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On the Representation of a PI-Graph1

S.M. ALMEIDA2, C.P. de MELLO3, A. GOMIDE4, Institute of Computing,
UNICAMP, 13084-971 Campinas, SP, Brazil.

Abstract. Consider two parallel lines (denoted r1 and r2). A graph is a PI

graph (Point-Interval graph) if it is an intersection graph of a family F of triangles
between r1 and r2 such that each triangle has an interval with two endpoints on
r1 and a vertex (a point) on r2. The family F is the PI representation of G. The
PI graphs are an extension of interval and permutation graphs and they form a
subclass of trapezoid graphs. In this paper, we characterize the PI graphs in terms
of its trapezoid representation. Also we show how to construct a family of trapezoid
graphs but not PI graphs from a trapezoid representation of a known graph in this
class.

1. Introduction

We consider simple, undirected, finite graphs G = (V (G), E(G)), where V (G) and
E(G) are the vertex and edge sets, respectively.

A graph is an intersection graph if its vertices can be put in a one-to-one cor-
respondence with a family of sets in such way that two vertices are adjacent if and
only if the corresponding sets have non-empty intersection.

Consider two parallel real lines (denoted r1 and r2). A graph is a permutation
graph if it is an intersection graph of straight lines (one per vertex) between r1

and r2. A graph is a PI graph (Point-Interval graph) if it is an intersection graph
of triangles between r1 and r2 such that each triangle has an interval with two
endpoints on r1 and a vertex (a point) on r2. The intersection graph of a family
of trapezoids that have an interval with two endpoints on r1 and another one with
two endpoints on r2 is called trapezoid graph.

A well known class of intersection graphs is the interval graphs, the intersection
graph of intervals on a real line.

The class of PI graphs was defined by Corneil and Kamula [6] as an extension
of the classes of interval and permutation graphs and as a subclass of trapezoid
graphs.

Permutation and interval graphs have been extensively studied since their in-
ception [7, 9, 12, 16] and both have linear-time algorithm for the recognition pro-
blem [1, 11, 13].
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Trapezoid graphs class is equivalent to the complements of interval dimension
two partial orders. Since Cogis [5], in the early 80s, developed a polynomial time
algorithm for the recognition of interval dimension two partial orders, trapezoid
graphs recognition may be done in polynomial time too. In [15], Ma presents
a trapezoid graph recognition algorithm which runs in time O(n2). Habib and
Möhring [10] and Cheah [3] have also developed polynomial time algorithms for
the trapezoid graphs recognition. But PI graphs recognition problem remains still
open [2]. This is a motivation to study this class. In Section 2., we characterize the
PI graphs in terms of its trapezoid representation and in Section 3., given a graph
G that is trapezoid graph but not PI graph, we show how to construct a family of
graphs in this class from a trapezoid representation of this known graph.

2. A PI Representation

We denote by Π a trapezoid between two parallel real lines r1 and r2 such that Π has
one line segment with endpoints on r1 and another one on r2 and by ∆ a triangle
between two parallel lines r1 and r2 with a line segment on r1 and a vertex on r2.

A trapezoid representation R of a graph G is a family F of trapezoids between
two parallel lines r1 and r2 and G is the intersection graph of F . A PI representation
R of a graph G is a family F of triangles between two parallel lines r1 and r2 and
G is the intersection graph of F . Let G be a graph and v ∈ V (G). We denote by
Πv the trapezoid of R that corresponds to v and by Ωi

v = [Li
v, Ri

v] the line segment
of Πv that lies on ri, i ∈ {1, 2}. We also denote by Ωi

u << Ωi
v when Ωi

u ∩ Ωi
v = ∅

and Ωi
u lies to the left of the Ωi

v. The segment Ω2

v is denoted by Tv when L2

v = R2

v

and thus we have a triangle ∆v = (Tv, L1

v, R1

v).
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Figure 1: A trapezoid graph and a trapezoid representation for this graph.
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Figure 1 (a) shows an example of a trapezoid graph that is also a PI graph and
Figure 1 (b) presents a trapezoid representation for this graph. A PI representation
of this graph is presented in Figure 2.
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Figure 2: A PI representation for the graph presented in Figure 1 (a).

Note that a trapezoid representation of a graph allows triangles (PI graphs are
trapezoid graphs). From now on, given R, a trapezoid representation of a graph,
we consider that any two endpoints on ri, i ∈ {1, 2}, are distinct. It is possible,
since r1 and r2 are real lines.

