On the Representation of a PI-Graph¹

S.M. ALMEIDA², C.P. de MELLO³, A. GOMIDE⁴, Institute of Computing, UNICAMP, 13084-971 Campinas, SP, Brazil.

Abstract. Consider two parallel lines (denoted r_1 and r_2). A graph is a *PI* graph (Point-Interval graph) if it is an intersection graph of a family \mathcal{F} of triangles between r_1 and r_2 such that each triangle has an interval with two endpoints on r_1 and a vertex (a point) on r_2 . The family \mathcal{F} is the PI representation of G. The PI graphs are an extension of interval and permutation graphs and they form a subclass of trapezoid graphs. In this paper, we characterize the PI graphs in terms of its trapezoid representation. Also we show how to construct a family of trapezoid graphs but not PI graphs from a trapezoid representation of a known graph in this class.

1. Introduction

We consider simple, undirected, finite graphs G = (V(G), E(G)), where V(G) and E(G) are the vertex and edge sets, respectively.

A graph is an *intersection graph* if its vertices can be put in a one-to-one correspondence with a family of sets in such way that two vertices are adjacent if and only if the corresponding sets have non-empty intersection.

Consider two parallel real lines (denoted r_1 and r_2). A graph is a *permutation* graph if it is an intersection graph of straight lines (one per vertex) between r_1 and r_2 . A graph is a *PI graph* (Point-Interval graph) if it is an intersection graph of triangles between r_1 and r_2 such that each triangle has an interval with two endpoints on r_1 and a vertex (a point) on r_2 . The intersection graph of a family of trapezoids that have an interval with two endpoints on r_1 and another one with two endpoints on r_2 is called *trapezoid graph*.

A well known class of intersection graphs is the *interval graphs*, the intersection graph of intervals on a real line.

The class of PI graphs was defined by Corneil and Kamula [6] as an extension of the classes of interval and permutation graphs and as a subclass of trapezoid graphs.

Permutation and interval graphs have been extensively studied since their inception [7, 9, 12, 16] and both have linear-time algorithm for the recognition problem [1, 11, 13].

 $^{^1{\}rm This}$ research was partially supported by CAPES and CNPq (307856/2003-8, 470420/2004-9) $^2{\rm sheila@ic.unicamp.br}$

 $^{^{3}}$ celia@ic.unicamp.br

⁴anamaria@ic.unicamp.br

Trapezoid graphs class is equivalent to the complements of interval dimension two partial orders. Since Cogis [5], in the early 80s, developed a polynomial time algorithm for the recognition of interval dimension two partial orders, trapezoid graphs recognition may be done in polynomial time too. In [15], Ma presents a trapezoid graph recognition algorithm which runs in time $O(n^2)$. Habib and Möhring [10] and Cheah [3] have also developed polynomial time algorithms for the trapezoid graphs recognition. But PI graphs recognition problem remains still open [2]. This is a motivation to study this class. In Section 2., we characterize the PI graphs in terms of its trapezoid representation and in Section 3., given a graph *G* that is trapezoid graph but not PI graph, we show how to construct a family of graphs in this class from a trapezoid representation of this known graph.

2. A PI Representation

We denote by Π a *trapezoid* between two parallel real lines r_1 and r_2 such that Π has one line segment with endpoints on r_1 and another one on r_2 and by Δ a *triangle* between two parallel lines r_1 and r_2 with a line segment on r_1 and a vertex on r_2 .

