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Abstract. We derive a few fundamental estimates for solutions u of weakly non-
linear ODE systems of the form

u
t

= Au + B(t)u + εf (t, u) + g(t), t > t0,

where A is a constant n x n matrix all of whose eigenvalues have negative real part
and εf is suitably small, with B ∈ Lp(t0,∞), g ∈ Lq(t0,∞) for some 1 ≤ p, q ≤ ∞.
Our analysis improves and extends some well known results obtained elsewhere for
important families of equations within this class.

1. Introduction

Stability results for weakly nonlinear systems of ODEs can be traced back to late
nineteen century, with the fundamental pioneering work of Routh, Poincaré, Lya-
punov and others, see e.g. [6], [9], [10], [11]. For example, the Poincaré-Lyapunov
theorem assures asymptotic stability for the zero solution of

ut = Au + B(t)u + f(t,u), t > t0

for sufficiently small initial states u(t0) when all the eigenvalues of A lie in the left
half plane, provided that ‖B(t) ‖ → 0 as t→∞ and f(t,u)/ |u |

E
→0 as |u |

E
→ 0,

uniformly in t, see [2], [7], [12]. Here, ‖ · ‖ denotes some (arbitrary) matrix norm,
which for definiteness we will choose hereafter to be the spectral norm,

‖ B ‖ = sup
|v|

E
= 1

| Bv |
E
, B ∈ C

nxn,

where |v |
E

denotes the Euclidean size of v = (v1, ..., vn), |v |
E

=
√

|v1|2+ ... + |vn|2.
Such results are now routinely discussed in standard ODE courses making use of a
very convenient device, the so-called Gronwall’s lemma [4], [5], [7], [12]. We will like-
wise use this lemma (and some variants thereof) to extend the Poincaré-Lyapunov
theorem to more general settings, as described next.
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2. Main Results

Our goal is to obtain solution bounds for the broader class of nonlinear systems

ut = Au + B(t)u + εf(t,u) + g(t), t > t0, (2.1)

with u(t0) ∈ R
n given, where A satisfies, as before,

Re λ < 0, ∀ λ ∈ Spec(A), (2.2)

and B(·) is some measurable matrix-valued function such that either B(·) ∈ Lp(t0,∞)
for some 1 ≤ p < ∞, i.e.,

∫ ∞

t0

||B(τ) ‖p dτ < ∞, 1 ≤ p < ∞, (2.3)

or else we have B ∈ L∞(t0,∞) with

||B(t) ‖→ 0 as t→∞. (2.4)

In (2.1), we also assume that

g ∈ Lq(t0,∞) for some 1 ≤ q ≤ ∞, (2.5)

and that f(·, ·) is continuous and such that, for each γ > 0, a constant Γ = Γ(γ) > 0
can be found giving

|f(t,u) |
E

≤ Γ(γ) |u |
E
, ∀ u with |u |

E
≤ γ. (2.6)

Choosing σ > 0 such that

Re λ < −σ, ∀ λ ∈ Spec(A), (2.7)

we can then state the following result.

Theorem 2.1. Given any V0, G0 > 0, there exist positive constants K = K(V0, G0),
ε0 = ε0(V0, G0), depending only on A, B, f , σ and V0, G0 above, such that, for each

1 ≤ q ≤ ∞, |u0|E ≤ V0, and ε, g with

| ε | ≤ ε0(V0, G0), g ∈ G0(q) := { g ∈ Lq(t0,∞) : ‖ g ‖
Lq(t0,∞)

< G0 },

the solution u(t) = u(t ;u0, ε, g) of (2.1) with u(t0) = u0 is defined for all t ≥ t0
and satisfies the pointwise estimate

| u(t) |
E

≤ K(V0, G0)

(

| u0 |E e
−σ (t−t0) +

∫ t

t0

e
−σ (t−τ) | g(τ) |

E
dτ

)

(2.8)

for every t ≥ t0.
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In particular, we obtain, for each |u0|E ≤ V0, | ε | ≤ ε0 and g ∈ G0(q), the estimate

‖ u(·;u0, ε, g) ‖
Lq(t0,T )

≤ K

(

1

(σq)1/q
| u0 |E +

1

σ
‖ g ‖

Lq(t0,T )

)

