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An Explicit Jordan Decomposition of Companion

Matrices1
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rianópolis, SC, Brazil.
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Abstract. We derive a closed form for the Jordan decomposition of companion
matrices including properties of generalized eigenvectors. As a consequence, we
provide a formula for the inverse of confluent Vandermonde matrices and results
on sensitivity of multiple roots of polynomials.

1. Introduction

We are concerned with the Jordan form of companion matrices of the form

C = [e2, e3, . . . , em−1,−a], (1.1)

where ei denotes the ith column of I, the m × m identity matrix, and aT =
[a0, a1, . . . , am−1] with ai ∈ IC (superscript T denotes the transpose of a vector
or matrix). Such a form plays an essential role in solving a variety of problems
in science and engineering [1, 2, 3, 5, 9, 11]. Let λ1, . . . , λp denote the p distinct
eigenvalues of C and let m1, . . . ,mp denote their respective algebraic multiplicities.
Then, since C is a nonderogatory matrix [8, 10], a particular Jordan decomposition
of C can be written as0B� Jλ1

. . .

Jλp

1CA =

264 L1

...
Lp

375C[R1 . . . Rp] ≡ L C R,

where for i = 1, . . . p,

Jλi
=

0BBB� λi 1

. . .
. . .

λi 1
λi

1CCCA ∈ ICmi×mi

and
LR = RL = I, (1.2)
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where Ri ∈ ICm×mi and Li ∈ ICmi×m. The columns of Ri (resp. L∗
i ) represent

a right (resp. left ) Jordan chain associated with λi the leading eigenvector being

Rie
[mi]
1 (resp. L∗e

[mi]
mi ). The star symbol denotes conjugate transpose, i.e., L∗ = L̄T ,

and e
[mi]
j is the j-th column of the mi ×mi identity matrix.

Companion matrix C has the property that the coefficients of its characteris-
tic polynomial are the the a’s themselves: π(t) = det(tI − C) = a0 + a1t + · · · +
am−1t

m−1 + tm. Because of this, issues regarding roots of polynomials can be dis-
cussed using the Jordan decomposition of C. The goal of this work is to describe
a closed form for the Jordan decomposition of C, concentrating on properties of
generalized eigenvectors and issues regarding the sensitivity of the roots of π.

2. Explicit Jordan Decomposition

We start by providing a technical result.

Lemma 1. For arbitrary λ ∈ IC we set φ(λ) = [1, λ, . . . , λm−1]T ∈ ICm and define by
φ(m)(λ) the m-th derivative of φ(λ) with respect to λ. Let H be the m×m matrix

H =

2666664 a1 a2 · · · am−1 1
a2 · · · am−1 1
.

.

.

.

.

. 1
am−1 1

1

3777775 . (2.1)

Then for any integers i and j, there holds φ(i)T (λ)
i! H φ(j)(λ)

j! = π(i+j+1)(λ)
(i+j+1)! .

Proof. The proof is done by induction on i without difficulties.

Proposition 2. Define ri = H φ(i−1)(λl)
(i−1)! . The set of vectors {r1, · · · , rml

} is a

right Jordan chain of C associated with the eigenvalue λl and r1 is the leading right

eigenvector. Similarly, define l̆i = φ̄(ml−i)(λl)
(ml−i)! . The set {l̆1, · · · , l̆ml

} is a left Jordan

chain of C associated with the eigenvalue λl and l̆ml
is the leading left eigenvector.

The left and right generalized Jordan chains are normalized so that

L̆l Rl ≡




l̆∗1
...

l̆∗ml


 [r1 . . . rml

] =




α1 α2 . αml−1
αml

. . . αml−1

. . .
. α2

α1




≡ Fl, (2.2)

where αi = π(ml+i−1)(λl)
(ml+i−1)! .

