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Abstract. In this paper we present a construction technique of cyclic, BCH,

alternat, Goppa and Srivastava codes over a local finite commutative rings with

identity.

1. Introduction

Linear codes over finite rings with identity have recently raised a great interest
for their new role in algebraic coding theory and for their successful application in
combined coding and modulation. Thus, in this paper we address the problems of
constructing of new cyclic, BCH, alternant, Goppa and Srivastava codes over local
finite commutative rings with identity. These constructions are very similar to the
ones over finite fields and these constructions requires working on Galois extension
rings, where some properties of the Galois extension fields are lost.

Recent developments have contributed toward achieving the reliability required
by todays high-speed digital systems, and the use of coding for error control has
become an integral part in the design of modern communication systems and dig-
ital computers. Moreover, we mention that the investigation of codes over finite
alphabets (for example, finite rings) which are less structured than finite fields may
be more appropriate to use for computer-to-computer communication.

This paper is organized as follows. In Section 2, we present a construction
technique of cyclic codes over a commutative ring with identity. In Section 3,
we present a construction technique of BCH and alternant codes over local finite
commutative rings with identity. In Section 4, we describe a construction technique
of Goppa and Srivastava codes over local finite commutative rings with identity.

2. Cyclic Codes

Let A be a commutative ring with identity. The structure of ideals in the ring R =
A[x]/〈xn − 1〉, have recently raised a great interest for their successful applications
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in algebraic coding theory. We recall to the reader that a linear code of length
n over A is an A-module in the space of all n-tuples of An and a linear code C
over A is cyclic, if whenever v = (v0, v1, . . . , vn−1) ∈ C, every cyclic shift v(1) =
(vn−1, v0, . . . , vn−2) ∈ C, with vi ∈ A, 0 ≤ i ≤ n − 1. A work by Calderbank [6]
has shown that the ring R = Zq[x]/〈xn − 1〉, where q is a power of a prime p, is
a principal ideal ring and early work by Interlando [9] had given the structure of
principal ideals in the ring R = Zm[x]/〈xn − 1〉, where m is a positive integer.

Theorem 2.1 ([1, Theorem 2.1]). In the ring R = A[x]/〈xn − 1〉, a subset C is
a cyclic code if and only if C is an ideal of R.

Proof. Suppose that the subset C is a cyclic code. Then C is closed under addition
and under multiplication by x. But then it is closed under multiplication by powers
of x and linear combinations of powers of x. That is, C is closed under multiplication
by an arbitrary polynomial. Hence C is an ideal. Now suppose that the subset C
is an ideal. Then C is closed under addition and closed under multiplication by a
scalar. Hence C is an A-module. It is also closed under multiplication by any ring
element, in particular under multiplication by x. Hence C is a cyclic code.

Let R = A[x]/〈f(x)〉 be the set of residue classes of polynomials in x over A
modulo a monic polynomial f(x) of degree n over A. This ring is also a commutative
ring with identity. It is useful to represent the elements of R by the polynomials
a(x) = a0 +a1x+ · · ·+an−1x

n−1. A particularly simple kind of ideal is a principal
ideal, which consists of all multiples of a fixed polynomial g(x) by elements of R,
called generator polynomial of the ideal. Now we will prove some results that
will indicate a method of obtain the generator polynomial of a principal ideal. This
method will serve as basis for the construction of principal ideals in the ring R. We
will also show conditions to decide when a ideal B is principal.

Lemma 2.1 ([2, Lemma 1]). Let B be an ideal in the ring R. If the leading
coefficient of some polynomial of lowest degree in B is a unit in A, then there exists
an unique monic polynomial of minimal degree in B.

Proof. Let g(x) be a polynomial of lowest degree m in B. If the leading coefficient
am of g(x) is a unit in A, it is always possible to obtain a monic polynomial g1(x) =
amg(x) with the same degree in B. Now, if g(x) and h(x) are monic polynomials of
minimal degree m in B then the polynomial k(x) = g(x)−h(x) is a polynomial in B
and has degree lower than m. Therefore, by the choice of g(x) follow that k(x) = 0,
and therefore g(x) = h(x).

Theorem 2.2 ([2, Theorem 2]). Let B be an ideal in the ring R. If the leading
coefficient of some polynomial g(x) of lowest degree in B is a unit in R then B =
〈g(x)〉, i.e., B is a principal ideal.

