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Abstract. Water mites (Hydrachnidia) are a group of arthropods with a complex
life cycle which includes larval and three nymphal stages. The mite larvae parasitize
aquatic and semiaquatic insects, while deutonymphs and adult mites are predators
of insect larvae and eggs. Since several families of water mites are associated with
mosquitoes, there is an interest in the potential use of these mites as biological
control agents of Aedes aegypti. The aim of this paper is to use mathematical
modelling and analysis to assess the impact of predation and parasitism in the
mosquito population by water mites. We discuss the fitness of water mites as
biological control of mosquitoes by different scenarios that appear when we change
the parasitism and predation parameters. High rates of parasitism and moderate
predation can drive two species to a stable coexistence far from the extinction point.

1. Introduction

Mosquitoes belong to the family Culicidae order Diptera, one of the greatest and
diverse groups of Insecta in which there are near 100, 000 species described. Some
species of the genera Aedes and Anopheles are of great importance in public health
since they serve as vectors of several diseases like malaria, dengue and yellow fever.
Like most animals, Diptera can be parasitized, and in particular the water mites
parasitize the aquatic forms larvae and pupae of insects. Water mites (Hydrachni-
dia) are an interesting group of microarthropods with nearly 5, 000 species described
into 50 families, whose habitats are very diverse since they can live in thermal wa-
ters, wetlands, temporal pools, and lagoons. The life cycle includes larval stage and
three nymphal (nymphocrysalids, deutonymph, and imagochrysalis) stages, which
are quiescent except the second one [9].
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Water mite larvae need to parasitize aquatic or semiaquatic insects to become
nymph, in order to complete the life cycle [9]. On the other hand, deutonymphs
and adults depredate insect larvae and, in minor extension, pupae. Thus, there are
two significative phases in the population dynamics of the water mites and insects:
predation (adult mites eat eggs and larvae of insects) and parasitism (mite larvae
parasitize adult insects and, in minor extension, pupae). Larvae of water mites of
the family Arrenuridae are the most common ectoparasites of Culicidae sorts of
medical importance like Aedes and Anopheles [10].

In general the knowledge about parasite-predation interactions between water
mites and mosquitoes is fragmentary. The aim of this study is to evaluate the
impact of these relations on the population dynamics of both species. For this goal
we formulate a mathematical model in Section 2 for the interactions among the
larval and adult stages of mosquitoes and water mites. We discuss the different
scenarios that appear when we change the parasitism and predation parameters,
and discussion and conclusion are given in Section 3.

2. The Model

Laboratory experiments have clearly established that some parasitic water mite (the
word water is omitted in this section) species reduce the survival and reproductive
rates of their host. It is estimated that mites may reduce the reproductive poten-
tial of Masonia perturbans populations by 10%, and the first gonotrophic cycle of
Anopheles crucians parasitized by Arrenurus spp. may be reduced by 35% [4] [8].
Quantitative studies on the feeding behavior of mites are scarce. The only records
of mites feeding on mosquitoes are from visual observations in laboratory. Although
there are some species like Limnesia jamurensis that are great predators of mos-
quito larvae (each mite consumed roughly 6 to 8 larvae per day) [3], in general mites
are not specific predaceous of mosquitoes. For instance, Arrenurus species also feed
on ostracods [8]. We consider the interaction between mosquito and mite popula-
tions. The mosquito population is divided in two stages: the immature (larvae and
pupae) and the adult form. We denote by P the population size of the immature
phases of the insect at time t. The adult mosquitoes are divided in healthy M and
parasitized W . On the other hand, we will consider only the life stages of mites
where they parasitize or depredate the mosquito population. One is mite larvae
L that parasitize adult mosquitoes, and other is predator mites A consisting of
deutonymphs (pupae) and adult mites that predate mosquito larvae.

