)$ does not have endpoints of trapezoids, then $L_{k}^{1}<L_{u}^{1}$. Therefore $R_{v}^{1}<L_{k}^{1}<L_{u}^{1}$ in R. Since the intersection of Π_{k} and Π_{v} is empty in R, then $R_{v}^{2}<L_{k}^{2}$ in R. Hence we conclude that Π_{k} satisfies the condition (3.1) for trapezoid Π_{x} in R, a contradiction.

Since no new intersection was created in $R^{\prime \prime}$, it represents the same graph G of R. Moreover, the trapezoid representation $R^{\prime \prime}$ has $L_{u}^{2}<R_{v}^{2}$ and $L_{u}^{1}<R_{v}^{1}$, so the obstruction \mathcal{O} of R was removed.

By theorems 2.1 and 3.1, we have the following collorary.
Corollary 3.1. A graph G is a PI graph if and only if there is a trapezoid representation R of G such that for every obstruction on r_{2} of R, the condition of Theorem 3.1 is satisfied.

Figure 5: A trapezoid graph G that is not PI graph and a trapezoid representation of G.

Few graphs are known in the class of trapezoid graphs that are not PI graphs [4, $8,14]$. We will show how to construct a family of graphs that belongs to this class from a known graph of the same class.

Let G be a trapezoid graph that is not PI graph and R a trapezoid representation of G with $\mathcal{O}=\left\{\Pi_{u}, \Pi_{v}, \Pi_{w}\right\}$ an obstruction of R on r_{2} and $\mathcal{O}^{\prime}=\left\{\Pi_{u^{\prime}}, \Pi_{v^{\prime}}, \Pi_{w^{\prime}}\right\}$ an obstruction of R on r_{1}. Then R contains trapezoids $\Pi_{x}, \Pi_{y}, \Pi_{x^{\prime}}, \Pi_{y^{\prime}}$ satisfying condition (3.1) and Π_{t} and $\Pi_{z}, \Pi_{t^{\prime}}$ and $\Pi_{z^{\prime}}$ satisfying condition (3.2). (The notation without apostrophe refers to \mathcal{O} and the other one refers to \mathcal{O}^{\prime}.) If $\Pi_{u}=\Pi_{u^{\prime}}$, we obtain a representation given by Lin [14]. (See Figure 5.)

Consider the obstruction \mathcal{O} of R. The condition (3.1) of the Theorem 3.1 says that $R_{v}^{2}<L_{x}^{2}$ and $R_{y}^{2}<L_{u}^{2}$. Note that there are no restrictions either on R_{x}^{2} and R_{x}^{1} or on L_{y}^{2} and L_{y}^{1}. Thus these vertices can be moved to any position on the right of L_{x}^{2} and of L_{x}^{1} and on the left of R_{y}^{2} and R_{y}^{1}, respectively, making new intersections. Similarly, from the condition (3.2) of the Theorem 3.1 about R_{t}^{2} and L_{z}^{2}, we can move L_{t}^{2} or L_{t}^{1} and R_{z}^{2} or R_{z}^{1} to any position that are less than R_{t}^{2} or R_{t}^{1} and greater than L_{z}^{2} or L_{z}^{1}, respectively. The same arguments are valid for an obstruction \mathcal{O}^{\prime} of R. Therefore, using this liberty for the choice of position of these vertices, we can construct a family of trapezoid graphs that are not PI graphs from a known trapezoid representation of a graph in this class. The Figure 6 shows an element of the family obtained from the trapezoid representation of the Figure 5.

Let $\Pi \in\left\{\Pi_{x}, \Pi_{y}, \Pi_{t}, \Pi_{z}, \Pi_{x}^{\prime}, \Pi_{y}^{\prime}, \Pi_{t}^{\prime}, \Pi_{z}^{\prime}\right\}$. In case Π is equal to some other trapezoid Π^{\prime} that satisfies the conditions of Theorem 3.1, then any change at the position of the endpoints of Π must still satisfy the constraints for Π^{\prime}.

Figure 6: A new trapezoid graph that is not PI graph obtained from the trapezoid representation of the Figure 5.

Resumo. Considere duas retas paralelas r_{1} e r_{2} e \mathcal{F}, uma família de triângulos com um lado em r_{1} e um vértice em r_{2}. Um grafo é PI (Ponto-Intervalo) se é grafo interseção da família \mathcal{F}. Grafos PI são uma generalização dos grafos de intervalos e dos grafos permutação e são subclasse dos grafos trapezóides. Neste artigo, caracterizamos os grafos PI em função de suas representações trapezoidais. Além disso, dada uma representação trapezoidal de qualquer grafo que não é PI, nós mostramos como construir uma família de grafos trapezóides que não são PI.

References

[1] K.S. Booth, G.S. Lueker, Testing for the consecutive ones property, interval graphs, and planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), 335-379.
[2] A. Brandstädt, V. Le, J. Spinrad, "Graph Classes - a Survey", SIAM, Monographs on Discrete Mathematics and Applications, 1999.
[3] F. Cheah, "A Recognition Algorithm for II-Graphs", Doctoral Thesis, TR246/90, Dept. of Computer Science, Univ. of Toronto, 1990.
[4] F. Cheah, D.G. Corneil, On the structure of trapezoid graphs, Discrete Appied Mathematics, 66 (1996), 109-133.
[5] O. Cogis, On the Ferrers dimension of a digraph, Discrete Math., 38 (1982), 47-52.
[6] D.J. Corneil, P.A. Kamula. Extensions of permutation and interval graphs, Congressus Numerantium, 58 (1987), 267-275.
[7] S. Even, A. Pnueli, A. Lempel, Permutation graphs and transitive graphs, J. ACM., 19 (1972), 400-410.
[8] S. Felsner. Tolerance graphs and orders, Lecture Notes in Computer Science 657 (1992), 17-26.
[9] M.C. Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Academic Press, New York, 1980.
[10] M. Habib, R.H. Möhring, "Recognition of Partial Orders with Interval Dimension Two Via Transitive Orientation with Side Constrains", Technical Report, TR 244/90, Tu Berlin, 1990.
[11] M. Habib, R. McConnell, C. Paul, L. Viennot, Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing, Theoretical Computer Science, 234 (2000), 59-84.
[12] G. Hajós, Über eine art von graphen, Internat. Math. Nachr., 11 (1957), problem 65.
[13] N. Korte, H. Möhring, An incremental linear-time algorithm for recognizing interval graphs, SIAM J. Comput., 18 (1989), 68-81.
[14] Y-L Lin, Triangle graphs and simple trapezoid graphs, Journal of Information Science and Engineering, 18 (2002), 467-473.
[15] T.H. Ma, "Algorithms on Special Classes of Graphs and Partially Ordered Sets", Ph.D. Thesis, Dept. of Computer Science, Vanderbilt Univ., Nashville, TN, 1990.
[16] A. Pnueli, A. Lempel, S. Even, Transitive orientation of graphs and identification of permutation graphs, Canad. J. Math., 23 (1971), 160-175.

[^0]: ${ }^{1}$ This research was partially supported by CAPES and CNPq (307856/2003-8, 470420/2004-9)
 ${ }^{2}$ sheila@ic.unicamp.br
 ${ }^{3}$ celia@ic.unicamp.br
 ${ }^{4}$ anamaria@ic.unicamp.br