Proof. Let a(x) be a polynomial in B. By euclidean algorithm for commutative
rings there are unique polynomials q(x) and r(x) such that a(x) = q(x)g(x) + r(x)
where r(x) = 0 or degree(r(x)) < degree(g(x)). By the definition of an ideal,
r(x) ∈ B. Thus by the choice of g(x), we have that r(x) = 0 and therefore, a(x) =
q(x)g(x). Thus every polynomial in B is multiple of g(x), i.e., B = 〈g(x)〉.
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Lemma 2.2 ([2, Lemma 2]). Let r(x) be a polynomial in A[x]. If r(x) 6= 0 and
degree(r(x)) < degree(f(x)), then r(x) 6= 0 in R.

Proof. Suppose that r(x) = 0. Therefore there is q(x) 6= 0 in A[x] such that
r(x) = f(x)q(x). Since f(x) is regular and r(x) 6= 0 it follows that degree(r(x)) =
degree(f(x)) + degree(q(x)) ≥ degree(f(x)), which is a contradiction since we had
already assumed that degree(r(x)) < degree(f(x)). Therefore r(x) 6= 0.

Theorem 2.3 ([2, Theorem 3]). Let B be an ideal in the ring R. Let g(x)
be a polynomial in A[x] such that degree(g(x)) < degree(f(x)) and the leading
coefficient of g(x) is a unit in A. If g(x) ∈ B and has lowest degree in B then g(x)
divides f(x).

Proof. By euclidean algorithm for commutative rings there are unique polynomials
q(x) and r(x) such that 0 = g(x)q(x) + r(x) where r(x) = 0 or degree(r(x)) <
degree(g(x)). Thus r(x) = −g(x)q(x), i.e., r(x) is in B. Therefore by the choice
of g(x) follows that r(x) = 0. Also, by euclidean algorithm for commutative rings,
there are unique polynomials q1(x) and r1(x) such that f(x) = g(x)q1(x) + r1(x)
where r1(x) = 0 or degree(r1(x)) < degree(g(x)). Therefore 0 = g(x)q1(x) +
r1(x) = g(x)q(x) + r(x). Thus q1(x) = q(x) and r1(x) = r(x) = 0. By Lemma 2.2
it follows that r1(x) = 0 and therefore g(x) divides f(x).

Example 2.1. Let R be a ring given by R = Z4[x]/〈f(x)〉, where f(x) = x2 − 1.
Let B = {0, 1x + 1, 2x + 2, 3x + 3} be an ideal of R. By Theorem 2.2 we have that
B = 〈3x + 3〉 and by Theorem 2.3 we have that g(x) = 3x + 3 divides f(x).

Theorem 2.4 ([2, Theorem 4]). Let B be a ideal in the ring R. If g(x) divides
f(x) and g(x) ∈ B then g(x) has lowest degree in 〈g(x)〉.

Proof. Suppose that there is b(x) in 〈g(x)〉 such that degree(b(x)) < degree(g(x)).
Since b(x) is in 〈g(x)〉, then b(x) = g(x)h(x) for some h(x) in R. Thus b(x) −
g(x)h(x) is in < f(x) >, i.e., b(x) − g(x)h(x) = f(x)a(x) for some a(x) in A[x].
From this, we have that b(x) = g(x)h(x) + f(x)a(x). Since g(x) divides f(x), we
have that g(x) divides g(x)h(x) + f(x)a(x), which implies that g(x) divides b(x),
a contradiction since we had already assumed that degree(b(x)) < degree(g(x)).
Therefore g(x) has lowest degree in 〈g(x)〉.

Example 2.2. Let R be a ring given by R = Z[x]/〈x3+x2+x+1〉. Let B be an ideal
in R such that g(x) = 1x+1 is in B. Since g(x) = x+1 divides f(x) = x3+x2+x+1
we have by Theorem 2.4 that g(x) has lowest degree in 〈g(x)〉.

3. BCH and Alternant Codes

In this section we present a construction technique of BCH and alternant codes
over local finite rings. First, we review the key properties of Galois extension rings,
which serve to characterize these codes.