A trapezoid representation R of a graph G is a family \mathcal{F} of trapezoids between two parallel lines r_1 and r_2 and G is the intersection graph of \mathcal{F} . A PI representation R of a graph G is a family \mathcal{F} of triangles between two parallel lines r_1 and r_2 and G is the intersection graph of \mathcal{F} . Let G be a graph and $v \in V(G)$. We denote by Π_v the trapezoid of R that corresponds to v and by $\Omega_v^i = [L_v^i, R_v^i]$ the line segment of Π_v that lies on r_i , $i \in \{1, 2\}$. We also denote by $\Omega_u^i << \Omega_v^i$ when $\Omega_u^i \cap \Omega_v^i = \emptyset$ and Ω_u^i lies to the left of the Ω_v^i . The segment Ω_v^2 is denoted by T_v when $L_v^2 = R_v^2$ and thus we have a triangle $\Delta_v = (T_v, L_v^1, R_v^1)$.

Figure 1: A trapezoid graph and a trapezoid representation for this graph.

Figure 1 (a) shows an example of a trapezoid graph that is also a PI graph and Figure 1 (b) presents a trapezoid representation for this graph. A PI representation of this graph is presented in Figure 2.

Figure 2: A PI representation for the graph presented in Figure 1 (a).

Note that a trapezoid representation of a graph allows triangles (PI graphs are trapezoid graphs). From now on, given R, a trapezoid representation of a graph, we consider that any two endpoints on r_i , $i \in \{1, 2\}$, are distinct. It is possible, since r_1 and r_2 are real lines.

Let R be a trapezoid representation of a graph G and let Π_u , Π_v and Π_w trapezoids in R such that

$$L_u^2 < R_v^2 < L_w^2 < R_u^2$$
 and $R_v^1 < L_u^1 < R_u^1 < L_w^1$.

This triple of trapezoids is called an obstruction on r_2 and Π_u is the *center* of the obstruction on r_2 . The exchange between r_1 and r_2 gives an obstruction on r_1 . We call this triple only by obstruction, when there is no confusion. The triple Π_u , Π_v and Π_w in Figure 3 is an obstruction on r_2 . Note that the correspondent vertices v and w of an obstruction are non-adjacent vertices of G. Cheah presents in [3] representations of permutation graphs with similar constructions that he uses to produce a conjecture for the PI graphs recognition.

Figure 3: An obstruction on r_2 .

A graph G has a trapezoid representation R with obstructions on r_2 if, and only if, G has a trapezoid representation R' with obstructions on r_1 . In fact, we can exchange r_1 and r_2 . Given R a trapezoid representation of a graph G and $u \in V(G)$ such that Π_u is not the center of any obstruction of R, the next algorithm constructs another trapezoid representation of G from R where the vertex u is represented by a triangle Δ_u .

Algorithm TRAPtoTRIANG(R, u);

Input: R is a trapezoid representation of a graph G and $u \in V(G)$ such that Π_u is not a center of obstructions of R.

Output: R', a trapezoid representation of a graph G where the vertex u is represented by a triangle Δ_u .

Step 1. If $L_u^2 \neq R_u^2$, then

Step 1.1 $T_l := L_u^2$; $T_r := R_u^2$;

Step 1.2 if there is Π_v such that $\Omega_v^1 << \Omega_u^1$ and $L_u^2 < R_v^2 < R_u^2$,

then $T_r := R_k^2$, where R_k^2 is the leftmost vertex among every R_n^2 .

Step 1.3 if there is Π_w such that $\Omega_u^1 << \Omega_w^1$ and $L_u^2 < L_w^2 < R_u^2$,

then $T_l := L_k^2$, where L_k^2 is the rightmost vertex among every L_w^2 .

Step 1.4 choose T_u such that $T_l < T_u < T_r$ and do $\Omega_u^2 := T_u$.

Step 1.5 $R := (R \setminus \{\Pi_u\}) \cup \{\Delta_u\}$, where $\Delta_u = (T_u, L_u^1, R_u^1)$.

Step 2. R' := R and return R'.

Lemma 2.1. Let R be a trapezoid representation of a graph G and u a vertex of G such that Π_u is not a center of any obstruction of R. Then the Algorithm TRAPtoTRIANG(R,u) transforms Π_u to a triangle Δ_u .

