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Abstract. This work considers an interval extension of fuzzy implication based on

the best interval representation of continuous t-norms. Some related properties can

be naturally extended and that extension preserves the behaviors of the implications

in the interval endpoints.

1. Introduction

Fuzzy logic is a new form of information theory that is related to but independent
of interval mathematics. However, when intervals can be thought as a particular
type of fuzzy set, or when interval degrees of membership are used to deal with
the uncertainties of the belief degrees of a specialist, it is natural and interesting
to consider an interval fuzzy approach [8, 9, 16, 17]. Based on this approach, in
this work we consider the comparative analysis started with the work of Bedregal
and Takahashi [5] integrating both areas: (1) fuzzy logic, as a formal mathematical
theory for the representation of uncertainty concerned with fuzzy set theory, which
is crucial for the management and control of real systems; and (2) interval mathe-
matics, providing the correctness criteria and the optimality properties of numerical
computations, and offering a more reliable modelling of real systems.

Emerging from the fuzzy set theory, a fuzzy logic can be understood as a superset
of classical logic to handle the concept of partial truth and considers the extension
principle, from a crisp (discrete) to a continuous (fuzzy) form. This means that truth
values are distributed as degrees between completely true and completely false, both
represented by the endpoints 0 and 1 of the real unity interval [0, 1]. In addition,
continuous t-norms are modelled as standard truth functions of conjunction, and
residue as standard truth functions of implication. Thus, the extension of classical
logic connectives to the real unit interval is fundamental for the studies on fuzzy logic
and, therefore, it is essential for the development of fuzzy systems. This extension
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must preserve the behaviors of the connectives at the interval endpoints, i.e., for the
crisp values. Moreover, it has been a consensus in this research area that, for the case
of the connectives conjunction and disjunction, this extension must also preserve
other important properties, such as commutative and associative properties, which
result in the notions of triangular norms and triangular conorms.

Fuzzy implications play an important role in fuzzy logic, both in the broad
sense (heavily applied to fuzzy control, analysis of vagueness in natural language
and techniques of soft-computing) and in the narrow sense (developed as a branch
of many-valued logic which are able to investigate deep logical questions). How-
ever, there is not a consensus among researchers which extra properties fuzzy im-
plications must satisfy. In the literature, several fuzzy implication properties have
already been proved and their interrelationship with the other kinds of connec-
tives were presented. Recently, Bedregal and Takahashi [5, 6], working towards
the connection between fuzzy logic and interval mathematics, have provided inter-
val extensions for the fuzzy connectives considering both correctness (accuracy) and
optimality aspects, as properly shown in [20]. In a categorical approach, the interval
generalization related to both t-norms and automorphisms can be seen as interval
representation satisfying the correctness principle of interval computations. In this
work, for the case of fuzzy implication, the authors only considered the properties
proposed by Fodor and Roubens and the class of R-implications [10].

In this present work, the interval constructor introduced by Bedregal and Taka-
hashi in [5, 6] is used in order to show that most of the properties considered
nowadays for fuzzy implication in the literature are also preserved. Then, we focus
attention in the interval extension of fuzzy t-norm and fuzzy negation in Sections 3
and 4, respectively. Further analysis of properties met by interval fuzzy implications
are focused in Section 4. Finally, our main results are summarized in Section 5.

2. Best Interval Representations

Consider the real unit interval U = [0, 1]. Let U be the set of subintervals of U ,
i.e., U = {[a, b] | 0 ≤ a ≤ b ≤ 1}. The interval set has two projections l : U −→ U

and r : U −→ U defined by l([a, b]) = a and r([a, b]) = b. As a convention, for each
X ∈ U the projections l(X) and r(X) will also be denoted by X and X, respectively.

Several natural partial orders can be defined on U [4]. The most used orders in
the context of interval mathematics and considered in this work, are the following.