Proof. For arbitrary λ of multiplicity q consider the vectors r1, . . . , rq. It is clear
that these vectors are linearly independent. Thus, if we set r0 = 0, we have to prove
that r1 is a right eigenvector of C associated with λ and that

(C − λI)rj = rj−1, 1 ≤ j ≤ q. (2.3)
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For this, if x = [x1 · · ·xm]T is a right eigenvector of C associated with λ then

Cx = λx⇐⇒





−a0xm = λx1

x1 − a1xm = λx2

...
xm−1 − am−1xm = λxm

.

This shows that xm cannot vanish otherwise x would be the 0 vector. Setting
xm = 1 it is easy to see that x = Hφ(λ) and thus one has

CHφ(λ) = λHφ(λ). (2.4)

We now prove conditions (2.3). Taking derivative with respect to λ in (2.4) we have

CHφ(1)(λ) = Hφ(λ) + λHφ(1)(λ). (2.5)

This shows that (2.3) holds for j = 2, and an inductive argument obtained by re-
peated differentiation of (2.5) concludes the proof in the case of the right generalized
eigenvectors. A similar proof can be obtained for the generalized left eigenvectors
by starting with φ(λ)TCT = φ(λ)Tλ instead of (2.4) and taking the derivatives of
this equality. The normalization factors αi are a consequence of Lemma 1.

To obtain the Jordan decomposition, we transform the left Jordan chain so that
the normalization (1.2) holds.

Proposition 3. Define L∗
l = [l1, . . . , lml

] = L̆∗
l F

−∗
l . The set {l1, . . . , lml

} is a left
Jordan chain of C associated with the eigenvalue λl, lml

being the leading left eigen-
vector. The left and right generalized Jordan chains are normalized so that LlRl =
I ∈ IRml×ml . Similarly, if R̆l = [r̆1, . . . , r̆ml

] = [r1, . . . rml
]F−1

l , then {r̆1, . . . , r̆ml
}

is a right Jordan chain of C associated with λl, and L̆lR̆l = I ∈ IRml×ml .

Proof. Let γi be defined by the recursion

γ1 = 1/α1,

γi+1 = − 1
α1

∑i
k=1 αi−k+2γk, i = 1, . . .ml − 1

,

in such a way that

G =

0BBBB� γ1 γ2 . γml−1 γml

. . . γml−1

. . .
. γ2

γ1

1CCCCA = F−1

l .

The set {¯̆lml
. . .

¯̆
l1} forms a right Jordan chain of CT associated with λl. For any

nonsingular matrix X commuting with Jλl
, [

¯̆
lml

. . .
¯̆
l1]X is a right Jordan chain CT

associated with λl. By definition of the li’s, [ lml
. . . l1 ] = [ l̆ml

. . . l̆1 ] Ḡ.
A direct computation shows that G commutes with Jλl

, which implies that
{l̄ml

, · · · , l̄1} is a right Jordan chain of CT associated with λl, that is, {ll, . . . , lml
}
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is a left Jordan chain of C associated with λl. Additionally, since by definition of
the γi’s, GFl = FlG = I, it follows




l∗1
...
l∗ml


 [r1 . . . rml

] = G




l̆∗1
...

l̆∗ml


 [r1 . . . rml

] = I,

and the first part of the proposition is proved. The proof of the remaining part is a
consequence of Eq. (2.2) since [r1 . . . rml

]F−1
l is a right Jordan chain of C associated

with λl as we have seen that F−1 commutes with Jλl
.

An immediate consequence of Prop. 3 is an explicit formula for computing the
inverse of confluent Vandermonde matrices as described below

Corollary 4 (Inversion formula). Let L̆ be the confluent Vandermonde matrix de-
fined by L̆∗ = [L̆∗

1 . . . L̆
∗
p]. Then

L̆−1 = [R1 · · ·Rp]F
−1 with F = diag(F1, . . . , Fp).