Proof. If $L_u^2 = R_u^2$, then Π_u is a triangle, only Step 2 is executed, and the lemma follows.

Now, we consider $L_u^2 < R_u^2$ and we suppose that is not possible to choose T_u such that $T_l < T_u < T_r$, in the Step 1.4. Thus, $T_r < T_l$ since all vertices of R are distinct. Since, in Step 1.1, $T_l = L_u^2 < R_u^2 = T_r$, the condition $T_r < T_l$ says that the Step 1.2 or Step 1.3 of the algorithm are executed. If only Step 1.2 (or Step 1.3) is executed, $T_r = R_v^2$, for some Π_v , and $T_l = L_u^2$ ($T_l = L_w^2$, for some Π_w , and $T_r = R_u^2$). In this case, by condition of Step 1.2 (Step 1.3), $T_l = L_u^2 < R_v^2 = T_r$ ($T_l = L_w^2 < R_u^2 = T_r$), a contradiction. Hence both Step 1.2 and Step 1.3 are executed. Therefore, there is Π_v with $\Omega_v^1 < < \Omega_u^1$, $L_u^2 < R_v^2 < R_u^2$ and $T_r = R_v^2$ and there is Π_w such that $\Omega_u^1 < < \Omega_w^1$, $L_u^2 < L_w^2 < R_u^2$ and $T_l = L_w^2$. Since $T_r < T_l$, the triple Π_v , Π_u and Π_w would be an obstruction of R with Π_u the center of this obstruction, a contradiction. So, $T_l < T_r$ and thus it is possible to choose a vertex T_u such that $T_l < T_u < T_r$ and the Algorithm TRAPtoTRIANG(R, u) makes Π_u into a triangle $\Delta_u = (T_u, L_u^1, R_u^1)$.

Lemma 2.2. Let R be a trapezoid representation of a graph G and u a vertex of G such that Π_u is not a center of any obstruction of R. Then the representation obtained by Algorithm TRAPtoTRIANG(R, u) is a trapezoid representation of G.

Proof. By Lemma 2.1 the Algorithm TRAPtoTRIANG(R, u) transforms Π_u to a triangle $\Delta_u = (T_u, L_u^1, R_u^1)$ with $L_u^2 < T_u < R_u^2$. We will show that the Algorithm TRAPtoTRIANG(R, u) preserves the adjacencies of G.

If condition of Step 1 is not satisfied, then $\Pi_u = \Delta_u$ and only Step 2 is executed, and the Lemma 2.2 follows. Otherwise, steps 1.1 to 1.5 are executed.

Since these steps of the algorithm only reduces Ω_u^2 to T_u and $T_u \in \Omega_u^2$, no new intersection is created. So, it is sufficient to consider trapezoids of R that have nonempty intersection with Π_u . The algorithm acts only on r_2 , then the intersections of the trapezoids with Π_u on r_1 are maintained. Therefore, we can consider only trapezoids Π_v (and Π_w) such that $\Pi_u \cap \Pi_v \neq \emptyset$ ($\Pi_u \cap \Pi_w \neq \emptyset$) and $\Omega_v^1 << \Omega_u^1$ ($\Omega_u^1 << \Omega_w^1$). By Step 1.1, we have $T_l = L_u^2 < R_u^2 = T_r$. If Step 1.2 and Step 1.3 of the Algorithm are not executed, then the vertices R_v^2 and L_w^2 are not between L_u^2 and R_u^2 . Since $L_u^2 < T_u < R_u^2$, the adjacencies are preserved.

If Step 1.2 (Step 1.3) of the Algorithm is executed, we have $L_u^2 < R_v^2 < R_u^2$ $(L_u^2 < L_w^2 < R_u^2)$. In this case, the algorithm chooses $T_r = R_k^2$ $(T_l = L_{k'}^2)$, where R_k^2 $(L_{k'}^2)$ is the leftmost (rightmost) vertex on r_2 among every R_v^2 (L_w^2) . This implies, by the selection of R_k^2 $(L_{k'}^2)$, that in Step 1.4 $L_u^2 < T_u < R_k^2 \leq R_v^2$ $(L_w^2 \leq L_{k'}^2 < T_u < R_u^2)$ and the adjacencies are preserved.