1. Product : X ≤ Y if and only if X ≤ Y and X ≤ Y ,

2. Inclusion order : X ⊆ Y if and only if X ≥ Y and X ≤ Y .

A function F : U
n −→ U is an interval representation of a function f : Un −→ U

if, for each ~X ∈ U
n and ~x ∈ ~X, f(~x) ∈ F ( ~X) [20]. An interval can be seen as a

representation of a subset of real numbers. In this case we can say that an interval
X is a better representation of a real r than an interval Y if X is narrower than Y ,
i.e., if X ⊆ Y . Trivially, this notion could be extended for tuples on intervals.

Analogously, an interval function F : U
n −→ U is a better representation of the

function f : Un −→ U than G : U
n −→ U, denoted by G ⊑ F , if for each ~X ∈ U

n,
F ( ~X) ⊆ G( ~X). For each function f : Un −→ U , f̂ : U

n −→ U defined by
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f̂( ~X) = [inf{f(~x) | ~x ∈ ~X}, sup{f(~x) | ~x ∈ ~X}]

is well defined and for any other interval representation F of f , F ⊑ f̂ . In other
words, f̂ returns a narrower interval than any other interval representation of f and
is therefore its best interval representation [20]. Thus, f̂ has the optimality property

of interval algorithms mentioned by Hickey et al. [12], when seen as an algorithm to

compute f . Notice that if f is continuous in the usual sense, then for each ~X ∈ U
n,

f̂( ~X) = {f(~x) | ~x ∈ ~X} = f( ~X).

In the interval analysis, the continuity of interval functions can be obtained as an
extension of the real ones.5 Moore and Scott continuities are the two most common
continuity notions used in interval mathematics. The former is concerned with the
metric distance d(X,Y ) = max(| X−Y |, | X−Y |) defined over the space of Moore
intervals, with intervals seen as a subspace of the real plane emphasizing the related
notion of proximity. In the latter, the set of real intervals with reverse inclusion order
can be defined as a continuous domain (consistently complete continuous dcpo) [1]
whose objects are intervals interpreting partial information of real numbers. Let
E = (E,≤E) and D = (D,≤D) be directed complete partially ordered set (dcpo’s).
A function f : E → D is called Scott continuous if it is monotonic (i.e., x ≤E y ⇒
f(x) ≤D f(y)) and preserves the least upper bound (supremum) of directed sets
(i.e., for each directed set A ⊆ D, f(

⊔
X) =

⊔
f(X)). The main result in [20] (p.

240) involving Scott and Moore continuities is the following:

Theorem 2.1. Let f : ℜ −→ ℜ be a real function. f is continuous iff f̂ is Scott

continuous iff f̂ is Moore continuous.

Clearly, the theorem 2.1 can be adapted to our context, i.e., for Un instead of ℜ.

3. Interval T-Norms

Given a t-norm based propositional fuzzy calculus, one can construct the corre-
sponding predicate calculus, which is axiomatizable w.r.t. the general algebraic
semantics [11]. A triangular norm, t-norm for short, is a function T : U2 → U that
is commutative, associative, monotonic and has 1 as neutral element. Following the
approach introduced in [5], an extension of the t-norm notion for U is considered:

Definition 3.1. A function T : U
2 → U is an interval t-norm if it is commu-

tative, associative, monotonic w.r.t. the product and inclusion order and [1, 1] is a

neutral element.

Proposition 3.1. If T is a t-norm then T̂ : U
2 → U is an interval t-norm.

Proof. See [5].

5A survey relating continuity notions can be found in [19].
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4. Interval Fuzzy Negation

Recall that a function N : U → U is a fuzzy negation if

N1: N(0) = 1 and N(1) = 0.

N2: If x ≥ y then N(x) ≤ N(y), ∀x, y ∈ U .

Fuzzy negations satisfying the involutive property:

N3: N(N(x)) = x, ∀x ∈ U ,

are called strong fuzzy negations [14, 7].

Definition 4.1. An interval function N : U −→ U is an interval fuzzy negation if,

for any X, Y in U, the following properties hold

N1: N([0, 0]) = [1, 1] and N([1, 1]) = [0, 0].