Let R be a trapezoid representation of a graph G and let Πu, Πv and Πw

trapezoids in R such that

L2

u < R2

v < L2

w < R2

u and R1

v < L1

u < R1

u < L1

w.

This triple of trapezoids is called an obstruction on r2 and Πu is the center of
the obstruction on r2. The exchange between r1 and r2 gives an obstruction on
r1. We call this triple only by obstruction, when there is no confusion. The triple
Πu, Πv and Πw in Figure 3 is an obstruction on r2. Note that the correspondent
vertices v and w of an obstruction are non-adjacent vertices of G. Cheah presents
in [3] representations of permutation graphs with similar constructions that he uses
to produce a conjecture for the PI graphs recognition.
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Figure 3: An obstruction on r2.

A graph G has a trapezoid representation R with obstructions on r2 if, and only
if, G has a trapezoid representation R′ with obstructions on r1. In fact, we can
exchange r1 and r2.
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Given R a trapezoid representation of a graph G and u ∈ V (G) such that
Πu is not the center of any obstruction of R, the next algorithm constructs another
trapezoid representation of G from R where the vertex u is represented by a triangle
∆u.

Algorithm TRAPtoTRIANG(R, u);
Input: R is a trapezoid representation of a graph G and u ∈ V (G) such that Πu is
not a center of obstructions of R.
Output: R′, a trapezoid representation of a graph G where the vertex u is repre-
sented by a triangle ∆u.

Step 1. If L2

u 6= R2

u, then

Step 1.1 Tl := L2

u; Tr := R2

u;

Step 1.2 if there is Πv such that Ω1

v << Ω1

u and L2

u < R2

v < R2

u,

then Tr := R2

k, where R2

k is the leftmost vertex among every R2

v.

Step 1.3 if there is Πw such that Ω1

u << Ω1

w and L2

u < L2

w < R2

u,

then Tl := L2

k, where L2

k is the rightmost vertex among every L2

w.

Step 1.4 choose Tu such that Tl < Tu < Tr and do Ω2

u := Tu.

Step 1.5 R := (R\{Πu}) ∪ {∆u}, where ∆u = (Tu, L1

u, R1

u).

Step 2. R′ := R and return R′.

Lemma 2.1. Let R be a trapezoid representation of a graph G and u a vertex
of G such that Πu is not a center of any obstruction of R. Then the Algorithm
TRAPtoTRIANG(R,u) transforms Πu to a triangle ∆u.

Proof. If L2

u = R2

u, then Πu is a triangle, only Step 2 is executed, and the lemma
follows.

Now, we consider L2

u < R2

u and we suppose that is not possible to choose Tu

such that Tl < Tu < Tr, in the Step 1.4. Thus, Tr < Tl since all vertices of R are
distinct. Since, in Step 1.1, Tl = L2

u < R2

u = Tr, the condition Tr < Tl says that
the Step 1.2 or Step 1.3 of the algorithm are executed. If only Step 1.2 (or Step
1.3) is executed, Tr = R2

v, for some Πv, and Tl = L2

u (Tl = L2

w, for some Πw, and
Tr = R2

u). In this case, by condition of Step 1.2 (Step 1.3), Tl = L2

u < R2

v = Tr

(Tl = L2

w < R2

u = Tr), a contradiction. Hence both Step 1.2 and Step 1.3 are
executed. Therefore, there is Πv with Ω1

v << Ω1

u, L2

u < R2

v < R2

u and Tr = R2

v and
there is Πw such that Ω1

u << Ω1

w, L2

u < L2

w < R2

u and Tl = L2

w. Since Tr < Tl,
the triple Πv, Πu and Πw would be an obstruction of R with Πu the center of this
obstruction, a contradiction. So, Tl < Tr and thus it is possible to choose a vertex
Tu such that Tl < Tu < Tr and the Algorithm TRAPtoTRIANG(R,u) makes Πu

into a triangle ∆u = (Tu, L1

u, R1

u).

Lemma 2.2. Let R be a trapezoid representation of a graph G and u a vertex of
G such that Πu is not a center of any obstruction of R. Then the representation
obtained by Algorithm TRAPtoTRIANG(R,u) is a trapezoid representation of G.
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Proof. By Lemma 2.1 the Algorithm TRAPtoTRIANG(R,u) transforms Πu to a
triangle ∆u = (Tu, L1

u, R1

u) with L2

u < Tu < R2

u. We will show that the Algorithm
TRAPtoTRIANG(R,u) preserves the adjacencies of G.