With respect to vital dynamics, the per capita mortality rates of immature mos-
quitoes P , healthy mosquitoes M and parasitized mosquitoes W are assigned by
µP , µM and µW , respectively. Since parasitism could increase mortality of mos-
quitoes, we assume µM ≤ µW . On the other hand, the per capita mortality rates
of mite larvae L and depredator mites A are given by µL and µA, respectively. For
both populations, the net oviposition rate per female insect is proportional to their
density, but it is also regulated by a carrying capacity depending on the occupation
of the available breeder sites. In this model we assume that the per capita ovipo-
sition rates of healthy and parasitized mosquitoes are given by φM (1 − P/CM )
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and φW (1 − P/CM ), respectively, where CM is the carrying capacity related to
the amount of available nutrients and space, and φM and φW are the correspond-
ing intrinsic oviposition rates. According to the biological observations, parasitism
reduces the birth capacity of mosquitoes, thus we assume that φW ≤ φM . Analo-
gously, the per capita oviposition rate of mites is φA (1 − L/CA), where φA is the
intrinsic oviposition rate and CA is the carrying capacity for mites. Finally, the
immature mosquito population becomes adult insects at a per capita rate α.

Hypotheses about the interaction between mite and mosquito populations are
the following. Mosquito larvae are assumed to decrement due to predation by
deutonymphs and adult mites proportionally to the product of the size of both
populations, k2PA, where k2 is the per capita predation rate. Predation is respon-
sible for the development of deutonymphs to adult mites, which in turn lay eggs.
This effect is introduced in the life expectancy of adult mites, assuming that the
fitness of adult mites is increased by a term qk2PA, with 0 ≤ q ≤ 1. In other
words, the decreasing of mosquito larvae by k2PA increments the fitness of mites
by µA − qk2PA. Notice that the parameter q must be correlated to the predation
rate k2 in order to avoid overall negative mortality rate for adult mites. We recall
that mite larvae need to parasite mosquitoes in order to complete their life cycle.
We assume that mite larvae search independently and randomly, with a constant
efficiency. Then, following [6] the rate of parasitism of mosquitoes by mite larvae is
proportional to M(1 − e−aL), but, in order to simplify the model, we will approx-
imate by aML, where a is the searching efficiency of mite larvae. Assuming that
k1M is the per capita rate of parasitism by larvae to develop to next stage, the flow
from the larval stage L to the adult stage A is given by k1ML, where k1 = ab, with
b being a constant with dimension [time]

−1
. Hence, adult mosquitoes M become

parasitized mosquitoes W at the same rate k1ML.

According to the assumptions above, the model is given by
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P ′ = φM

(

1 − P
CM

)

M + φW

(

1 − P
CM

)

W − (α + µP )P − k2PA

M ′ = αP − k1ML − µMM
W ′ = k1ML − µW W

L′ = φA

(

1 − L
CA

)

A − µLL − k1ML

A′ = k1ML − (µA − qk2P )A,

(2.1)

where all parameters of the model are non-negative. First and last equations are
strongly coupled, showing that there is a trade-off between predation and fitness,
which can lead to oscillating behavior for some range of parameters. It can be
shown that solutions starting in the region

Ω = {(P,M,W,L,A) ∈ R5
+ : 0 ≤ P ≤ CM , 0 ≤ L ≤ CA}

remain there for all t ≥ 0. Therefore, Ω is positively invariant under above system,
and it is sufficient to consider solutions in this region where the usual existence,
uniqueness and continuation results hold for the system.

The equilibria of system (2.1), which belong to the boundary of Ω, are: P0 =
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(0, 0, 0, 0, 0) and PM = (P ∗,M∗, 0, 0, 0), where
{

P ∗ =
(

1 − 1

RM

)

CM

M∗ = α
µM

P ∗
(2.2)

and

RM ≡
α

α + µP

×
φM

µM

. (2.3)

The equilibrium P0 is the situation where both species are absent and PM , the state
where only mosquitoes are present. From the expression for P ∗, it follows that PM

will be feasible if and only if RM > 1. The parameter RM is the basic offspring

number of mosquitoes, that is, the average number of mosquitoes produced by a
single mosquito. This can be seen as follows: since 1/ (α + µP ) is the average time
of survival of an immature mosquito and 1/α is the average time of its permanence
as such, then α/ (α + µP ) is the probability that an egg will succeed to become
an adult mosquito. On the other hand, φM/µM is the average number of eggs
oviposited by one mosquito. Thus, the product of the last two quantities, which is
equal to RM , is the average number of mosquitoes produced by a single mosquito.
Then, PM will be feasible if and only if the basic offspring number is bigger than
one.