N2: If X ≥ Y then N(X) ≤ N(Y ).

N3: If X ⊆ Y then N(X) ⊇ N(Y ).

If N is also meets the involutive property, it is a strong interval fuzzy negation:

N4: N(N(X)) = X, ∀X ∈ U.

Theorem 4.1. Let N : U −→ U be a fuzzy negation. Then N̂ is an interval fuzzy

negation. If N is a strong fuzzy negation then N̂ is a strong interval fuzzy negation.

Proof. N1: Trivially, N1 is satisfied.

N2: If X ≥ Y then Y ≤ X and Y ≤ X therefore, by N2 property, N̂(X) =

[N(X), N(X)] ≤ [N(Y ), N(Y )] = N̂(Y ).

N3: If X ⊆ Y then X ≤ Y and Y ≤ X therefore, by N2 property, N̂(X) =

[N(X), N(X)] ⊆ [N(Y ), N(Y )] = N̂(Y ).

N4: If N is strong, N̂(N̂(X)) = N̂([N(X), N(X)]) = [N(N(X)), N(N(X))] = X.

5. Fuzzy Implications

Several definitions for fuzzy implication have been given, see for example
[2, 3, 7, 11, 10, 13, 15, 18, 21, 22, 23]. The unique consensus in these defini-
tions is that the fuzzy implication should have the same behavior as the classical
implication for the crisp case. Thus, I : U2 −→ U is a fuzzy implication if

I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0.

In the following several reasonable extra properties that can be required for fuzzy
implications are listed. In fact, each one of these properties can be found in most
of the following papers: [2, 7, 11, 10, 13, 15, 18, 21, 22, 23].

I1: If x ≤ z then I(x, y) ≥ I(z, y).

I2: If y ≤ z then I(x, y) ≤ I(x, z).
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I3: I(0, y) = 1, (falsity principle).

I4: I(x, 1) = 1, (neutrality principle).

I5: I(x, I(y, z)) = I(y, I(x, z)), (exchange principle).

I6: If x ≤ y then I(x, y) = 1, (boundary condition).

I7: I(x, x) = 1, (identity property).

I8: I(x, y) ≥ y.

I9: I is a continuous function, (continuity condition).

I10: I(x, y) = I(x, I(x, y)).

Other two properties related to fuzzy implications with strong negation [7].

I11: If N is a strong negation, I(x, y) = I(N(y), N(x)), (contrapositive w.r.t.N).

I12: Let N : U −→ U . If N(x) = I(x, 0) then N is a strong fuzzy negation.

Proposition 5.1. Let I be a fuzzy implication. If I satisfies I11 and I12 then for

each x, y ∈ U , I(x, y) = I(I(y, 0), I(x, 0)).

Proof. See [2].

The law of importation relates some fuzzy implications with some t-norms [3]:

I13: Let T be a t-norm, I(T (x, y), z) = I(x, I(y, z)).

5.1. Interval Fuzzy Implications

Since real values in interval mathematics are identified with degenerate intervals,
the minimal properties of fuzzy implications can be naturally extended for interval
fuzzy degrees, considering the respective degenerate intervals. Thus, a function
I : U

2 −→ U is a fuzzy interval implication if

I([1, 1], [1, 1]) = I([0, 0], [0, 0]) = I([0, 0], [1, 1]) = [1, 1] and I([1, 1], [0, 0]) = [0, 0].

Notice that, by having two natural partial orders on U and two continuity notions,
some extra properties can have two natural versions.

Extra properties of interval fuzzy implications

I1: If X ≤ Z then I(X,Y ) ≥ I(Z, Y ).

I2: If Y ≤ Z then I(X,Y ) ≤ I(X,Z).

I3: I([0, 0], Y ) = [1, 1].

I4: I(X, [1, 1]) = [1, 1].
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I5: I(X, I(Y,Z)) = I(Y, I(X,Z)).