If condition of Step 1 is not satisfied, then Πu = ∆u and only Step 2 is executed,
and the Lemma 2.2 follows. Otherwise, steps 1.1 to 1.5 are executed.

Since these steps of the algorithm only reduces Ω2

u to Tu and Tu ∈ Ω2

u, no new
intersection is created. So, it is sufficient to consider trapezoids of R that have non-
empty intersection with Πu. The algorithm acts only on r2, then the intersections
of the trapezoids with Πu on r1 are maintained. Therefore, we can consider only
trapezoids Πv (and Πw) such that Πu ∩ Πv 6= ∅ (Πu ∩ Πw 6= ∅) and Ω1

v << Ω1

u

(Ω1

u << Ω1

w). By Step 1.1, we have Tl = L2

u < R2

u = Tr. If Step 1.2 and Step 1.3 of
the Algorithm are not executed, then the vertices R2

v and L2

w are not between L2

u

and R2

u. Since L2

u < Tu < R2

u, the adjacencies are preserved.

If Step 1.2 (Step 1.3) of the Algorithm is executed, we have L2

u < R2

v < R2

u

(L2

u < L2

w < R2

u). In this case, the algorithm chooses Tr = R2

k (Tl = L2

k′), where R2

k

(L2

k′) is the leftmost (rightmost) vertex on r2 among every R2

v (L2

w). This implies,
by the selection of R2

k (L2

k′), that in Step 1.4 L2

u < Tu < R2

k ≤ R2

v (L2

w ≤ L2

k′ <

Tu < R2

u) and the adjacencies are preserved.

If both Step 1.2 and Step 1.3 of the Algorithm are executed, then we have
Tr = R2

k ≤ R2

v and L2

w ≤ L2

k′ = Tl where R2

k and L2

k′ satisfy the condition of
these steps. Since, by hypothesis, Πu is not a center of any obstruction of R, then
L2

k′ < R2

k. Hence, by Step 1.4, L2

w ≤ L2

k′ = Tl < Tu < Tr = R2

k ≤ R2

v and, again,
the adjacencies are preserved.

So, the new representation obtained by Algorithm TRAPtoTRIANG(R,u) is a
trapezoid representation of G.

Lemma 2.3. Let R be a trapezoid representation of a graph G without obstructions
on r2. The trapezoid representation obtained by Algorithm TRAPtoTRIANG(R,u)
does not have obstructions on r2.

Proof. Let R′ be a trapezoid representation of a graph G obtained from R by Algo-
rithm TRAPtoTRIANG(R,u), where vertex u of G is represented by ∆u. Sup-
pose by a moment that R′ has an obstruction O generated by the Algorithm
TRAPtoTRIANG(R,u). Since the algorithm modifies only Ω2

u, the triangle ∆u

belongs to O. But ∆u can not be the center of obstructions of R′, since all the
vertices of r2 are distinct.

Suppose that O = {Πv, ∆u, Πw} with Πv the center of O and consider Ω1

u <<

Ω1

v. (When Ω1

v << Ω1

u, the proof is analogous.) So, in R′, the obstruction satisfies
Ω1

u << Ω1

v << Ω1

w and L2

v < Tu < L2

w < R2

v.

Thus, in R′, ∆u ∩Πw = ∅ and ∆u ∩Πv 6= ∅. Then, by Lemma 2.2, Πu ∩Πw = ∅
and Πu ∩ Πv 6= ∅ in R. So, we have L2

v < R2

u < L2

w < R2

v in R. Therefore, there
was in R an obstruction {Πu, Πv, Πw} with center Πv, contradicting the fact that
R has no obstructions on r2.

Theorem 2.1. A graph G is a PI graph if, and only if, G has a trapezoid repre-
sentation without obstruction on r2.
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Proof. Let G be a PI graph. Then G has a PI representation R such that each
triangle ∆v has a top vertex Tv, v ∈ V (G), on r2. Recall Tv 6= Tu for v 6= u.
For each Tv, v ∈ V (G), it is possible to construct a segment [L2

v, R2

v] obtaining a
trapezoid representation R′ of G. To do this, it is sufficient to construct for each
two consecutive top vertices Tv and Tu, two disjoint segments [L2

v, R2

v] and [L2

u, R2

u]
such that if Tv < Tu on R, Ω2

v << Ω2

u on R′. This is possible because r2 is a
real line. Hence we conclude that R′ is a trapezoid representation of G without
obstructions on r2.