Throughout this section we assume that A denotes a local finite commutative
ring with identity, maximal ideal M and residue field K = A

M ≡ GF (pm), for
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some prime p, m a positive integer, and A[x] denotes the ring of polynomials in
the variable x over A. The natural projection A[x] → K[x] is denoted by µ, where
µ(a(x)) = a(x). Let f(x) be a monic polynomial of degree h in A[x] such that
µ(f(x)) is irreducible in K[x]. Then f(x) also is irreducible in A[x] [10, Theorem
XIII.7]. Let R be the ring A[x]/〈f(x)〉. Then R is a finite commutative local ring
with identity and is called a Galois extension of A of degree h. Its residue field
is K1 = R/M1 ≡ GF (pmh), where M1 is the maximal ideal of R, and K

∗
1 is the

multiplicative group of K1, whose order is pmh − 1.
Let R∗ denotes the multiplicative group of units of R. It follows that R∗ is an

abelian group, and therefore it can be expressed as a direct product of cyclic groups.
We are interested in the maximal cyclic group of R∗, hereafter denoted by Gs, whose
elements are the roots of xs − 1 for some positive integer s such that gcd(s, p) = 1.
There is only one maximal cyclic subgroup of R∗ having order relatively prime to
p [10, Theorem XVIII.2]. This cyclic group has order s = pmh − 1.

Definition 3.1. Let η = (α1, · · · , αn) be a vector consisting of distinct elements of
Gs, and let w = (w1, w2, · · · , wn) be an arbitrary vector consisting of elements (not
necessarily distinct) of Gs. Then the set of all vectors

(w1f(α1), w2f(α2), · · · , wnf(αn)), (3.1)

where f(z) ranges over all polynomials of degree at most k − 1, k ∈ N, with coeffi-
cients from R, defines a shortened code C of length n ≤ s over R.

Remark 3.1. Since f has at most k − 1 zeros, the minimum distance of this code
is at least n − k + 1.

Definition 3.2 ([3, Definition 2.2]). A shortened BCH code C(n, η) of length
n ≤ s is a code over A that has parity check matrix

H =

















α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αr
1 αr

2 · · · αr
n

















(3.2)

for some r ≥ 1, where η = (α1, α2, · · · , αn) = (αk1 , αk2 , · · · , αkn) is the locator
vector, consisting of distinct elements of Gs. The code C(n, η), with n = s, will be
called a BCH code. In this case, η is unique up to permutation of coordinates.

Lemma 3.1 ([4, Theorem 7]). Let α be an element of Gs of order s. Then the
differences αl1 − αl2 are units in R if 0 ≤ l1 6= l2 ≤ s − 1.

Proof. Note that αl1 − αl2 can be written as −αl2(1 − αl1−l2), where 1 denotes
the unity of R. The first term in the product, namely −αl2 , is a unit. The second
term can be written as 1 − αj for some integer j in the interval [1, s − 1]. Now,
if the element 1 − αj , 1 ≤ j ≤ s − 1, were not a unit in R, then 1 − αj ∈ M1,
and consequently, (µ′(α))j = µ′(1) for j < s, which is a contradiction. Thus
1 − αj ∈ R∗, 1 ≤ j ≤ s − 1.
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Theorem 3.1 ([3, Theorem 2.4]). The minimum Hamming distance of a BCH
code C(n, η) satisfies d ≥ r + 1.

Proof. Suppose c is a nonzero codeword in C(n, η) such that wH(c) ≤ 2t. Then
cHT = 0. Deleting n − 2t columns of the matrix H corresponding to zeros of the
codeword, it follows that the new matrix H ′ is Vandermonde. By Lemma 3.1, it
follows that the determinant is a unit in R. Thus, the only possibility for c is the
all-zero codeword.

Example 3.1. The polynomial f(x) = x3 + x + 1 is irreducible over GF (2) and

over A = GF (2)[i], where i2 = −1. Thus, the ring R is R = A[x]
〈f(x)〉 . We have that if

α is a root of f(x), then α generates a cyclic group Gs of order s = 23 − 1 = 7. Let
η = (α5, α, 1, α4, α2, α6) be the locator vector. If r = 2, then the following matrix

H =

[

α5 α 1 α4 α2 α6

α3 α2 1 α α4 α5

]

is the parity-check matrix of a BCH code C(6, η) of length 6 and minimum Hamming
distance at least 3.