The stability properties of P0 are given by the eigenvalues of the derivative of
System (2.1) evaluated at this point, which is given by

DF (P0) =













−(α + µP ) φM φW 0 0
α −µM 0 0 0
0 0 −µW 0 0
0 0 0 −µL φA

0 0 0 0 −µA













. (2.4)

Solving Det(λI − DF (P0)) = 0, we find that the eigenvalues are −µA, −µL, −µW

and the roots of the polynomial

p1(λ) = λ2 + (α + µP + µM )λ + (α + µP )µM (1 − RM ).

The roots of p1 have negative real part if and only if its coefficients are positive,
and it is clear that this is equivalent to the condition RM < 1. Then, the trivial
equilibrium P0 is locally asymptotically stable if RM < 1 and a saddle point if
RM > 1.

Global stability of P0 in Ω is proven when RM ≤ 1. Let us define the Lyapunov
function V1 : Ω → R given by

V1 = αP P + (α + µP )(M + W ). (2.5)

The orbital derivative of V1 is given by

V̇1 = −(α + µP ) [µM (1 − RM (1 − P/C)) − µW (1 − rRM (1 − P/C))] , (2.6)

where r = φW µM

φM µW
≤ 1 by hypothesis. If RM ≤ 1 then V̇1 ≤ 0 and, from inspection of

system (2.1), it can be seen that the maximal invariant set contained in V̇1 = 0 is P0
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which is locally asymptotically stable. Therefore, it follows from La-Salle Lyapunov
Theorem [2] that P0 is globally asymptotically stable in Ω.

The equilibrium PM is feasible when RM > 1, and its stability is determined by
the eigenvalues of the matrix DF (PM ) given by














−φM

CM
M∗−(α+µP ) φM

(

1− P∗

CM

)

φW

(

1− P∗

CM

)

0 k2P
∗

α −µM 0 −k1M
∗ 0

0 0 −µW k1M
∗ 0

0 0 0 −µL−k1M
∗ φA

0 0 0 k1M
∗ −µA+qk2P

∗















.

After some calculations, we find that the eigenvalues of DF (PM ) are −µW and the
roots of the polynomials
{

p2(λ) = λ2 +
(

φM

CM
M∗ + α + µP + µM

)

λ + µM (α + µP )(RM − 1)

p3(λ) = λ2 + (k1M
∗+µL+µA−qk2P

∗)λ+(k1M
∗+µL)(µA − qk2P

∗)−φAk1M
∗.

The coefficients of the polynomial p2 are positive (we have RM > 1) which in turn
implies that its roots have negative real part. On the other hand, the polynomial
p3 has roots with negative real part if and only if

{

k1M
∗ + µL + µA − qk2P

∗ > 0
(k1M

∗ + µL)(µA − qk2P
∗) > φAk1M

∗.
(2.7)

The above conditions are satisfied if and only if

µA > µth
A ≡ qk2P

∗ = qk2

(

1 −
1

RM

)

CM , (2.8)

where µth
A is the threshold predating mite population mortality rate (or fitness),

and

RA ≡
φA

µA − qk2P ∗
×

k1M
∗

k1M∗ + µL

< 1, (2.9)

where RA is the basic offspring number of mites. Note that if µA < µth
A , we have

RA < 0 < 1. Hence the stability of PM is summarized by RA < 1.
Notice that qk2P

∗ represents the equilibrium per capita rate at which the adult
mite population predates the mosquito larvae at the equilibrium P ∗. On the other
hand, the left hand side of inequality (2.9) can be interpreted as the average number
of eggs laid by a single predating mite that survive to the adult stage (first term)
after being succeeded to parasitize mosquitoes (second term) when the number
of larvae and adult mosquitoes are at the equilibriums P ∗ and M∗, respectively.
Then, assuming that mosquito population is at the equilibrium PM , conditions
(2.8) and (2.9) say that if the fitness due to predation by the mite population does
not surpass the natural mortality rate (µth