Let R = R1 be a trapezoid representation of a graph G without obstructions on
r2. The Algorithm TRAPtoTRIANG(R,u) acts only at trapezoids Πu that are not
centers of obstructions. By Lemma 2.1, the Algorithm transforms Πu into ∆u. By
Lemma 2.2, this new trapezoid representation, R2, is also a trapezoid representation
of G. Since, by hypothesis, R1 has no obstructions on r2, then by Lemma 2.3, R2

has no obstructions on r2 too. Then, we use R2 in the input of the algorithm and
so on.

After |V (G)| applications of Algorithm TRAPtoTRIANG(Ri,v) on distinct ver-
tices v of G, we have a PI representation of G.

3. The Trapezoid Graphs that are not PI Graphs

In this section we consider graphs that are trapezoid graphs but not PI graphs. We
give properties of trapezoid representations of a graph in this class. Recall that
from a trapezoid representation of a graph we obtain another one by exchanging
r1 and r2. Thus, by Theorem 2.1, a graph G is a trapezoid graph but it is not PI
graph if, and only if, every trapezoid representation of G has obstructions on r1 and
on r2.

Given a trapezoid representation R of a graph such that R has an obstruc-
tion, the next theorem exhibits an structure that is necessary not to destroy the
obstruction of R.

Theorem 3.1. Let R be a trapezoid representation of a graph G and let O =
{Πu,Πv,Πw} be an obstruction in R. If at least one of Πx, Πy, Πt and Πz satisfying

R1

v < L1

x < R1

y < L1

u and R2

y < L2

u < R2

v < L2

x (3.1)

and

R1

u < L1

z < R1

t < L1

w and R2

t < L2

w < R2

u < L2

z, (3.2)

does not exist, then it is possible to construct from R a trapezoid representation of
a graph G without the obstruction O.

Proof. First we consider the trapezoids Πx, Πy and the condition (3.1). (See Fig-
ure 4.) The proof for trapezoids Πz, Πt and the condition (3.2) is analogous.

Let O = {Πu,Πv,Πw} be an obstruction of a trapezoid representation R of
a graph G with center Πu. Suppose that there are not trapezoids Πy such that
R2

y < L2

u < R2

v and R1

v < R1

y < L1

u.
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Figure 4: The trapezoids Πx and Πy satisfy the condition (3.1).

Let P be the first endpoint of Ω1

p such that P < R1

v. We move the left endpoint
of Πu on r1 such that the new position of L1

u is P < L1

u < R1

v and we call by R′ the
new trapezoid representation.

Now, we will prove that R′ is also a trapezoid representation of G.
The only difference between R and R′ is at trapezoid Πu and on r1: Ω1

u is greater
in R′ than Ω1

u in R but Ω2

u was not changed. Hence, if Π ∩ Πu 6= ∅ in R, for some
trapezoid Π, then Π ∩ Πu 6= ∅ in R′.

Now, we shall show that if Π∩Πu = ∅ in R, for some trapezoid Π, then Π∩Πu = ∅
in R′. For that, suppose there is a trapezoid Πk such that Πk ∩ Πu = ∅ in R and
Πk ∩ Πu 6= ∅ in R′. Then, R1

v < R1

k < L1

u in R. Moreover, since Πk ∩ Πu = ∅ in R,
then R2

k < L2

u in R. It follows that Πk satisfies the condition (3.1) for trapezoid Πy

in R, a contradiction.
Therefore, R′ is a trapezoid representation of G. Moreover, in R′, Ω1

v ∩Ω1

u 6= ∅,
so the obstruction O of R was removed.

Now we suppose that there are not trapezoids Πx in R such that R1

v < L1

x < L1

u

and R2

v < L2

x.
Let P be the first endpoint of Ω1

p such that L1

u < P . Note that P can be equal
to R1

u. We move the right endpoint of Πv on r1 such that the new position of R1

v is
L1

u < R1

v < P and we call by R′′ the new trapezoid representation.
The only difference between R and R′′ is at trapezoid Πv and on r1: Ω1

v is
greater in R′′ than Ω1

v in R (note that the endpoint L1

v and Ω2

v were not changed).
Hence, if Π ∩ Πv 6= ∅ in R, for some trapezoid Π, then Π ∩ Πv 6= ∅ in R′′.