Definition 3.3 ([5, Definition 2.1]). A shortened alternant code C(n, η,w) of
length n ≤ s is a code over A that has parity check matrix

H =

























w1 w2 · · · wn

w1α1 w2α2 · · · wnαn

w1α
2
1 w2α

2
2 · · · wnα2

n

...
...

. . .
...

w1α
r−1
1 w2α

r−1
2 · · · wnαr−1

n

























, (3.3)

where r is a positive integer, η = (α1, α2, · · · , αn) = (αk1 , αk2 , · · · , αkn) is the lo-
cator vector, consisting of distinct elements of Gs, and w = (w1, w2, · · · , wn) is an
arbitrary vector consisting of elements of Gs.

It is possible to obtain an estimate of the minimum Hamming distance d directly
from the parity-check matrix.

Theorem 3.2 ([5, Theorem 2.1]). The alternant code C(n, η,w) has minimum
Hamming distance d ≥ r + 1.

Proof. Suppose c is a nonzero codeword in C(n, η,w) such that wH(c) ≤ r. Then,
cHT = c(XY )T = 0. Setting b = cY T , we obtain wH(b) = wH(c) since Y is
diagonal and invertible. Thus, bXT = 0. Deleting n − r columns of the matrix X
that correspond to zeros of the codeword, then the new matrix X

′

is Vandermonde.
By Lemma 3.1, it follows that the determinant is an unit in R. Thus, the unique
possibility for c is the all-zero codeword.
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Example 3.2. Referring to Example 3.1, if η = (α, α4, 1, α3, α2) is the locator
vector, w = (α5, α, 1, α4, α2) and r = 2, then the following matrix

H =

[

α5 α 1 α4 α2

α6 α5 1 1 α4

]

is the parity-check matrix of an alternant code C(5, η,w) of length 5 and minimum
Hamming distance at least 3. Another example of an alternant code is a BCH code.

4. Goppa and Srivastava Codes

In this section, firstly we define an interesting subclass of alternat codes over local
finite rings, which is very similar to the one proposed by Goppa [7] over finite fields.
Just as cyclic codes are specified in terms of a generator polynomial, so Goppa
codes are described in terms of a Goppa polynomial g(z). In contrast to cyclic
codes, where it is difficult to estimate the minimum Hamming distance d from the
generator polynomial, Goppa codes have the property that d ≥ deg(g(z)) + 1.

Let A, R and Gs as defined in Section 3. Let α be a primitive element of the
cyclic group Gs, where s = pmh−1. Let g(z) = g0 +g1z+ · · ·+grz

r be a polynomial
with coefficients in R and gr 6= 0. Let L = {α1, α2, · · · , αn} be a subset of distinct
elements of Gs such that g(αi) are units from R for i = 1, 2, · · · , n.

Definition 4.1. A shortened Goppa code C(L, g) of length n ≤ s is a code over
A that has parity-check matrix

H =











g(α1)
−1 · · · g(αn)−1

α1g(α1)
−1 · · · αng(αn)−1

...
. . .

...
αr−1

1 g(α1)
−1 · · · αr−1

n g(αn)−1











, (4.1)

where r is a positive integer, η = (α1, α2, · · · , αn) = (αk1 , αk2 , · · · , αkn) is the locator
vector, consisting of distinct elements of Gs, and w = (g(α1)

−1, · · · , g(αn)−1) is an
vector consisting of elements of Gs.

Definition 4.2. Let C(L, g) be a Goppa code.

• If g(z) is irreducible then C(L, g) is called an irreducible Goppa code.

• If c = (c1, c2, · · · , cn) ∈ C(L, g) and c
′

= (cn, cn−1, · · · , c1) ∈ C(L, g) then
C(L, g) is called a reversible Goppa code.

• If g(z) = (z − α)r then C(L, g) is called a comulative Goppa code.

• If g(z) has not multiple zeros then C(L, g) is called a separable Goppa code.

Remark 4.1. Let C(L, g) be a Goppa code.

1. We have that C(L, g) is a linear code.
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2. A parity check matrix with elements form A is then obtained by replacing each
entry of H by the corresponding column vector of length h from A.