A < µA) and the average number of adult
mites resulting from a single mite is less than one (RA < 1), only the mosquito
population can survive. In terms of k1 and k2, the summarizing condition (RA < 1)
of stability of PM is

k2 <
1

qP ∗

(

µA −
φAk1M

∗

k1M∗ + µL

)

. (2.10)
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This implies that PM is stable in the region of the parameters space k1k2 below
the hyperbola given by the right hand side of (2.10) which has asymptote k2 =
(µA − φA)/ (qP ∗). Note that this asymptote is negative for φA > µA (we have kth

1

above which PM is always unstable disregarding the predation parameter k2) and
positive for φA < µA (we do not have kth

1 , which implies that PM is stable in the
region between the axis-k1 and hyperbola).

Global stability of PM can be proved in the special case q = 0 and φA ≤ µA via
Lyapunov function defined in Ω as V2 = L + A, with orbital derivative

V̇2 = [φA(1 − L/CA) − µA]A − µLL ≤ 0.

All solutions starting in Ω approach the maximal invariant set contained in V̇2 = 0
[2]. It can be seen readily that this set is the the projection of Ω on the plane
W = A = L = 0. Hence equations of system (2.1) are reduced in the following two
dimensional system in P and M , given by

{

P ′ = φM

(

1 − P
CM

)

M − (α + µP )P

M ′ = αP − µMM.

Applying Bendixon criteria [11] it can be seen that this system does not have peri-
odic orbits, and since PM is locally asymptotically stable, all trajectories with initial
conditions P (0) and M(0) different from zero approach this equilibrium. Therefore
PM is globally asymptotically stable in Ω minus the plane P = M = 0. This special
case describes water mites predating their host, but there is not any advantage in
the fitness of mites.

When mosquito population is zero (P0) then mites can not complete their life
cycle implying that they will not be able to survive, because mite larvae is specific
parasite of mosquitoes. This is always true when RM < 1, that is, neither mos-
quitoes are able to invade and colonize a specified habitat. The equilibrium PM

portraits the mite population being not able to survive in the habitat where mos-
quitoes are well established. In this case, even for RM > 1, mite population failed to
be good predator (µA < µth

A ) or despite of being a good predator (µA > µth
A ), mite

population failed to produce sufficient offsprings due to predation and parasitism
(RA < 1). Next we analyze the effect of remaining condition RM > 1 and RA > 1
(predation helps to increase the survival, or fitness, of mites above the threshold,
µA > µth

A ) on the dynamic system.
The coordinates M̄ , W̄ and Ā, in terms of L̄ and P̄ , of the non trivial equilibrium

point PMA of system (2.1) are given by



























M̄ =
α

k1L̄ + µM

P̄

W̄ =
k1

µW

×
α

(k1L̄ + µM )
P̄ L̄

Ā =
k1

(µA − qk2P̄ )
×

α

(k1L̄ + µM )
P̄ L̄.

(2.11)

This equilibrium has biological meaning for 0 < L̄ < CA and 0 < P̄ < µA/ (qk2).
Substituting (2.11) in the first and third equations of (2.1) and solving for L̄, we
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obtain after some manipulations that the solutions (P̄ , L̄) are the intersections of
the graphs of the functions















f(P̄ ) =
µM (RM − 1 − RM P̄ /CM )(µA − qk2P̄ )

k1[(1 − rRM + rRM P̄ /CM )(µA − qk2P̄ ) + αk2P̄ /(α + µP )]

g(P̄ ) =
αφAk1P̄ − (µLµM + k1αP̄ )(µA − qk2P̄ )

k1(µA − qk2P̄ + αφAP̄ /CA)
.