(2.9)

for every T ≥ t0, with K > 0 given in (2.8), and

u(t;u0, ε, g) → 0 as t→∞ (2.10)

when 1 ≤ q < ∞, or when q = ∞ and g(∞) = 0. In a completely similar way, we
can switch the role of parameters u0 and ε in Theorem 2.1 provided that we have
f(t,u) = o(|u|

E
) for u small, uniformly in t:

Theorem 2.2. Let A, B(·),f(·, ·), σ be as in (2.2), (2.3) or (2.4), and (2.6), (2.7).
Assuming that f(t,u)/ |u |

E
→0 as u → 0, uniformly in t ≥ t0, then, given any

ε0, G0 > 0, there exist positive constants K = K(ε0, G0), V0 = V0(ε0, G0), depend-

ing only on A, B, f , σ and ε0, G0 above, such that, for each 1 ≤ q ≤ ∞, | ε | ≤ ε0

and u0, g with

| u0 |E ≤ V0(ε0, G0), g ∈ G0(q) := { g ∈ Lq(t0,∞) : ‖ g ‖
Lq(t0,∞)

< G0 },

the solution u(t) = u(t ;u0, ε, g) of (2.1) with u(t0) = u0 is defined for all t ≥ t0
and satisfies the pointwise estimate

| u(t) |
E

≤ K(ε0, G0)

(

| u0 |E e
−σ (t−t0) +

∫ t

t0

e
−σ (t−τ) | g(τ) |

E
dτ

)

(2.11)

for every t ≥ t0.

When B = 0 in equation (2.1), properties (2.9), (2.10) were obtained in [1], [8]
for the particular case q = 2 via the resolvent method, which uses Laplace transform
and Parseval’s identity to estimate L2 norms. In contrast, our approach is based
on the more fundamental estimates (2.8), (2.11), from which (2.9) can be easily
derived, allowing arbitrary q ≥ 1 and broader classes of problems to be considered.
The bounds (2.8), (2.11), in turn, follow from even more basic estimates, given in
(2.14) below, concerning the fundamental solutions for the linear equation

vt = Av + B(t)v, t > t0, (2.12)

associated with (2.1), that is, matrix solutions Φ(t) to the matrix equation

Φt = AΦ(t) + B(t)Φ(t), t > t0, (2.13)

with Φ(t0) invertible (but otherwise arbitrary).

Theorem 2.3. Assuming (2.2) and (2.3) or (2.4), and choosing σ > 0 as in (2.7),
there exists C > 0 constant (depending only on A, B(·), σ) such that, for each τ ≥ t0,

‖ Φ(t)Φ(τ)−1 ‖ ≤ C e−σ(t−τ) ∀ t ≥ τ, (2.14)

for any fundamental solution Φ(t) of (2.12), cf. (2.13).
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We can similarly use (2.14) to get additional results on the solutions of (2.1),
as illustrated next. Here, ε will play no particular role and therefore will be set to 1.
Assume, instead of (2.6), that f(t,u) satisfies, for certain constants 0 < α < 1,
Γα > 0, the sublinear growth condition

| f(t,u) |
E

≤ Γα |u |α
E
, (2.15)

for all u ∈ R
n and t ≥ t0, and let u = u(t) be a solution to the equation

ut = Au + B(t)u + f(t,u) + g(t), t > t0, (2.16)

with A, B, g, σ as given in (2.2) − (2.5), (2.7). Then, u(t) is defined for all t ≥ t0,
and uniformly bounded:

Theorem 2.4. Under the assumptions (2.2), (2.3) or (2.4), (2.5), (2.7) and (2.15),
there exists a constant K = K(α, σ) > 0, depending only on A, B(·), σ, α and Γα,

such that the solution u(t) of (2.16) satisfies the estimate

|u(t) |
E

≤ K(α, σ)

(

1 + | u(t0) |E e
−σ (t−t0) +

∫ t

t0

e
−σ (t−τ) | g(τ) |

E
dτ

)

,

(2.17)
for all t ≥ t0.

The distinctive behavior as α crosses its threshold value 1 can be easily checked in
the positive solutions of the scalar equation ut = −u + auα, a > 0. For α 6= 1,
these are given by u(t) = e− t(u(0)− β − a ( 1 − e− β t) )− 1/β , with β := α−1. When
α < 1, solutions are bounded for any a, u(0) > 0 given, but, when α > 1, solutions
blow up at some finite time if u(0) > (1/a)1/β, and decay exponentially fast to u = 0
(as t → ∞) if 0 < u(0) < (1/a)1/β.