3. For a code with Goppa polynomial gl(z) = (z − βl)
rl , where βl ∈ Gs, we have

Hl =











(α1 − βl)
−rl (α2 − βl)

−rl · · · (αn − βl)
−rl

α1(α1 − βl)
−rl α2(α2 − βl)

−rl · · · αn(αn − βl)
−rl

...
...

. . .
...

αrl−1
1 (α1 − βl)

−rl αrl−1
2 (α2 − βl)

−rl · · · αrl−1
n (αn − βl)

−rl











which is row equivalent to

Hl =











(α1 − βl)
−rl (α2 − βl)

−rl · · · (αn − βl)
−rl

(α1 − βl)
−(rl−1) (α2 − βl)

−(rl−1) · · · (αn − βl)
−(rl−1)

...
...

. . .
...

(α1 − βl)
−1 (α2 − βl)

−1 · · · (αn − βl)
−1











.

Consequently, if g(z) =
∏k

l=1(z − βl)
rl =

∏k

i=1 gl(z), then the Goppa code is
the intersection of the codes with gl(z) = (z −βl)

rl , for l = 1, 2, · · · , k, and its
parity check matrix is given by

H =

















H1

H2

...

Hk

















.

4. BCH codes are a special case of Goppa codes. For this, choose g(z) = zr

and L = {α1, α2, · · · , αn}, where αi ∈ Gs, for all i = 1, 2, · · · , n. Then from
Equation (4.1)

H =



















α−r
1 α−r

2 · · · α−r
n

α1−r
1 α1−r

2 · · · α1−r
n

...
...

. . .
...

α−1
1 α−1

2 · · · α−1
n



















,

which becomes the parity check matrix of a BCH code, Equation (3.2) when
α−1

i is replaced by βi, i = 1, 2, · · · , n.

Theorem 4.1. The Goppa code C(L, g) has minimum Hamming distance d ≥ r+1.

Proof. We have that C(L, g) is an alternant code C(n, η,w) with η = (α1, α2, · · · , αn)
and w = (g(α1)

−1, g(α2)
−1, · · · , g(αn)−1). Therefore by Theorem 3.2 we have that

C(L, g) has minimum distance d ≥ r + 1.
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Example 4.1. Let A = GF (2)[i] and R = A[x]
〈x4+x+1〉 , where f(x) = x4 + x + 1

is irreducible over A. Thus s = 15 and G15 is generated by α, where α4 = α +
1. Let g(z) = z4 + z3 + 1, L = {1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10} and w =
(1, α12, α10, α7, α3, α11, α6, α9, α5, α14, α13). The matrix

H =















1 α12 α10 α7 α3 α11 α6 α9 α5 α14 α13

1 α14 1 α4 α11 α2 α7 α13 1 α8 α

1 α α5 α α4 α8 α8 α2 α10 α2 α4

1 α3 α10 α13 α12 α14 α9 α6 α5 α11 α7















is the parity check matrix of a Goppa code over GF (2)[i] of length 11 and minimum
Hamming distance at least 5.

Now, we define another interesting subclass of alternant codes over local finite
rings which is very similar to the one proposed by J. N. Srivastava in 1967, in
unpublished work [8], that are defined by parity check matrices of the form

H =

{

αl
j

1 − αiβj

, 1 ≤ i ≤ r, 1 ≤ j ≤ n

}

,

where α1, α2, · · · , αr are distinct elements from GF (qm) and β1, β2, · · · , βn are all
the elements in GF (qm) except 0, α−1

1 , α−1
2 , · · · , α−1

r . The quantity l can be any
integer.

Definition 4.3. A shortened Srivastava code of length n ≤ s is a code over A
that has parity check matrix

H =























αl
1

α1−β1

αl
2

α2−β1

· · ·
αl

n

αn−β1

αl
1

α1−β2

αl
2

α2−β2

· · ·
αl

n

αn−β2

...
...

. . .
...

αl
1

α1−βr

αl
2

α2−βr
· · ·

αl
n

αn−βr























, (4.2)

where r, l are positive integers and α1, · · · , αn, β1, · · · , βr are n+ r distinct elements
of Gs.

Theorem 4.2. The Srivastava code has minimum Hamming distance d ≥ r + 1.

Proof. We have that the minimum Hamming distance of this code is at least r +1
if and only if every combination of r or fewer columns of H is linearly independent
over R, or equivalently that the submatrix

H1 =

















αl
i1

αi1
−β1

αl
i2

αi2
−β1

· · ·
αl

ir

αir−β1

αl
i1

αi1
−β2

αl
i2

αi2
−β2

· · ·
αl

ir

αir−β2

...
...