Suppose that there is a trapezoid Πk such that Πk∩Πv = ∅ in R and Πk∩Πv 6= ∅
in R′′. Since Πk ∩Πv 6= ∅ in R′′, Πk has an endpoint on the interval (R1

v, P ). Then,
R1

v < L1

k < P ≤ R1

u in R. By choosing of P , the interval (L1

u, P ) does not have
endpoints of trapezoids, then L1

k < L1

u. Therefore R1

v < L1

k < L1

u in R. Since the
intersection of Πk and Πv is empty in R, then R2

v < L2

k in R. Hence we conclude
that Πk satisfies the condition (3.1) for trapezoid Πx in R, a contradiction.

Since no new intersection was created in R′′, it represents the same graph G of
R. Moreover, the trapezoid representation R′′ has L2

u < R2

v and L1

u < R1

v, so the
obstruction O of R was removed.
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By theorems 2.1 and 3.1, we have the following collorary.

Corollary 3.1. A graph G is a PI graph if and only if there is a trapezoid re-
presentation R of G such that for every obstruction on r2 of R, the condition of
Theorem 3.1 is satisfied.

   y v' x'

y' v x

u

t w z'

t' w' z

r2

r1

u = u'

y v' x' t w z' t' w' zy' v x

(a)

(b)

Figure 5: A trapezoid graph G that is not PI graph and a trapezoid representation
of G.

Few graphs are known in the class of trapezoid graphs that are not PI graphs [4,
8, 14]. We will show how to construct a family of graphs that belongs to this class
from a known graph of the same class.

Let G be a trapezoid graph that is not PI graph and R a trapezoid representation
of G with O = {Πu,Πv,Πw} an obstruction of R on r2 and O′ = {Πu′ ,Πv′ ,Πw′}
an obstruction of R on r1. Then R contains trapezoids Πx, Πy, Πx′ , Πy′ satisfying
condition (3.1) and Πt and Πz, Πt′ and Πz′ satisfying condition (3.2). (The notation
without apostrophe refers to O and the other one refers to O′.) If Πu = Πu′ , we
obtain a representation given by Lin [14]. (See Figure 5.)

Consider the obstruction O of R. The condition (3.1) of the Theorem 3.1 says
that R2

v < L2

x and R2

y < L2

u. Note that there are no restrictions either on R2

x and R1

x

or on L2

y and L1

y. Thus these vertices can be moved to any position on the right of
L2

x and of L1

x and on the left of R2

y and R1

y, respectively, making new intersections.
Similarly, from the condition (3.2) of the Theorem 3.1 about R2

t and L2

z, we can
move L2

t or L1

t and R2

z or R1

z to any position that are less than R2

t or R1

t and greater
than L2

z or L1

z, respectively. The same arguments are valid for an obstruction O′

of R. Therefore, using this liberty for the choice of position of these vertices, we
can construct a family of trapezoid graphs that are not PI graphs from a known
trapezoid representation of a graph in this class. The Figure 6 shows an element of
the family obtained from the trapezoid representation of the Figure 5.
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Let Π ∈ {Πx,Πy,Πt,Πz,Π
′

x,Π′

y,Π′

t,Π
′

z}. In case Π is equal to some other
trapezoid Π′ that satisfies the conditions of Theorem 3.1, then any change at the
position of the endpoints of Π must still satisfy the constraints for Π′.

   y v' x'

y' v x

u

t w z'

t' w' z

r2

r1

uy v' x' t w z' t' w' zy' v x

(a)

(b)

x u

Figure 6: A new trapezoid graph that is not PI graph obtained from the trapezoid
representation of the Figure 5.

Resumo. Considere duas retas paralelas r1 e r2 e F , uma famı́lia de triângulos
com um lado em r1 e um vértice em r2. Um grafo é PI (Ponto-Intervalo) se é
grafo interseção da famı́lia F . Grafos PI são uma generalização dos grafos de
intervalos e dos grafos permutação e são subclasse dos grafos trapezóides. Neste
artigo, caracterizamos os grafos PI em função de suas representações trapezoidais.
Além disso, dada uma representação trapezoidal de qualquer grafo que não é PI,
nós mostramos como construir uma famı́lia de grafos trapezóides que não são PI.
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