(2.12)

We observe that if RM ≤ 1 then f(P̄ ) ≤ 0 for P̄ ∈ [0, µA/ (qk2)], therefore
RM > 1 is a necessary condition for positive solutions of (2.12), and in the following
we assume it. Let f1(P̄ ) denote the denominator in the expression for f(P̄ ). Since
f1(µA/ (qk2)) > 0, and limP→∞ f1(P̄ ) = −∞, one of the zeros of f1 is at the right
of µA/ (qk2). The other zero, denoted by Pf , is negative if f1(0) > 0 (in particular
this holds if rRM ≤ 1), and it is in the interval [0, µA/ (qk2)] if f1(0) ≤ 0. Now,
define Pmin =max{0, Pf} and Pmax =min{P ∗, µA/ (qk2)}, where P ∗ is given by
(2.2). It is a simple matter to prove that f(P̄ ) is a positive decreasing function
for Pmin < P̄ < Pmax, and it is negative if Pmin > 0 and 0 < P̄ < Pmin or
Pmax < µA/ (qk2) and Pmax < P̄ < µA/ (qk2). This implies that the coordinate
P̄ of the solution of (2.12), if it exists, should be in the interval (Pmin, Pmax).
Furthermore,























f(Pmin) =
µAµM (RM − 1)

k1[(1 − rRM )µA + αk2/(α + µP )]
> 0, if Pmin = 0,

limP→P+

min

f(P̄ ) = ∞, if Pmin = Pf ,

limP→P−

min

f(P̄ ) = −∞, if Pmin = Pf ,

f(Pmax) = 0.

Next, we analyze the function g(P ). It is easy to verify that g(P ) has one
zero Pg in the interval [0, µA/ (qk2)], is increasing for Pg ≤ P̄ ≤ µA/ (qk2) and
g(µA/ (qk2)) = CA. Therefore, if Pmax = µA/ (qk2), equations (2.12) have a unique
solution (P̄ , L̄) with P̄ ∈ (max{Pf , Pg}, µa/qk2). Now, assume Pmax = P ∗. Substi-
tuting αP ∗ by µAM∗ in g(P ∗), we obtain

g(P ∗) =
µM [φAk1M

∗ − (k1M
∗ + µL)(µA − qk2P

∗)]

k1(µA − qk2P ∗ + µAφAM∗)
.

This value is bigger than zero if and only if

RA ≡
φA

µA − qk2P ∗
×

k1M
∗

k1M∗ + µL

> 1, (2.13)

Then, in the case µA > µth
A = qk2P

∗, there exists a unique positive solution of
(2.12) with P̄ ∈

(

max{Pf , Pg}, P̄
)

only when condition (2.13) holds.
In the parameters space k1k2 the region of existence of PMA correspond the

points (k1, k2) above the hyperbola given by equation (2.10). Writing inequality
(2.13) in the equivalent form

k1 >
µL(µA − qk2P̄ )

M∗(φA − (µA − qk2P̄ ))
= k∗

1 , (2.14)
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we obtain a lower bound k∗

1 of the rate of parasitism necessary for coexistence of
both species in terms of their demographic parameters and the rate k2 of predation.
The parameter RW = rRM represents the number of adult mosquitoes produced by
a parasitized mosquito. When r decreases, it is expected that the number of larvae
P̄ (and consequently adult mosquitoes M̄ + W̄ ) decreases.

The equilibrium PMA could not be found explicitly and its local stability is very
difficult to determine since we must show that the eigenvalues of the 5× 5 jacobian
matrix at PMA have negative real part. Nevertheless, numerical simulations suggest
that this equilibrium is stable under suitable conditions.

3. Discussion and Conclusion

Most of the studies in population dynamics of mites have been done on species
that are important for humans, as it is the case of ticks of cattle, mites predators
of other plague mites of different cultures, and ectoparasitic mites of bees like of
Varroasis. Nevertheless, for water mites and their interaction with insects, these
studies are scarce, being limited mainly to the determination of some demographic
parameters. For example, there are evidences that parasitism of water mites on
Culicidae affect the metabolism of females of this species with consequent reduction
in their birth rate [5]; however, there are no quantitative results and only a few field
and experimental observations show that the damage on the mosquito population is
not so strong to drive it to extinction. On the other hand, there is a predator-prey
relationship between water mites and Culicidae since this species larvae are part of
the potential food of deutonymphs and adult mites, thus population dynamics of
the water mites has a substantive dependency with respect to the mosquitoes. But
still the measurements of how the predation by water mites affect the dynamics of
mosquito populations are insufficient.