If both Step 1.2 and Step 1.3 of the Algorithm are executed, then we have $T_r = R_k^2 \leq R_v^2$ and $L_w^2 \leq L_{k'}^2 = T_l$ where R_k^2 and $L_{k'}^2$ satisfy the condition of these steps. Since, by hypothesis, Π_u is not a center of any obstruction of R, then $L_{k'}^2 < R_k^2$. Hence, by Step 1.4, $L_w^2 \leq L_{k'}^2 = T_l < T_u < T_r = R_k^2 \leq R_v^2$ and, again, the adjacencies are preserved.

So, the new representation obtained by Algorithm TRAPtoTRIANG(R,u) is a trapezoid representation of G.

Lemma 2.3. Let R be a trapezoid representation of a graph G without obstructions on r_2 . The trapezoid representation obtained by Algorithm TRAPtoTRIANG(R,u)does not have obstructions on r_2 .

Proof. Let R' be a trapezoid representation of a graph G obtained from R by Algorithm TRAPtoTRIANG(R,u), where vertex u of G is represented by Δ_u . Suppose by a moment that R' has an obstruction \mathcal{O} generated by the Algorithm TRAPtoTRIANG(R,u). Since the algorithm modifies only Ω_u^2 , the triangle Δ_u belongs to \mathcal{O} . But Δ_u can not be the center of obstructions of R', since all the vertices of r_2 are distinct.

Suppose that $\mathcal{O} = \{\Pi_v, \Delta_u, \Pi_w\}$ with Π_v the center of \mathcal{O} and consider $\Omega_u^1 << \Omega_v^1$. (When $\Omega_v^1 << \Omega_u^1$, the proof is analogous.) So, in R', the obstruction satisfies $\Omega_u^1 << \Omega_v^1 << \Omega_w^1$ and $L_v^2 < T_u < L_w^2 < R_v^2$.

Thus, in R', $\Delta_u \cap \Pi_w = \emptyset$ and $\Delta_u \cap \Pi_v \neq \emptyset$. Then, by Lemma 2.2, $\Pi_u \cap \Pi_w = \emptyset$ and $\Pi_u \cap \Pi_v \neq \emptyset$ in R. So, we have $L_v^2 < R_u^2 < L_w^2 < R_v^2$ in R. Therefore, there was in R an obstruction $\{\Pi_u, \Pi_v, \Pi_w\}$ with center Π_v , contradicting the fact that R has no obstructions on r_2 .

Theorem 2.1. A graph G is a PI graph if, and only if, G has a trapezoid representation without obstruction on r_2 . Proof. Let G be a PI graph. Then G has a PI representation R such that each triangle Δ_v has a top vertex T_v , $v \in V(G)$, on r_2 . Recall $T_v \neq T_u$ for $v \neq u$. For each T_v , $v \in V(G)$, it is possible to construct a segment $[L_v^2, R_v^2]$ obtaining a trapezoid representation R' of G. To do this, it is sufficient to construct for each two consecutive top vertices T_v and T_u , two disjoint segments $[L_v^2, R_v^2]$ and $[L_u^2, R_u^2]$ such that if $T_v < T_u$ on R, $\Omega_v^2 << \Omega_u^2$ on R'. This is possible because r_2 is a real line. Hence we conclude that R' is a trapezoid representation of G without obstructions on r_2 .