I6a: If X ≤ Y then 1 ∈ I(X,Y ).

I6b: If X ⊆ Y then 1 ∈ I(X,Y ).

I6c: If [x, x] ≤ Y then I([x, x], Y ) = [1, 1].

I6d: If X ≤ [y, y] then I(X,Y [y, y]) = [1, 1].

I7: 1 ∈ I(X,X).

I8: I(X,Y ) ≥ Y .

I9a: I is a Moore continuous function.

I9b: I is a Scott continuous function.

I10a: I(X,Y ) ⊆ I(X, I(X,Y )).

I10b: I([x, x], Y ) = I([x, x], I([x, x], Y )).

I11: Let N be a strong fuzzy negation. If I(X,Y ) = I(N(Y ), N(X)) then I is
contrapositive w.r.t. N.

I12: If N : U −→ U, N(X) = I(X, [0, 0]) then N is a strong interval fuzzy negation.

I13: Let T be an interval t-norm. I(T(X,Y ), Z) = I(X, I(Y,Z)).

Starting from any fuzzy implication it is always possible to obtain canonically
an interval fuzzy implication. Then, the interval fuzzy implication also meets the
optimality property and preserves the same properties satisfied by the fuzzy im-
plication. In the next two propositions, the best interval representation of fuzzy
implication is shown to be an inclusion-monotonic function in both arguments, and
the proofs are straightforward, following from the definition of Î.

Proposition 5.2. If I is a fuzzy implication then Î is an interval fuzzy implication.

Proposition 5.3. Let I be a fuzzy implication. For each X1,X2, Y1, Y2 ∈ U, if

X1 ⊆ X2 and Y1 ⊆ Y2 then Î(X1, Y1) ⊆ Î(X2, Y2).

Theorem 5.1. Let I be a fuzzy implication. If I satisfies a property Ik, for some

k = 1, . . . , 10 then Î satisfies the property Ik.

Proof. I1: If u ∈ Î(X,Y ), then there exist x ∈ X and y ∈ Y such that I(x, y) = u.
If X ≤ Z, then there exists z ∈ Z such that x ≤ z. So, by I1, it holds that
u = I(x, y) ≥ I(z, y). On the other hand, if v ∈ Î(Z, Y ), then there exist
z ∈ Z and y ∈ Y such that I(z, y) = v. If X ≤ Z then x ≤ z for some x ∈ X.

So, by I1, it holds that I(x, y) ≥ I(z, y) = v. Therefore, for each u ∈ Î(X,Y ),

there is v ∈ Î(Z, Y ) such that u ≥ v, and, for each v ∈ Î(Z, Y ), there is

u ∈ Î(X,Y ) such that u ≥ v. Hence, it holds that Î(X,Y ) ≥ Î(Z, Y ).
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I2: If u ∈ Î(X,Y ), then there exist x ∈ X and y ∈ Y such that I(x, y) = u. If
Y ≤ Z, then there exists z ∈ Z such that y ≤ z. So, by I2, it holds that
u = I(x, y) ≤ I(x, z). On the other hand, if v ∈ Î(X,Z), then there exist
z ∈ Z and x ∈ X such that I(x, z) = v. If Y ≤ Z then y ≤ z, for some y ∈ Y .

So, by I2, it holds that I(x, y) ≥ I(x, z) = v. Thus, for each u ∈ Î(X,Y ),

there is v ∈ Î(X,Z) such that u ≤ v, and for each v ∈ Î(X,Z), there is

u ∈ Î(X,Y ) such that u ≤ v. Then, it holds that Î(X,Y ) ≤ Î(X,Z).

I3: Trivially, by I3, for each y ∈ Y , I(0, y) = 1, and so {I(0, y) : y ∈ Y } = [1, 1].

Thus, since Î([0, 0], Y ) is the narrowest interval containing {I(0, y) : y ∈ Y },

then Î([0, 0], Y ) = [1, 1].