In this paper we propose and analyze a mathematical model for the parasitism
and predation between water mites and mosquitoes. These ecological interactions
are modeled by the mass action law. The model incorporates the larval and adult
stages of the two populations. We also include a class of parasitized mosquitoes
which have a lower birth rate and higher mortality rate than healthy mosquitoes.
We assumed that the predation increases the survival rate of mites. However,
elsewhere [1] the increasing in the reproductive rate was assumed.

Under the biological assumptions, our model has three equilibrium points. The
trivial equilibrium point P0, to which the system evolves if the basic offspring num-
ber of mosquito population is such that RM ≤ 1. When RM > 1 a second equi-
librium PM emerges, where only mosquito population is present when RA < 1.
The absence of the mosquitoes is a limiting factor for water mites, since without
mosquitoes they can not complete their life cycle. For this reason there is not an
equilibrium where only water mites are present.

Stability analysis of PM reveals that this equilibrium is stable when the increas-
ing of water mite population due to predation is less than their mortality rate, and
the average number of water mites resulting from a single water mite is less than
one, according to inequalities (2.8) and (2.9). When the conditions of stability of
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PM not longer hold, we found an interior equilibrium where two species coexist
(RM > 1 and RA > 1). The behavior of the populations can be interpreted in
terms of the bifurcation diagram with respect to k1k2, according to equation (2.10).
If the oviposition rate of water mites φA is less than their mortality rate µA, and
predation rate k2 is not sufficiently high (below the asymptote), the water mite
population would not be able to survive, no matter the value of the parasitism rate
k1 and the initial state of the population. Moreover, high rates of predation will
drive the system to coexistence of the two populations even for low rates of para-
sitisms. In the case φA > µA, coexistence can be reached if parasitism is sufficiently
high (k1 > µAµLM∗

φA−µA
), even the predation is absent. In either case we could conclude

that the dynamics of mosquito and water mites populations are more sensitive to
predation than to parasitism in the sense that for any value of k1, it is enough to
increment k2 sufficiently to enter to the coexistence region.

It is clear that if the oviposition rate of water mites is less than the mortality
rate, this population can not survive even if they are able to complete the life
cycle via parasitism. Predation, however, gives the opportunity to the water mite
population to increase. On the other side, if the oviposition rate is bigger than the
mortality, the basic offspring of water mites is bigger than one and predation is not
essential to their surviving. This result is according to the fact that mosquitoes
are not the only food source of water mites (other sources can be microcrustaceans
or other species of mites [9]). Some biological studies suggest that water mites
species could be a potential biological control of mosquito populations. In [8] it is
mentioned that Arrenurus mite parasitism appears to have a significant detrimental
effect on certain Aedes species of mosquitoes that are common in Canada. Acarine
genera predators of mosquitoes that could be biological controls are Limnesia that
consume large amounts of mosquito eggs and Piona that is a voracious predator of
mosquito larva [7].

Finally, we think that mathematical models jointly with experimental data could
be a powerful tool to address important questions concerning the dynamical inter-
actions of water mites and mosquitoes, and to assess the effectivity of biological
control of mosquitoes using water mites.

Resumo. Ácaros aquáticos (Hydrachnidia) são um grupo de artrópodos com um
ciclo de vida complexo que inclui fase larval e três estágios de ninfa. As larvas de
ácaros parasitam insetos aquáticos e semi-aquáticos, enquanto deutoninfas e ácaros
adultos são predadores de larvas e ovos. Como muitas famı́lias de ácaros aquáticos
estão associadas a mosquitos, existe um grande interesse em estudar o potencial
uso desses ácaros como controladores biológicos de Aedes aegypti. O objetivo do
trabalho é analisar e determinar, por meio de modelagem matemática, o impacto
de parasitismo e predatismo na população de mosquitos pelos ácaros. Discute-se
diferentes cenários que surgem quando se variam parâmetros relacionados com pre-
datismo e parasitismo. Taxa elevada de parasitismo e taxa moderada de predatismo
podem resultar na co-existância das duas espécies longe da extinção de ambas.
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