Let $R = R_1$ be a trapezoid representation of a graph G without obstructions on r_2 . The Algorithm TRAPtoTRIANG(R, u) acts only at trapezoids Π_u that are not centers of obstructions. By Lemma 2.1, the Algorithm transforms Π_u into Δ_u . By Lemma 2.2, this new trapezoid representation, R_2 , is also a trapezoid representation of G. Since, by hypothesis, R_1 has no obstructions on r_2 , then by Lemma 2.3, R_2 has no obstructions on r_2 too. Then, we use R_2 in the input of the algorithm and so on.

After |V(G)| applications of Algorithm TRAPtoTRIANG (R_i, v) on distinct vertices v of G, we have a PI representation of G.

3. The Trapezoid Graphs that are not PI Graphs

In this section we consider graphs that are trapezoid graphs but not PI graphs. We give properties of trapezoid representations of a graph in this class. Recall that from a trapezoid representation of a graph we obtain another one by exchanging r_1 and r_2 . Thus, by Theorem 2.1, a graph G is a trapezoid graph but it is not PI graph if, and only if, every trapezoid representation of G has obstructions on r_1 and on r_2 .

Given a trapezoid representation R of a graph such that R has an obstruction, the next theorem exhibits an structure that is necessary not to destroy the obstruction of R.

Theorem 3.1. Let R be a trapezoid representation of a graph G and let $\mathcal{O} = \{\Pi_u, \Pi_v, \Pi_w\}$ be an obstruction in R. If at least one of Π_x, Π_y, Π_t and Π_z satisfying

$$R_v^1 < L_x^1 < R_y^1 < L_u^1 \quad and \quad R_y^2 < L_u^2 < R_v^2 < L_x^2$$
(3.1)
and

$$R_u^1 < L_z^1 < R_t^1 < L_w^1 \quad and \quad R_t^2 < L_w^2 < R_u^2 < L_z^2, \tag{3.2}$$

does not exist, then it is possible to construct from R a trapezoid representation of a graph G without the obstruction O.

Proof. First we consider the trapezoids Π_x , Π_y and the condition (3.1). (See Figure 4.) The proof for trapezoids Π_z , Π_t and the condition (3.2) is analogous.

Let $\mathcal{O} = \{\Pi_u, \Pi_v, \Pi_w\}$ be an obstruction of a trapezoid representation R of a graph G with center Π_u . Suppose that there are not trapezoids Π_y such that $R_y^2 < L_u^2 < R_v^2$ and $R_v^1 < R_y^1 < L_u^1$.

Figure 4: The trapezoids Π_x and Π_y satisfy the condition (3.1).

Let P be the first endpoint of Ω_p^1 such that $P < R_v^1$. We move the left endpoint of Π_u on r_1 such that the new position of L_u^1 is $P < L_u^1 < R_v^1$ and we call by R' the new trapezoid representation.

Now, we will prove that R' is also a trapezoid representation of G.

The only difference between R and R' is at trapezoid Π_u and on r_1 : Ω_u^1 is greater in R' than Ω_u^1 in R but Ω_u^2 was not changed. Hence, if $\Pi \cap \Pi_u \neq \emptyset$ in R, for some trapezoid Π , then $\Pi \cap \Pi_u \neq \emptyset$ in R'.

Now, we shall show that if $\Pi \cap \Pi_u = \emptyset$ in R, for some trapezoid Π , then $\Pi \cap \Pi_u = \emptyset$ in R'. For that, suppose there is a trapezoid Π_k such that $\Pi_k \cap \Pi_u = \emptyset$ in R and $\Pi_k \cap \Pi_u \neq \emptyset$ in R'. Then, $R_v^1 < R_k^1 < L_u^1$ in R. Moreover, since $\Pi_k \cap \Pi_u = \emptyset$ in R, then $R_k^2 < L_u^2$ in R. It follows that Π_k satisfies the condition (3.1) for trapezoid Π_y in R, a contradiction.

Therefore, R' is a trapezoid representation of G. Moreover, in R', $\Omega_v^1 \cap \Omega_u^1 \neq \emptyset$, so the obstruction \mathcal{O} of R was removed.