3. Selected Proofs

In this section we will show the main steps leading to the results described above.
Our starting point is (2.14), Theorem 2.3: this is clearly equivalent to the statement
that, give any t1 ≥ t0, one has

‖ Φ(t) ‖ ≤ C ‖ Φ(t1) ‖ e−σ(t−t1), ∀ t ≥ t1, (3.1)

where C > 0 is the constant in (2.14). To show (3.1), we pick σ̃ > σ such that
Re λ < −σ̃ for all λ ∈ Spec(A), and set C̃ := sup { eσ̃t ‖ etA ‖ : t > 0 }. In the case
where B ∈ Lp(t0,∞) for some 1 < p < ∞, we may proceed as follows: from

Φ(t) = e(t−t1)A Φ(t1) +

∫ t

t1

e(t−τ)A B(τ) Φ(τ) dτ, (3.2)

we obtain, using Young’s inequality (see e.g. [3], p. 622),

U(t) ≤ C̃ ‖Φ(t1) ‖ +

(

C̃

p

)p
(

p − 1

σ̃ − σ

)p−1∫ t

t1

‖B(τ) ‖pU(τ)dτ + (σ̃−σ)

∫ t

t1

U(τ)dτ,
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where U(t) := ‖Φ(t) ‖ eσ̃(t−t1). By Gronwall’s lemma, this gives

U(t) ≤ C̃‖Φ(t1) ‖e
(σ̃−σ)(t−t1) Ẽp, Ẽp := exp

(

(

C̃

p

)p(

p − 1

σ̃ − σ

)p−1∫ ∞

t0

‖B(τ) ‖p
dτ

)

,

so that (3.1) holds with C = C̃Ẽp in the case p > 1. Similarly, when p = 1, we set
CA := sup { eσt ‖ etA ‖ : t > 0 }, obtaining (3.1) from (3.2) and Gronwall’s lemma,
with C given this time by

C = CA exp

(

CA

∫ ∞

t0

‖B(τ) ‖ dτ

)

.

Finally, in the case where B ∈ L∞(t0,∞) with ‖B(t) ‖ → 0 as t→∞, we set B∞ :=
sup { ‖B(t) ‖ : t > t0 } and proceed as follows. For σ̃, C̃ defined above, let T (σ̃) ≥ t0
be sufficiently large so that

‖ B(t) ‖ ≤
σ̃ − σ

C̃
, ∀ t ≥ T (σ̃).

If t1 ≥ T (σ̃), we obtain from (3.2) that V (t) := eσ̃(t−t1) ‖ Φ(t)Φ(t1)
−1 ‖ satisfies

V (t) ≤ C̃ + (σ̃ − σ)

∫ t

t1

V (τ) dτ, ∀ t ≥ t1,

so that (3.1) holds with C = C̃. If t0 ≤ t1 < T (σ̃), we have, for V (t) given above,

V (t) ≤ C̃ + C̃

∫ T (σ̃)

t1

B∞ V (τ) dτ + (σ̃ − σ)

∫ t

T (σ̃)

V (τ) dτ

for any t ≥ T (σ̃), so that, by Gronwall’s lemma, we obtain

V (t) ≤ C̃ exp( C̃B∞(T (σ̃) − t0) ) exp( (σ̃ − σ)(t − t1) ),

which shows (3.1) with C := C̃ exp( C̃B∞(T (σ̃) − t0) ). Finally, for t1 ≤ t ≤ T (σ̃),
we obtain, from (3.2) and Gronwall’s lemma,

eσ(t−t1) ‖ Φ(t) ‖ ≤ CA ‖ Φ(t1 ‖ exp(CAB∞(T (σ̃) − t0) ),

giving (3.1) with C := CA exp(CAB∞(T (σ̃) − t0) ), and the proof is complete. �

Having established Theorem 2.3, we can now derive the fundamental estimates
given in Theorems 2.1, 2.2 and 2.4 above. Starting with (2.8), let Φ(t) be a funda-
mental matrix solution to (2.12), take σ > 0 as in (2.7) and choose σ̃ > σ so that
Re λ < −σ̃ for every λ ∈ Spec(A). Using (2.15), set C̃ ∈ [1,∞[ by

