
TEMA Tend. Mat. Apl. Comput., 7, No. 2 (2006), 249-258.

c© Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional.

Interval Term Rewriting System:

Toward A Formal Model for Interval Computation

A.X. CARVALHO1, R.H.N. SANTIAGO2, Departamento de Informática e
Matemática Aplicada – DIMAp, Universidade Federal do Rio Grande do Norte,
59078-970 Natal, RN, Brasil.

Abstract. We present a term rewriting system for interval arithmetic (addition,
subtraction and multiplication), toward a mathematical model for interval compu-
tation. We start presenting a term rewriting system whose rules (directed equa-
tions) perform binary floating-point arithmetic, which is based on IEEE-754 Stan-
dard. Next, this primitive system is extended with rules for interval arithmetic.
Finally, correctness and termination of our system are both discussed.

1. Introduction

Computational representation of real numbers on actual machines is usually done by
floating-points, which belong to a finite subset F of rational numbers Q and are used
as approximations for real numbers. The abstract definition of such systems is com-
monly done as a mathematical structure (a model) of the form F = 〈F, b, t, e1, e2, O〉,
where F ⊂ Q is the set of all machine numbers, b is the numerical base (binary,
decimal etc), t is the precision, e1 the minimum exponent and e2 the maximum
exponent of the system, and, finally, O : R → F , a rounding function. A complete
overview about floating-points as a partial algebra can be found at [4].

Since the representation of real numbers as floating-points leads to accumulative
rounding errors and lack of error control in successive arithmetic operations, interval
computation (and others self-validated methods) arose as a more accurate approach,
where a real number is approximated by an interval which contains it. A good
introduction for interval analysis and computation can be found at [8].

In this paper, we briefly define a formal model for interval arithmetic, which
complete description is in reference [3]. The mathematical computational model is
a term rewriting system (TRS) [1, 10], and it is intended to be correct, total, closed,
optimal and efficient, in order to provide an operational semantics for languages and
systems which make use of intervals as strategy for representation of real numbers.
Furthermore, since a TRS is a Post system (see [2]), we also hope to bring up a
basis for the development of a model of computability for real numbers.

1adrianoxc@gmail.com
2regivan@dimap.ufrn.br,regivan.santiago@gmail.com

250 Carvalho and Santiago

Section 2. introduces basic concepts and mathematical issues in rewriting sys-
tems area. Section 3. presents FTRS, a TRS whose rules perform binary floating-
point arithmetic according to IEEE-754 Standard [7]. In Section 4., this primitive
TRS is extended with rules for interval arithmetic. Finally, in Section 5., we talk
about correctness and termination of our system and we remark some future work.

2. Term Rewriting Systems

In order to mechanize as much as possible the equational reasoning, it should be
considered the problem of finding a decision procedure for equational theories. This
problem is usually instanced in the group theory (see [1] and [10]), defined by the
following axioms, where “∗” is a binary associative operation, “e” is the identidy
element of that operation, and i(x) designates the inverse of x:

x ∗ e = x

x ∗ i(x) = e

(x ∗ y) ∗ z = x ∗ (y ∗ z)

The proof that “e” is also left-identidy can be done by equational replacement
as follows (from [10] pp. 83):

e ∗ x = e ∗ (x ∗ e) = e ∗ (x ∗ (i(x) ∗ i(i(x))))
= e ∗ ((x ∗ i(x)) ∗ i(i(x))) = e ∗ (e ∗ i(i(x)))
= (e ∗ e) ∗ i(i(x)) = e ∗ i(i(x)) = (x ∗ i(x)) ∗ i(i(x))
= x ∗ (i(x) ∗ i(i(x)) = x ∗ e = x

Automating this proof needs to guess which is the suitable axiom to be applied
at each step, in which direction, and possibly to backtrack. The idea of rewriting is
to suppress backtracking, by imposing directionality in the use of equations. This
introduces the notion of rewrite rule:

Definition 2.1. A rewrite rule is an ordered pair of terms denoted by l → r.

Contrarily to equalities, one rule is applied by replacing an instance of the left-
hand side by the same instance of its right-hand side, but never the converse.

Definition 2.2. A term rewriting system (TRS) is a set of rewrite rules.