2.1. Numerical illustration: Jordan decomposition

We present an illustration of the above notions for m = 5, (λ1,m1) = (1, 2),
(λ2,m2) = (2, 2), (λ3,m3) = (3, 1), in which case, π(t) = (t− 1)2(t− 2)2(t− 3). We
show how to obtain easily a Jordan form of the companion matrix associated with
π. Note that π(t) = t5 − 9t4 + 31t3 − 51t2 + 40t− 12.

• Case of λ = 1, m1 = 2.
From (t − 2)2(t − 3) = t3 − 7t2 + 16t − 12 and (t − 1)(t − 2)2(t − 3) =

t4 − 8t3 + 23t2 − 28t+ 12 follows using Prop. 5 and the definition of l̆i that

R1 =

0BBBB� 12 −12
−28 16

23 −7
−8 1

1 0

1CCCCA and L̆∗

1 =

0BBBB� 0 1
1 1
2 1
3 1
4 1

1CCCCA .

From π(2)(1)/2 = −2 and π(3)(1)/6 = 5, we obtain

F1 =

�
−2 5

0 −2

�
, F−1

1 =
1

4

�
−2 −5

0 −2

�
, and L∗

1 = L̆∗

1F
−∗

1 =
1

4

0BBBB� −5 −2
−7 −2
−9 −2

−11 −2
−13 −2

1CCCCA .

• The same calculation for the two remaining roots gives

R = [R1, R2, R3] =

0BBBB� 12 −12 6 −3 4
−28 16 −17 7 −12

23 −7 17 −5 13
−8 1 −7 1 −6

1 0 1 0 1

1CCCCA
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and

L∗ = [L∗

1, L
∗

2, L
∗

3] =
1

4

0BBBB� −5 −2 4 −4 1
−7 −2 4 −8 3
−9 −2 0 −16 9

−11 −2 −16 −32 27
−13 −2 −64 −64 81

1CCCCA ,

yielding a Jordan decomposition RJL = C, where J (a Jordan matrix) and
C are of the form

J =

0BBBB� 1 1 0 0 0
0 1 0 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 3

1CCCCA , C =

0BBBB� 0 0 0 0 12
1 0 0 0 −40
0 1 0 0 51
0 0 1 0 −31
0 0 0 1 9

1CCCCA .

3. Generalized Eigenvector Properties

It is known that right eigenvectors of companion matrices like C in (1.1) can be
computed by finding the vector of coefficients of π(t)/(t − λl) (see, e.g., Toh and
Trefethen [6] or Bezerra and Bazán [3, Prop. 2.4]). In our notation this reads

π1(t) = π(t)/(t− λl) ≡ φ(t)T r1.

In what follows we extend this result to the complete right Jordan chain.

Proposition 5. Define πi(t) = φ(t)T ri (i = 1, . . . ,ml) where ri are generalized
right eigenvectors of C as introduced in Prop. 2. Then πi is a monic polynomial of
degree m− i of the form

πi(t) = (t− λl)
ml−i

p∏

j=1

j 6=l

(t− λj)
mj . (3.1)

Proof. It is clear that all πi are monic polynomials of degree m− i. The definition
of the ri’s and successive differentiation imply

π1(t) = φT (t)Hφ(λl)

π
(1)
1 (t) = φ(1)T

(t)Hφ(λl)
...

π
(i)
1 (t) = φ(i)T

(t)Hφ(λl)
...

π
(ml−1)
1 (t) = φ(ml−1)T

(t)Hφ(λl).

(3.2)

If t = λl, Prop. 1 implies that for i = 1, . . . ,ml, (3.2) becomes

πi(λl) = π
(i−1)
1 (λl) = (i− 1)!φT (λl)H

φ(i−1)(λl)

(i− 1)!
= (i− 1)!πi−1(λl).
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But since λl is a multiple root of π, this equality implies that λl is a root of πi

(i = 1 . . .ml − 1) and a recursive argument shows that this root is of multiplicity
ml−i. If t = λk 6= λl, a similar procedure and the existing biorthogonality condition
between left and right generalized eigenvectors leads to

πi(λk) = π
(i−1)
1 (λk) = (i− 1)!φT (λl)H

φ(i−1)(λk)

(i− 1)!
= 0,

which concludes the proof.