C̃ := sup
t≥ τ ≥ t0

eσ̃(t−τ) ‖ Φ(t) Φ(τ)−1 ‖ (3.3)

and let Γ0 > 0 be large enough so that

| f(t,u) |
E

≤ Γ0 | u |
E

if |u |
E
≤ γ0 := 2 C̃ (V0 + (1 + 1/σ)G0). (3.4)
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Setting

ε0 :=
σ̃ − σ

2Γ0 C̃
, (3.5)

and assuming |u0|E ≤ V0, | ε | ≤ ε0 and g ∈ G0(q), i.e., g ∈ Lq(t0,∞), 1 ≤ q ≤ ∞,
with ‖ g ‖

Lq(t0,∞)
≤ G0, the solution u(t) = u(t ;u0, ε, g) of (2.1) with u(t0) = u0

satisfies, for t > t0,

u(t) = Φ(t)Φ(t0)
−1u0 +

∫ t

t0

Φ(t)Φ(τ)−1g(τ) dτ + ε

∫ t

t0

Φ(t)Φ(τ)−1f(τ,u(τ)) dτ,

while |u(τ) |
E

< γ0, t0 < τ < t, is verified. This gives, by (2.14) and (3.3) – (3.5),

|u(t)|
E
≤ C̃e− σ̃(t−t0) |u0|E + C̃

∫ t

t0

e− σ̃(t−τ) |g(τ)|
E
dτ + εΓ0 C̃

∫ t

t0

e− σ̃(t−τ) |u(τ)|
E
dτ,

so that, setting U(t) := eσ(t−t0) | u(t) |
E
, we obtain

U(t) ≤ C̃ | u0|E + C̃

∫ t

t0

eσ(τ−t0) | g(τ) |
E

dτ + εΓ0 C̃

∫ t

t0

e− (σ̃−σ)(t−τ) U(τ) dτ.

By a Gronwall-type argument, it follows that

U(t) ≤ C̃

(

| u0|E +

∫ t

t0

eσ(τ−t0) | g(τ) |
E

dτ

)

σ̃ − σ

σ̃ − σ − εΓ0 C̃

or, because ε0Γ0C̃ ≤ (σ̃ − σ)/2,

| u(t) |
E
≤ 2 C̃

(

| u0 |E e−σ(t−t0) +

∫ t

t0

eσ(τ−t0) | g(τ) |
E

dτ

)

;

in particular,

| u(t) |
E
≤ 2 C̃

(

V0 e−σ(t−t0) +

(

1

σ

)1−1/q

G0

)

< γ0,

so that u(t) is defined for all t ≥ t0 and (2.8) must be valid for u(t) with K := 2 C̃.
A similar argument is used to show (2.11), (2.17). �

4. Concluding Remarks

In this work, we derived a number of fundamental solution estimates to a broad class
of nonlinear systems of the form (2.1) that satisfy our main assumptions (2.2) and
(2.3) or (2.4). The estimates given in (2.8), (2.9), (2.10), (2.11), (2.14) and (2.17)
provide very useful extensions of classical results such as the Poincaré-Lyapunov
stability theorem for weakly nonlinear systems or the L2 results discussed in [1], [8]
for ODE systems like (2.1). Indeed, Theorems 2.1 – 2.4 give fairly complete state-
ments that should prove convenient to use in most applications concerning proper-
ties related to those treated here. For example, let u(· ;0, g), u(· ;0, ĝ) be solutions
of (2.16), with zero initial values, corresponding to given functions g, ĝ ∈ G0(q)
for some G0 > 0, 1 ≤ q ≤ ∞. Assuming f ∈ C1 with bounded u-derivatives for
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bounded u ∈ R
n and all t ≥ t0, and that f(t,u) = o(|u|

E
) for |u|

E
small, uniformly

in t, it follows from Theorems 2.2 and 2.3 that u(· ;0, g), u(· ;0, ĝ) ∈ Lq(t0,∞) and,
for some constant C = C(G0) that depends only on G0 (and the functions A, B,f)
but not on g, ĝ ∈ G0(q), we have

‖ u(· ;0, g) − u(· ;0, ĝ) ‖
Lq(t0,∞)

≤ C(G0) ‖ g − ĝ ‖
Lq(t0,∞)

.

Likewise, other properties of interest can be similarly addressed.
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