Mathematically, a TRS is a structure 〈TΣ(X),→〉, where TΣ(X) is a set of
symbolic objects and → is a binary relation.

Definition 2.3. Given a TRS R, a rewriting relation, denoted by →R, is the

binary relation induced on terms by R.

A notable propriety of a rewriting relation resides on its termination:

Definition 2.4. A rewriting relation →R, on the set of terms, is terminating iff

there is no infinity descendent chain t′ →R t′′ →R

Interval Term Rewriting System 251

3. Floating-point TRS

In this section, Floating-point Term Rewriting System (FTRS) is revisited. For
short, we present only constructors and addition, as a sample arithmetic operation.
The complete system can be seen at [3].

Operations on digits, integers (lists of digits) and floating-points (concatenated
fixed size lists) are indexed by “D”, “Z” e “F”, respectively. The list constructor
“:” and the arithmetic on integers were strongly inspired in [9]. See also [11]. Terms
representing floating-points are defined by the constructor “;”, which concatenates
the digit of signal, the list of exponent and the list of fraction (just as in IEEE-754
Standard, the implicit bit of significand is not represented). Constructors express
the formats described in [7] pp. 2-3, which is also summarized in [6] pp. 6.

For readability reasons, floating-point constructors stand for precision of three
bits for exponent and five bits for fraction, but FTRS can be easily adapted for
each precision defined in IEEE-754 Standard, since equations for arithmetic were
defined for generic precision. Moreover, we use list variables “e any” and “f any”
as short for arbitrary exponents “((END : e0) : e1) : e2” and arbitrary fractions
“((((END : f0) : f1) : f2) : f3) : f4”, respectively, where ei and fi are digit variables
(e.g. see some rules at section 3.1.).

Constants in Table 1 represent special integers (lists) which must be set ac-
cording to the desired precision, in this case, three bits for exponent and five for
fraction, as mentioned above. Due to the IEEE-754 biased exponent representation,
the special exponent “1” (which is interpreted as 1−bias) is semantically equivalent
to the denormalized exponent “0” (which is interpreted as −bias + 1).

Name Value Description
e size (END : 1) : 1 Bits for exponent.
f size ((END : 1) : 0) : 1 Bits for fraction.
e min ((END : 0) : 0) : 0 Minimum exponent.
e max ((END : 1) : 1) : 1 Maximum exponent.
e esp ((END : 0) : 0) : 1 Special exponent.
f min ((((END : 0) : 0) : 0) : 0) : 0 Minimum fraction.
f max ((((END : 1) : 1) : 1) : 1) : 1 Maximum fraction.

Table 1: Precision dependent constants

In the following, expertise on IEEE-754 Standard will be assumed.

3.1. Constructors

Firstly, we present interpretation of constructors. On later, rules for arithmetic.

/* Digits */
‖0‖ = 0 ‖1‖ = 1 ‖10‖ = 2

/* Positive integer */ /* Negative integer */ /* End of list */
‖l : d‖ = ‖d‖ + 2 × ‖l‖ ‖MINUS(l)‖ = −‖l‖ ‖END‖ = 0

252 Carvalho and Santiago

Let be s ∈ {0, 1} and the list variables e any = ((END : e0) : e1) : e2 and
f any = ((((END : f0) : f1) : f2) : f3) : f4, which sizes reflect the precision,
arbitrarily chosen, of the system. Floating-points constructors are given by:

/* Zero */
‖s; e min; f min‖ = 0

/* Denormalized number */
‖s; e min; f any‖ = (−1)‖s‖ × (0 + ‖f any‖ × 2−f size) ×2−bias+1,

if (f any 6= f min)
/* Normalized number */

‖s; e any; f any‖ = (−1)‖s‖ × (1 + ‖f any‖ × 2−f size) ×2‖e any‖−bias,
if (f any 6= f min) and (f any 6= f max)

/* Infinity */
‖s; e max; f min‖ = (−1)‖s‖ ×∞
/* Signalling NaN: “invalid” */
‖s; e max; f any‖ = SNaN ,

if (f0 = 0) and (f any 6= f min)
/* Quiet NaN: “indeterminate” */

‖s; e max; f any‖ = QNaN

if (f0 = 1)

3.2. Addition

Here addition of floating-points is shown. For underlying operations on digits and
integers, see [3, 9].