It is instructive to describe the meaning of this proposition. Let Ci (i =
1, . . . ,ml − 1) denote the (m − i) × (m − i) companion matrix associated with
the polynomial πi and, for i = 1, . . . ,ml, let ři be the vector formed by taking the
first m − i + 1 components of ri. Then, with the convention that C0 = C, the
proposition ensures that

Ci−1ři = λlři, i = 1, . . .ml, (3.3)

and λl is a simple eigenvalue of the companion matrix Cml−1. For future reference,
the left eigenvector of of Cml−1, will be denoted by ψ(λl). It is defined by

ψ(λl) = [1, λ̄l, · · · , λ̄m−ml

l ]T . (3.4)

4. Condition Estimation

We analyze the sensitivity of the roots of π(t) to perturbations in the coefficients aj

viewing the roots as eigenvalues of the companion matrix C. Let π̃(t) denote the

monic polynomial with coefficients ãi = ai + ∆ai and let C̃ denote the associated
companion matrix. Then, depending on the way the perturbations ãj are measured,
different condition numbers for λ can be obtained. Suppose for instance that the
∆aj ’s are assumed to satisfy the componentwise inequalities

|∆ai| ≤ ǫαi, i = 0, . . . ,m− 1, (4.1)

where αj are arbitrary non negative real numbers, and let λ̃j , j = 1, . . . d, denote

the eigenvalues of C̃ for ǫ small enough. For the so-called componentwise model of
perturbations defined by (4.1), we have the definition below, where for simplicity,
λl and its corresponding multiplicity ml will be denoted by λ and d, respectively,
and |∆λ| = maxj=1,...,d |λ− λ̃j |.

Definition 6. [4] The componentwise relative condition number of the root λ of
multiplicity d is defined by

κC(λ) = lim
ǫ→0

sup
|∆aj |≤ǫαj

|∆λ|
|λ|ǫ1/d

. (4.2)

A precise description of κC(λ) is given in the proposition below.
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Proposition 7. Suppose the perturbations ∆aj satisfy (4.1). Then the componen-
twise relative condition number of the root λ of multiplicity d, κC(λ), is

κC(λ) =
1

|λ|

(
d!
∑m−1

j=0 |λj |αj

|π(d)(λ)|

)1/d

. (4.3)

Proof. A sketch of the proof is as follows. Let {λ̃, r̃} be a right eigenpair of C̃ =

C + ∆C. If λ̃ = λ+ ∆λ, r̃ = r+ ∆r, then (C + ∆C)(r + ∆r) = (λ+ ∆λ)(r + ∆r),
iff C∆r + ∆Cr + ∆C∆r = λ∆r + ∆λr + ∆λ∆r. Now since by by Prop. 2.2, the
right eigenvector r̃ of C̃ satisfies r + ∆r = H̃φ(λ̃), where H̃ = H + ∆H has the
same structure as H but with entries ãj = aj + ∆aj , it can be proved that the

m-th component of ∆r equals zero. From this and the fact that ∆C = −∆ae
[m]∗
m

where ∆a = [∆a0, . . . ,∆am−1]
T gives ∆C∆r = 0. Some algebraic manipulations

lead then to the following first order result

∆λd =
d!φT (λ)∆a

π(d)(λ)
, (4.4)

from which the proof follows.