. . .
...

αl
i1

αi1
−βr

αl
i2

αi2
−βr

· · ·
αl

ir

αir−βr

















(4.3)
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is nonsingular. The determinant of this matrix can be expressed as

det(H1) = (αi1αi2 . . . αir
)ldet(H2), (4.4)

where the matrix H2 is given by

H2 =













1
αi1

−β1

1
αi2

−β1

· · · 1
αir−β1

1
αi1

−β2

1
αi2

−β2

· · · 1
αir−β2

...
...

. . .
...

1
αi1

−βr

1
αi2

−βr
· · · 1

αir−βr













. (4.5)

Note that det(H2) is a Cauchy determinant of order r, and therefore we conclude
that the determinant of the matrix H1 is given by

det(H1) = (αi1αi2 . . . αir
)l (−1)

(
r
2

)

φ(αi1 , αi2 , · · · , αir
)φ(β1, β2, · · · , βr)

ν(αi1)ν(αi2) . . . ν(αir
)

, (4.6)

where φ(αi1 , αi2 , . . . , αir
) =

∏

ij<ih
(αij

−αih
) and ν(x) = (x−β1)(x−β2) · · · (x−βr).

Then by [4, Theorem 7] we have that det(H1) is a unit in R and therefore d ≥
r + 1.

Definition 4.4. Suppose r = kl and let α1, · · · , αn, β1, · · · , βk be n + k distinct
elements of Gs, w1, · · · , wn be elements of Gs. A generalized Srivastava code of
length n ≤ s is a code over A that has parity check matrix

H =

















H1

H2

...

Hk

















, (4.7)

where

Hj =



















w1

α1−βj

w2

α2−βj
· · · wn

αn−βj

w1

(α1−βj)2
w2

(α2−βj)2
· · · wn

(αn−βj)2

...
...

. . .
...

w1

(α1−βj)l

w2

(α2−βj)l · · · wn

(αn−βj)l



















, (4.8)

for j = 1, 2, · · · , k.

Theorem 4.3. The generalized Srivastava code has minimum Hamming distance
d ≥ kl + 1.
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Proof. The proof of this theorem requires nothing more than the application of
the Remark 4.1(3) and of the Theorem 4.2, since the matrices (4.1) and (4.7) are

equivalents, where g(z) =
∏k

i=1(z − βi)
l.

Example 4.2. Referring to Example 4.1, if n = 7, r = 6, k = 2, l = 3,
{α1, α2, · · · , α7} = {α4, α3, α5, α, α7, α12, α10}, {β1, β2} = {α9, α6}, {w1, · · · , w7} =
{α, α, α2, α4, α7, α10, α9}, then the matrix

H =



































α
α4−α9

α
α3−α9

α2

α5−α9

α2

α−α9

α5

α7−α9

α10

α12−α9

α9

α10−α9

α
(α4−α9)2

α
(α3−α9)2

α2

(α5−α9)2
α2

(α−α9)2
α5

(α7−α9)2
α10

(α12−α9)2
α9

(α10−α9)2

α
(α4−α9)3

α
(α3−α9)3

α2

(α5−α9)3
α2

(α−α9)3
α5

(α7−α9)3
α10

(α12−α9)3
α9

(α10−α9)3

α
α4−α6

α
α3−α6

α2

α5−α6

α2

α−α6

α5

α7−α6

α10

α12−α6

α9

α10−α6

α
(α4−α6)2

α
(α3−α6)2

α2

(α5−α6)2
α2

(α−α6)2
α5

(α7−α6)2
α10

(α12−α6)2
α9

(α10−α6)2

α
(α4−α6)3

α
(α3−α6)3

α2

(α5−α6)3
α2

(α−α6)3
α5

(α7−α6)3
α10

(α12−α6)3
α9

(α10−α6)3



































is the parity-check matrix of a generalized Srivastava code with minimum distance
at least 7.

Resumo. Neste trabalho apresentamos uma técnica de construção de códigos

ćıclicos, BCH, alternantes, Goppa e Srivastava sobre anéis comutativos finitos locais

com identidade.
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