Some problems arise when we formalize arithmetic on IEEE-754 floats. The first
one is how to syntactically represent the implicit digit, which is not captured by
constructors, although it is required for operations. The system provides the rules
put and cut to solve this problem.

/* Includes the implicit bit */
put(END) → END : 1
put(x : y) → put(x) : y

‖put(t)‖ = ‖t‖ + ‖1‖ × 2‖length(t)‖

/* Excludes the implicit bit */
cut(END : y) → END

cut((w : x) : y) → cut(w : x) : y

‖cut(t)‖ = ‖t‖ − ‖1‖ × 2‖length(t)‖−1

Performing addition of floats, we have to equal the exponents of operands. The
rshift function increments the least exponent up to the greatest one.

/* Increments the exponent:
fraction is shifted, by truncating right bits (rounding to zero!) */

rshift(x, e min) → x

rshift(x : y, z) → rshift(x, z −Z (END : 1))
‖rshift(t, t′)‖ = ‖t‖ × 21−‖t′‖

Interval Term Rewriting System 253

Two more auxiliar functions:

/* Switches the signal */
symm(0;x; y) → 1;x; y
symm(1;x; y) → 0;x; y

/* Calculates the size */
length(END) → END : 0

length(x : y) → (END : 1) +Z length(x)
length(MINUS(x)) → length(x)

During computations, machines need to map floating-point arithmetic state-
ments into objects which is possibly not IEEE-754 Standard floating-points. The
Standard establishes that this objects (called “destinations”) must be formatted
according to the selected precision.

The above requirement is performed by the normaddF function, which is defined
in four cases, depending on both the exponent value and the resulting fraction size:

/* ...normalized exponent */
normaddF(s;x; y) → s;x +Z (length(y) −Z f size); rshift(y, length(y) −Z f size),

if (x 6= e min) and ((x +Z (length(y) −Z f size)) ≤ e max)
/* ...denormalized exponent, suitable fraction: nothing to do */

normaddF(s; e min; y) → s; e min; y,
if (length(y) = f size)

/* ...denormalized exponent, too large fraction: normalization required */
normaddF(s; e min; y) → s; e esp; cut(y),

if (length(y) > f size)
/* ...overflow: raises QNaN */

normaddF(s;x; y) → s; e max; f max,
if (x +Z (length(y) −Z f size)) > e max

The following rules describe addition of floating-points. Firstly, the trivial cases
are listed:

/* Pos Zero + Any Pos = Any Pos */
0; e min; f min +F 0; e′ any; f ′ any → 0; e′ any; f ′ any

/* Pos NaN + Any Pos = Pos NaN */
0; e max; f any +F 0; e′ any; f ′ any → 0; e max; f any,

if (f any 6= f min)
/* Pos Infinity + Pos Num = Pos Infinity */

0; e max; f min +F 0; e′ any; f ′ any → 0; e max; f min,
if (e′ any 6= e max)

/* Pos Infinity + Pos Infinity = Pos Infinity */
0; e max; f min +F 0; e max; f min) → 0; e max; f min

/* Pos Infinity + Pos NaN = Pos NaN */
0; e max; f min +F 0; e max; f ′ any → 0; e max; f ′ any,

if (f ′ any 6= f min)
/* Pos Num + Zero Pos = Pos Num */

254 Carvalho and Santiago

0; e any; f any +F 0; e min; f min → 0; e any; f any,
if (e any 6= e max)

/* Pos Num + Pos Infinity = Pos Infinity */
0; e any; f any +F 0; e max; f min → 0; e max; f min,

if (e any 6= e max)
/* Pos Num + Pos NaN = Pos NaN */

0; e any; f any +F 0; e max; f ′ any → 0; e max; f ′ any,
if (e any 6= e max) and (f ′ any 6= f min)

From this point, non-trivial cases of floating-point addition will be considered. Note
that each implicit bit is concatenated to its respective fraction by put; the greatest
exponent is taken as the exponent of the sum, while the least one is right shifted in
a manner that the both become equals.