Now we suppose that there are not trapezoids Π_x in R such that $R_v^1 < L_x^1 < L_u^1$ and $R_v^2 < L_x^2$.

Let P be the first endpoint of Ω_p^1 such that $L_u^1 < P$. Note that P can be equal to R_u^1 . We move the right endpoint of Π_v on r_1 such that the new position of R_v^1 is $L_u^1 < R_v^1 < P$ and we call by R'' the new trapezoid representation.

The only difference between R and R'' is at trapezoid Π_v and on r_1 : Ω_v^1 is greater in R'' than Ω_v^1 in R (note that the endpoint L_v^1 and Ω_v^2 were not changed). Hence, if $\Pi \cap \Pi_v \neq \emptyset$ in R, for some trapezoid Π , then $\Pi \cap \Pi_v \neq \emptyset$ in R''.

Suppose that there is a trapezoid Π_k such that $\Pi_k \cap \Pi_v = \emptyset$ in R and $\Pi_k \cap \Pi_v \neq \emptyset$ in R''. Since $\Pi_k \cap \Pi_v \neq \emptyset$ in R'', Π_k has an endpoint on the interval (R_v^1, P) . Then, $R_v^1 < L_k^1 < P \leq R_u^1$ in R. By choosing of P, the interval (L_u^1, P) does not have endpoints of trapezoids, then $L_k^1 < L_u^1$. Therefore $R_v^1 < L_k^1 < L_u^1$ in R. Since the intersection of Π_k and Π_v is empty in R, then $R_v^2 < L_k^2$ in R. Hence we conclude that Π_k satisfies the condition (3.1) for trapezoid Π_x in R, a contradiction.

Since no new intersection was created in R'', it represents the same graph G of R. Moreover, the trapezoid representation R'' has $L_u^2 < R_v^2$ and $L_u^1 < R_v^1$, so the obstruction \mathcal{O} of R was removed.

By theorems 2.1 and 3.1, we have the following collorary.

Corollary 3.1. A graph G is a PI graph if and only if there is a trapezoid representation R of G such that for every obstruction on r_2 of R, the condition of Theorem 3.1 is satisfied.

Figure 5: A trapezoid graph G that is not PI graph and a trapezoid representation of G.

Few graphs are known in the class of trapezoid graphs that are not PI graphs [4, 8, 14]. We will show how to construct a family of graphs that belongs to this class from a known graph of the same class.

Let G be a trapezoid graph that is not PI graph and R a trapezoid representation of G with $\mathcal{O} = \{\Pi_u, \Pi_v, \Pi_w\}$ an obstruction of R on r_2 and $\mathcal{O}' = \{\Pi_{u'}, \Pi_{v'}, \Pi_{w'}\}$ an obstruction of R on r_1 . Then R contains trapezoids $\Pi_x, \Pi_y, \Pi_{x'}, \Pi_{y'}$ satisfying condition (3.1) and Π_t and $\Pi_z, \Pi_{t'}$ and $\Pi_{z'}$ satisfying condition (3.2). (The notation without apostrophe refers to \mathcal{O} and the other one refers to \mathcal{O}' .) If $\Pi_u = \Pi_{u'}$, we obtain a representation given by Lin [14]. (See Figure 5.)