I4: Trivially, by I4, for each x ∈ X, I(x, 1) = 1 and so {I(x, 1) : x ∈ X} = [1, 1].

Thus, since Î(X, [1, 1]) is the narrowest interval containing {I(x, 1) : x ∈ X},

then Î(X, [1, 1]) = [1, 1].

I5: If u ∈ Î(X, Î(Y,Z)), then there exist x ∈ X, y ∈ Y and z ∈ Z such
that I(x, I(y, z)) = u. But, by I5, one has that u = I(y, I(x, z)). So,

u ∈ Î(Y, Î(X,Z)), and, therefore, Î(X, Î(Y,Z)) ⊆ Î(Y, Î(X,Z)). Analo-

gously, if u ∈ Î(Y, Î(X,Z)), then there exist x ∈ X, y ∈ Y and z ∈ Z

such that I(y, I(yx, z)) = u. But, by I5, onde has that u = I(x, I(y, z)). So,

u ∈ Î(X, Î(XY,Z)), and, therefore, Î(Y, Î(X,Z)) ⊆ Î(X, Î(Y,Z)). Hence, it

holds that Î(X, Î(Y,Z)) = Î(Y, Î(X,Z)).

I6a: If X ≤ Y , then there exist x ∈ X and y ∈ Y such that x ≤ y, and so, by I6,
I(x, y) = 1. Therefore, it holds that 1 ∈ Î(X,Y ).

I6b: If X ⊆ Y , then there exist x ∈ X and y ∈ Y such that x ≤ y, and so, by I6,
I(x, y) = 1. Therefore, it holds that 1 ∈ Î(X,Y ).

I6c: If [x, x] ≤ Y , then, for each y ∈ Y , x ≤ y. So, by I6, for each y ∈ Y ,

I(x, y) = 1 and, therefore, it holds that Î([x, x], Y ) = [1, 1].

I6d: If X ≤ [y, y], then for each x ∈ X, x ≤ y. So, by I6, for each x ∈ X,

I(x, y) = 1 and, therefore, it holds that Î(X, [y, y]) = [1, 1].

I7: If x ∈ X ,then I(x, x) = 1, and so 1 ∈ Î(X,X).

I8: By I8, for each x ∈ X and y ∈ Y , I(x, y) ≥ y. So, Î(X,Y ) ≥ Y .

I9a and I9b: it is straightforward, following from Theorem 2.1.

I10a: If u ∈ Î(X,Y ), then there exist x ∈ X and y ∈ Y such that I(x, y) = u. So,

by I10, u = I(x, I(x, y)), and, therefore, u ∈ Î(X, Î(X,Y )). Hence, it holds

that Î(X,Y ) ⊆ Î(X, Î(X,Y )).

I10b: By I10a, Î([x, x], Y ) ⊆ Î([x, x], Î([x, x], Y )). So, it only remains to prove

that Î([x, x], Y ) ⊇ Î([x, x], Î([x, x], Y )). Conisdering u ∈ Î([x, x], Î([x, x], Y )),
then there exists y ∈ Y such that u = I(x, I(x, y)). But, by I10, onde has

that I(x, I(x, y)) = I(x, y). So, u ∈ Î([x, x], Y ), and, therefore, it holds that

Î([x, x], Y ) ⊇ Î([x, x], Î([x, x], Y )).
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The preservation of properties I11, I12 and I13 will be proved separately, because
another connective will be considered.

Proposition 5.4. Let I be a fuzzy implication and N be a fuzzy strong negation,

such that I is contrapositive w.r.t. N , i.e., it satisfies I11. Then Î is contrapositive

w.r.t. N̂ , i.e., it satisfies I11.

Proof. If u ∈ Î(X,Y ), then there exist x ∈ X and y ∈ Y such that I(x, y) = u.