/* Pos Norm Num + Pos Norm Num: e ≥ e′ */
0; e any; f any +F 0; e′ any; f ′ any →

normaddF(0; e any; cut(put(f any) +Z rshift(put(f ′ any), e any −Z e′ any)),
if (e any 6= e min) and (e any 6= e max) and (e′ any 6= e min) and

(e′ any 6= e max) and (e any ≥ e′ any)
/* Pos Norm Num + Pos Norm Num: e < e′ */

0; e any; f any +F 0; e′ any; f ′ any →
normaddF(0; e′ any; cut(rshift(put(f ′ any), e′ any −Z e any) +Z put(f any))),

if (e any 6= e min) and (e any 6= e max) and (e′ any 6= e min) and
(e′ any 6= e max) and (e any < e′ any)

Next rules sum up a normalized (exponent e any) and a denormalized (exponent
e min) number. The system musts to do a check: If e any = e esp, it does not try
to equal the exponents, because e esp is semantically equal to e min, the difference
is in the implicit bit (“1” for e esp and “0” for e min).

/* Pos Norm Num + Pos Denorm Num: e = e esp */
0; e any; f any +F 0; e min; f ′ any →

normaddF(0; e any; cut(put(f any) +Z f ′ any))),
if (e any 6= e min) and (e any 6= e max) and

(f ′ any 6= f min) and (e any = e esp)
/* Pos Norm Num + Pos Denorm Num: e > e esp */

0; e any; f any +F 0; e min; f ′ any →
normaddF(0; e any; cut(put(f any) +Z rshift(f ′ any, e any −Z e esp)),

if (e any 6= e min) and (e any 6= e max) and
(f ′ any 6= f min) and (e any > e esp)

/* Pos Denorm Num + Pos Norm Num: */
0; e min; f any +F 0; e′ any; f ′ any → 0; e′ any; f ′ any +F 0; e min; f any,

if (f any 6= f min) and (e′ any 6= e min) and (e′ any 6= e max)

To sum up two denormalized floating-points, it is enough to sum up their fractions:

/* Pos Denorm Num + Pos Denorm Num: */
0; e min; f any +F 0; e min; f ′ any → normaddF(0; e min; f any +Z f ′ any),

if (f any 6= f min) and (f ′ any 6= f min)

Interval Term Rewriting System 255

In order to avoid redundant rules and cyclic rewrite steps, we map addition involving
operands with different signals into the counterpart subtraction:

/* Positive + Negative */
0; e any; f any +F 1; e′ any; f ′ any → 0; e any; f any −F 0; e′ any; f ′ any

/* Negative + Positive */
1; e any; f any +F 0; e′ any; f ′ any → 0; e′ any; f ′ any −F 0; e any; f any

The sum of any two negatives operands is mapped into the sum of the respective
symmetric values, and then the signal is switched:

/* Negative + Negative */
1; e any; f any +F 1; e′ any; f ′ any → symm(0; e any; f any +F 0; e′ any; f ′ any)

3.3. Comparison function

Here we improve FTRS by providing the cmp function, which compares two floating-
points a and b and returns “0” if a ≤ b, or “1” if b ≤ a, or “2” if either a or b is a NaN.
Next section, cmp will be used to identify the minimum of two given floating-points.
It should be noted that, according to IEEE-754 Standard, a NaN is incomparable
to any another floating-point. This simplified implementation of cmp deliberately
introduces critical pairs in the system. See [3] pp. 94 for a full description of cmp.

/* Negative < Positive */
cmp(1; e any; f any, 0; e′ any; f ′ any) → 0,

/* Positive > Negative */
cmp(0; e any; f any, 1; e′ any; f ′ any) → 1,

/* NaN’s are not ordered */
cmp(s; e any; f any, s′; e′ any; f ′ any) → 2,

if (e any = e max and f any 6= e min) or (e′ any = e max and f ′ any 6= e min)
/* cmp(-a, -b) => cmp(b, a) */

cmp(1; e any; f any, 1; e′ any; f ′ any) → cmp(0; e′ any; f ′ any, 0; e any; f any)
/* cmp(a, b) => cmp(a-b, b-a) */

cmp(0; e any; f any, 0; e′ any; f ′ any) →
cmp(0; e any; f any −F 0; e′ any; f ′ any, 0; e′ any; f ′ any −F 0; e any; f any)

4. Interval TRS

Now we present Interval TRS, which extends FTRS with rules for Moore’s interval
arithmetic, in order to provide a formal model for interval computation. Equations
presented here express algorithms from Hickey [5], which is proved to be correct,
total, closed, optimal and efficient. See also [8]. Subtraction and multiplication of
floats, which were omitted in Section 3. for lack of space, can be found at [3].