Remark. Another condition number for λ can be readily obtained when the per-
turbations are assumed to satisfy

‖∆a‖2 ≤ δα, (4.5)

where α is an arbitrary positive real number (e.g., α = ‖a‖2). This gives rise to the
so-called normwise relative condition number κ(λ) which is given by

κ(λ) =
1

|λ|

(
d!‖φ(λ)‖‖a‖
|π(d)(λ)|

)1/d

. (4.6)

When the perturbations are measured in a normwise absolute sense, i.e., when α = 1
in (4.5), the normwise absolute condition κa(λ) can be shown to satisfy

κa(λ) = |λ|κ(λ). (4.7)

Observe that the multiple eigenvalue λ can be viewed as a simple eigenvalue of the
companion matrix Cd−1 in (3.3) (see the remark after Prop. 5). In what follows we
shall see that κa(λ) and κa(λ) can be related to the Wilkinson condition number of
λ viewed as a simple eigenvalue of Cd−1; this condition number is defined by [12]

κW(λ) =
‖ψ(λ)‖2‖řd‖2

|ψ∗(λ)řd|
. (4.8)

Proposition 8. Assume that the perturbation ∆a satisfies the model (4.5) with
α = ‖a‖2. Then the condition number κ(λ) given in (4.6) satisfies

κ(λ) ≤ 1 + |λ|
|λ|

( ‖a‖2
2

1 + ‖a‖2
2

) 1
2d

κ
W

(λ)1/d

( ‖φ(λ)‖2

‖ψ(λ)‖2

)1/d

. (4.9)
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Proof. Observe that using Prop. 2 and the property φT (λ)rd = ψ∗(λ)řd (see (3.3)
again), (4.6) can be rewritten as

κ(λ) =
1

|λ|

(‖φ(λ)‖2‖rd‖2

|φT (λ)rd|

)1/d

(
‖a‖2

‖rd‖2
)1/d =

1

|λ|κW
(λ)1/d ‖φ(λ)‖1/d

2

‖ψ(λ)‖1/d
2

‖a‖1/d
2

‖rd‖1/d
2

.

We now recall that vector rd in (4.9) contains the coefficients of the monic polyno-
mial πd that is of degree m− d (see the remark after Prop. 5). Set q = m− d− 1,
rd = [c0, c1, · · · , cq, 1, 0 · · · 0]T ≡ [řT

d , 0 · · · 0]T and collect the coefficients of the poly-
nomial (t−λ)d = b0 +b1t+ · · ·+bd−1t

d−1 + td in a vector b = [b0, b1, · · · , bd−1 1]T .
Some algebraic manipulations and Prop. 5 give then

π(t) = (t− λ)dπd(t) ⇔
[
a
1

]
= B řd. (4.10)

where B is an (m + 1) × (m − d + 1) lower triangular Toeplitz matrix whose first
column vector is [b0, b1, . . . , bd−1, 1, 0, . . . , 0]T . Since ‖B‖2 ≤

√
‖B‖1‖B‖∞ = ‖B‖1,

(4.10) gives
1 + ‖a‖2

2 ≤ ‖B‖2
2‖rd‖2

2 = ‖B‖2
1‖rd‖2

2.

Hence, taking into account that ‖B‖1 = (1 + |λ|)d, as the bi’s are of the form
bi = λd−iCd

i (i = 0, . . . , d) where Cd
i are binomial coefficients of the expansion

(t−λ)d, we have ‖rd‖2 ≥
√

1 + ‖a‖2
2/(1+ |λ|)d. The proof follows on replacing this

lower bound in (4.9).

An immediate conclusion is that if d is not large and |λ| is a moderate number
then κ(λ) essentially depends on κW(λ). Thus if λ is a well conditioned eigenvalue of
the deflated companion matrix Cd−1 (or equivalently, a well conditioned simple root
of πd−1(t) ) and the ratio ‖φ(λ)‖2/‖ψ(λ)‖2 is rather small, then moderate values
for κ(λ) may be expected. We notice however that even if κ(λ) is small, the error
in λ strongly depends on the multiplicity d and the size of the perturbations ∆aj .
In general, if the perturbations ∆aj are small enough, the relative error in λ can be
estimated by the rule

|∆λ|/|λ| ≈ κ(λ)δ1/d. (4.11)