Consider the obstruction \mathcal{O} of R. The condition (3.1) of the Theorem 3.1 says that $R_v^2 < L_x^2$ and $R_y^2 < L_u^2$. Note that there are no restrictions either on R_x^2 and R_x^1 or on L_y^2 and L_y^1 . Thus these vertices can be moved to any position on the right of L_x^2 and of L_x^1 and on the left of R_y^2 and R_y^1 , respectively, making new intersections. Similarly, from the condition (3.2) of the Theorem 3.1 about R_t^2 and L_z^2 , we can move L_t^2 or L_t^1 and R_z^2 or R_z^1 to any position that are less than R_t^2 or R_t^1 and greater than L_z^2 or L_z^1 , respectively. The same arguments are valid for an obstruction \mathcal{O}' of R. Therefore, using this liberty for the choice of position of these vertices, we can construct a family of trapezoid graphs that are not PI graphs from a known trapezoid representation of a graph in this class. The Figure 6 shows an element of the family obtained from the trapezoid representation of the Figure 5. Let $\Pi \in {\{\Pi_x, \Pi_y, \Pi_t, \Pi_z, \Pi'_x, \Pi'_y, \Pi'_t, \Pi'_z\}}$. In case Π is equal to some other trapezoid Π' that satisfies the conditions of Theorem 3.1, then any change at the position of the endpoints of Π must still satisfy the constraints for Π' .

Figure 6: A new trapezoid graph that is not PI graph obtained from the trapezoid representation of the Figure 5.

Resumo. Considere duas retas paralelas $r_1 e r_2 e \mathcal{F}$, uma família de triângulos com um lado em r_1 e um vértice em r_2 . Um grafo é *PI* (Ponto-Intervalo) se é grafo interseção da família \mathcal{F} . Grafos PI são uma generalização dos grafos de intervalos e dos grafos permutação e são subclasse dos grafos trapezóides. Neste artigo, caracterizamos os grafos PI em função de suas representações trapezoidais. Além disso, dada uma representação trapezoidal de qualquer grafo que não é PI, nós mostramos como construir uma família de grafos trapezóides que não são PI.

References

- K.S. Booth, G.S. Lueker, Testing for the consecutive ones property, interval graphs, and planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), 335-379.
- [2] A. Brandstädt, V. Le, J. Spinrad, "Graph Classes a Survey", SIAM, Monographs on Discrete Mathematics and Applications, 1999.
- [3] F. Cheah, "A Recognition Algorithm for II-Graphs", Doctoral Thesis, TR246/90, Dept. of Computer Science, Univ. of Toronto, 1990.
- [4] F. Cheah, D.G. Corneil, On the structure of trapezoid graphs, *Discrete Appied Mathematics*, 66 (1996), 109-133.

- [5] O. Cogis, On the Ferrers dimension of a digraph, Discrete Math., 38 (1982), 47-52.
- [6] D.J. Corneil, P.A. Kamula. Extensions of permutation and interval graphs, Congressus Numerantium, 58 (1987), 267–275.
- [7] S. Even, A. Pnueli, A. Lempel, Permutation graphs and transitive graphs, J. ACM., 19 (1972), 400-410.
- [8] S. Felsner. Tolerance graphs and orders, Lecture Notes in Computer Science 657 (1992), 17–26.
- [9] M.C. Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Academic Press, New York, 1980.
- [10] M. Habib, R.H. Möhring, "Recognition of Partial Orders with Interval Dimension Two Via Transitive Orientation with Side Constrains", Technical Report, TR 244/90, Tu Berlin, 1990.
- [11] M. Habib, R. McConnell, C. Paul, L. Viennot, Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing, *Theoretical Computer Science*, 234 (2000), 59-84.
- [12] G. Hajós, Uber eine art von graphen, Internat. Math. Nachr., 11 (1957), problem 65.
- [13] N. Korte, H. Möhring, An incremental linear-time algorithm for recognizing interval graphs, SIAM J. Comput., 18 (1989), 68-81.
- [14] Y-L Lin, Triangle graphs and simple trapezoid graphs, Journal of Information Science and Engineering, 18 (2002), 467-473.
- [15] T.H. Ma, "Algorithms on Special Classes of Graphs and Partially Ordered Sets", Ph.D. Thesis, Dept. of Computer Science, Vanderbilt Univ., Nashville, TN, 1990.
- [16] A. Pnueli, A. Lempel, S. Even, Transitive orientation of graphs and identification of permutation graphs, *Canad. J. Math.*, 23 (1971), 160-175.