Following Hickey, we define an IEEE-standard interval as a real interval
whose endpoints are represented by IEEE floating-point numbers, and we also re-
quire that “−0” can only appear as a right endpoint, and “+0” can only appear
as a left endpoint. Moreover, we define an Interval NaN (INaN) as a pair of

256 Carvalho and Santiago

floating-points where either left or right element is a NaN. The definition of INaN
assures fault tolerance when underlying operations on endpoints result NaN.

For readability reasons, we use in this section simple variables a, b, c, and d for
floating-points at interval endpoints. Furthermore, we will refer to their respective
signal bits simply as as, bs, cs and ds.

4.1. Constructors

Order on endpoints is checked by using the auxiliar function cmp, which is also
useful for distinguishing between intervals and INaN’s.

/* IEEE-standard interval */
‖〈a, b〉‖ = {x ∈ [−∞,+∞] | ‖a‖ ≤ x ≤ ‖b‖},

if (cmp(a, b) = 0)

/* Interval NaN (INaN) */
‖〈a, b〉‖ = ∅,

if (cmp(a, b) = 2)

4.2. Addition

〈a, b〉 +IF 〈c, d〉 → 〈a +F c, b +F d〉

4.3. Subtraction

〈a, b〉 −IF 〈c, d〉 → 〈a −F d, b −F c〉

4.4. Multiplication

/* Positive × Positive */
〈a, b〉 ×IF 〈c, d〉 → 〈a ×F c, b ×F d〉,

if (as = 0) and (bs = 0) and (cs = 0) and (ds = 0)
/* Mixed × Positive */

〈a, b〉 ×IF 〈c, d〉 → 〈a ×F d, b ×F d〉,
if (as = 1) and (bs = 0) and (cs = 0) and (ds = 0)

/* Negative × Positive */
〈a, b〉 ×IF 〈c, d〉 → 〈a ×F d, b ×F c〉,

if (as = 1) and (bs = 1) and (cs = 0) and (ds = 0)
/* Positive × Mixed */

〈a, b〉 ×IF 〈c, d〉 → 〈b ×F c, b ×F d〉,
if (as = 0) and (bs = 0) and (cs = 1) and (ds = 0)

/* Mixed×Mixed: a × d < b × c, a × c < b × d */
〈a, b〉 ×IF 〈c, d〉 → 〈a ×F d, b ×F d〉,

if (as = 1) and (bs = 0) and (cs = 1) and (ds = 0) and
(cmp(a ×F d, b ×F c) = 0) and (cmp(a ×F c, b ×F d) = 0)

/* Mixed×Mixed: a × d > b × c, a × c < b × d */

Interval Term Rewriting System 257

〈a, b〉 ×IF 〈c, d〉 → 〈b ×F c, b ×F d〉,
if (as = 1) and (bs = 0) and (cs = 1) and (ds = 0) and
(cmp(a ×F d, b ×F c) = 1) and (cmp(a ×F c, b ×F d) = 0)

/* Mixed×Mixed: a × d < b × c, a × c > b × d */
〈a, b〉 ×IF 〈c, d〉 → 〈a ×F d, a ×F c〉,

if (as = 1) and (bs = 0) and (cs = 1) and (ds = 0) and
(cmp(a ×F d, b ×F c) = 0) and (cmp(a ×F c, b ×F d) = 1)

/* Mixed×Mixed: a × d > b × c, a × c > b × d */
〈a, b〉 ×IF 〈c, d〉 → 〈b ×F c, a ×F c〉,

if (as = 1) and (bs = 0) and (cs = 1) and (ds = 0) and
(cmp(a ×F d, b ×F c) = 1) and (cmp(a ×F c, b ×F d) = 1)