4.1. Numerical illustration: Condition estimation

We consider the polynomial π(t) = (t−λ)5(1+ t+ · · ·+ t15) with λ = (1+9s)+ si,
0 ≤ s ≤ 2. This example is designed to illustrate the role of the deflated polynomial
πd−1 (in this case d = 5, see Prop. 5) in estimating the sensitivity of a multiple root.
In fact, as in in this case the deflated polynomial πd−1(t) = (t−λ)(1+ t+ · · ·+ t15)
reduces to the polynomial t16 − 1 when λ = 1, all roots of which are known to
be extremely well-conditioned [7, Example 4.3], small condition numbers for the
multiple root λ can be expected provided that λ ≈ 1, the conditioning being more
favorable for the (simple) roots of π(t) (the roots of 1+ t+ · · ·+ t15). Indeed, if the

simple roots of π(t) are denoted by λ̆k, it can be proved that

κa(λ) =
(1 + |λ|2 + |λ|4 + · · · + |λ|38)0.1

∏15
k=1 |λ− λ̆k|0.2

, and κa(λ̆k) =

√
5

8

|λ̆k − 1|
|λ̆k − λ|5

.



Explicit Jordan Decomposition 217

λ κ(λ) κa(λ) κW ρ |∆λ|/|λ|

19 + 2ı 1.3169e + 1 1.0480e + 1 3.7970e + 0 1.3322e + 5 1.3169e − 1
15 + 1.5ı 1.0724e + 1 8.6469e + 0 3.7443e + 0 5.1642e + 4 1.0724e − 1
10 + ı 7.4747e + 0 6.2102e + 0 3.6221e + 0 1.0201e + 4 7.4747e − 2

5 + 0.5ı 3.9220e + 0 3.4955e + 0 3.2743e + 0 6.3756e + 2 3.9220e − 2
1.45 + 0.05ı 1.5800e + 0 1.1384e + 0 1.7266e + 0 4.4310e + 0 1.5800e − 2

1 1.2693e + 0 7.7495e − 1 1.0000e + 0 1.1180e + 0 1.2693e − 2

Table 1: Condition numbers, ratio ρ = ‖φ(λ)‖2/‖ψ(λ)‖2 and predicted errors .

Some numerical results displayed in Table 1 corresponding to several λ’s confirm
the theoretical prediction. The table includes condition numbers, the predicted
eigenvalue error described in (4.11), and the ratio ρ = ‖φ(λ)‖2/‖ψ(λ)‖2. Also, and
mainly to verify the theoretical prediction of the error, approximate roots obtained
from polynomials with coefficients ãj = aj + ∆aj where ∆aj are random numbers
satisfying a normwise relative error δ = 10−10, are displayed in Figure 1. All
computations were performed using MATLAB.

The results confirm that moderate values of κ(λ) do not necessarily imply small
eigenvalue errors when the multiplicity is rather large and that reasonably small
errors can be expected when both the Wilkinson condition number κ

W
(λ) and the

ratio ρ are small. The relative insensitivity of simple roots is also apparent, as
predicted.

−2 0 2 4 6 8 10 12 14 16 18
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 1: Exact and approximate eigenvalues: Case 1: λ = 15 + 1.5ı. ◦: Exact
eigenvalue, ∗ : Approximate eigenvalue. Case 2: λ = 10 + ı. ◦: Exact eigenvalue,
+ : Approximate eigenvalue.
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Final Remark

We have presented an explicit Jordan decomposition of companion matrices and re-
sults on sensitivity of roots of polynomials. Efficient implementation of the formula
for the inverse of confluent Vandermonde matrices is the subject of ongoing work.
The results on sensitivity of multiple roots, on the other hand, contribute to clarify
an important problem in numerical analysis usually overlooked so far.
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