But, by I11, one has that I(x, y) = I(N(y), N(x)). Since N(y) ∈ N̂(Y ) and N(x) ∈

N̂(X), then u ∈ Î(N̂(Y ), N̂(X)). So, it holds that Î(X,Y ) ⊆ Î(N̂(Y ), N̂(X)). On

the other hand, if u ∈ Î(N̂(Y ), N̂(X)), then there exist v ∈ N̂(Y ) and w ∈ N̂(X)

such that I(v, w) = u. But, since v ∈ N̂(Y ) and w ∈ N̂(X), there exist y ∈ Y and
x ∈ X such that N(y) = v and N(x) = w. So, it holds that I(N(y), N(x)) = u.

But, by I11, onde has that I(N(y), N(x)) = I(x, y). Then, it holds that u ∈ Î(X,Y )

and Î(X,Y ) = Î(N̂(Y ), N̂(X)).

Proposition 5.5. Let I be a fuzzy implication. If I satisfies a property I12, then

the interval function N : U −→ U, defined by N(X) = Î(X, [0, 0]) is a strong interval

fuzzy negation, i.e. satisfy the property I12.

Proof. By I12, N : U −→ U defined by N(x) = I(x, 0) is a strong fuzzy implication,

and, therefore, by Theorem 4.1, N̂ is a strong interval fuzzy negation. We will prove
that N = N̂ . Consider X ∈ U. If u ∈ N(X), then there exists x ∈ X such that

I(x, 0) = u, and, therefore, such that N(x) = u. So, u ∈ N̂(X). Conversely, if

u ∈ N̂(X) then there exist x ∈ X such that N(x) = u. But, by I12, onde has

that I(x, 0) = u. So, it holds that u ∈ Î(X, [0, 0]), i.e., u ∈ N(X). Therefore, one

concludes that N = N̂ .

Proposition 5.6. Let I be a fuzzy implication and T be a t-norm, such that I

satisfy the law of importation w.r.t. T , i.e., it satisfies I13. Then Î satisfy the

property I13 w.r.t. T̂ .

Proof. If u ∈ Î(T̂ (X,Y ), Z), then there exist v ∈ T̂ (X,Y ) and z ∈ Z such that u =

I(v, z). But, if v ∈ T̂ (X,Y ), then there exist x ∈ X and y ∈ Y such that v = T (x, y).
So, u = I(T (x, y), z), and ,therefore, by property I13, u = I(x, I(y, z)). Thus, since

x ∈ X and I(y, z) ∈ Î(Y,Z), one has that u ∈ Î(X, Î(Y,Z)). Therefore, it holds

that Î (̂(T )(X,Y ), Z) ⊆ Î(X, Î(Y,Z)). On the other hand, if u ∈ Î(X, Î(Y,Z)),

then there exist x ∈ X and v ∈ Î(Y,Z) such that u = I(x, v). But, if v ∈ Î(Y,Z),
then there exist y ∈ Y and z ∈ Z such that v = I(y, z). So, u = I(x, I(y, z)), and,
therefore, by property I13, onde has that u = I(T (x, y), z). Thus, since T (x, y) ∈

T̂ (X,Y ) and z ∈ Z, it holds that u ∈ Î(T̂ (X,Y ), Z). Therefore, one concludes that

Î(T̂ (X,Y ), Z) = Î(X, Î(Y,Z)).

6. Final Remarks

In this paper, we mainly discussed under which conditions generalized fuzzy impli-
cations applied to interval values preserve properties of canonical forms generated
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by interval t-norms. It was shown that properties of fuzzy logic can be naturally
extended for interval fuzzy degrees considering the respective degenerate intervals.
The results are important not only for analyzing deductive systems in mathematical
depth but also as foundations of methods of fuzzy logic in broad sense.
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Resumo. Este trabalho considera a extensão intervalar da implicação fuzzy baseada

no conceito de melhor representação intervalar de t-normas cont́ınuas, previamente

introduzido por Bedregal e Takahashi. As correspondentes propriedades foram

analisadas e verificou-se que o comportamento das implicações nos extremos do

intervalo unitário pode ser preservado e naturalmente estendido.
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