/* Mixed × Mixed: INaN */
〈a, b〉 ×IF 〈c, d〉 → 〈0; e max; f max, 0; e max; f max〉,
if (as = 1) and (bs = 0) and (cs = 1) and (ds = 0) and
((cmp(a ×F d, b ×F c) = 2) or (cmp(a ×F c, b ×F d) = 2))

/* Negative × Mixed */
〈a, b〉 ×IF 〈c, d〉 → 〈a ×F d, a ×F c〉,

if (as = 1) and (bs = 1) and (cs = 1) and (ds = 0)
/* Positive × Negative */

〈a, b〉 ×IF 〈c, d〉 → 〈b ×F c, a ×F d〉,
if (as = 0) and (bs = 0) and (cs = 1) and (ds = 1)

/* Mixed × Negative */
〈a, b〉 ×IF 〈c, d〉 → 〈b ×F c, a ×F c〉,

if (as = 1) and (bs = 0) and (cs = 1) and (ds = 1)
/* Negative × Negative */

〈a, b〉 ×IF 〈c, d〉 → 〈b ×F d, a ×F c〉,
if (as = 1) and (bs = 1) and (cs = 1) and (ds = 1)

/* Zero × Any */
〈a, b〉 ×IF 〈c, d〉 → 〈0; e min; f min, 0; e min; f min〉,

if (as = 0) and (bs = 1)
/* Any × Zero */

〈a, b〉 ×IF 〈c, d〉 → 〈0; e min; f min, 0; e min; f min〉,
if (cs = 0) and (ds = 1)

5. Conclusions/Future Work

We have defined a complete term rewriting system for addition, subtraction and
multiplication on IEEE-754-standard floating-point intervals. The system does not
formalize division, which termination on integers is still an open problem.

Although no formal proof for correctness was provided, some points may be
considered: 1) FTRS is correct in the sense that all rewrite rules express true about
IEEE-754 floating-points, and all expressions reduce, in a certain way, to floating-
points. 2) Correctness of ITRS, in current version, was not reached, because under-
lying floating-point operations always apply rounding to zero, but this requirement
can be provided by improving rshift function, and so employing downward round-

258 Carvalho and Santiago

ing in operations between left endpoints of intervals and upward rounding at right
endpoints.

Another desired improvement for ITRS relies on extend intervals (and arithmetic
operations) to the more general class of connected subsets of R. Termination proofs
of both FTRS and ITRS systems are left as open problem, but a careful analysis of
the rules can show the abscence of infinite reductions.

References

[1] F. Baader, T. Nipkow, “Term Rewriting and All That”, Cambridge University
Press, 1998.

[2] W.S. Brainerd, L. Landweber, “Theory of Computation”, John Wiley & Sons,
New York, USA, 1974.

[3] A.X. Carvalho, “Interval Term Rewriting System: Toward a formal model for
interval computation”, Master thesis, UFRN-DIMAp, Natal, Brazil, 2005.

[4] D. Goldberg, What every computer scientist should know about floating-point
arithmetic, in “ACM Computing Surveys” pp. 5-48, 1991.

[5] T. Hickey, Q. Ju, M. van Emden, Interval arithmetic: from principles to imple-
mentation, in “Journal of the ACM” pp. 1038-1068, 2001.

[6] S. Hollasch, IEEE standard 754 floating-point numbers,
http://steve.hollasch.net/cgindex/coding/ieeefloat.html.

[7] IEEE, “IEEE standard for binary floating-point arithmetic”, IEEE Computer
Society Press, 1985.

[8] R.B. Kearfott, Interval computations: Introduction, uses, and resources, in “Eu-
romath Bulletin” pp. 95-112, 1996.

[9] R. Kennaway, Complete term rewrite systems for decimal arithmetic and other
total recursive functions, “Second International Workshop on Termination”, La
Bresse, France, 1995.

[10] C. Kirchner, H. Kirchner, “Rewriting Solving Proving”, LORIA, INRIA &
CNRS, 2001.

[11] H.R. Walters, H. Zantema, Rewrite systems for integer arithmetic, in RTA pp.
324–338, “Centrum voor Wiskunde en Informatica (CWI)”, 1995.

