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D.M. CARVALHO1, M.F. TOMÉ, J.A. CUMINATO, A. CASTELO, V.G.
FERREIRA2, Instituto de Ciências Matemáticas e de Computação, ICMC, USP,
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Abstract. This work is concerned with the development of a numerical technique
for solving free surface flows of a Maxwell fluid. The governing equations for the flow
of a Maxwell type fluid together with appropriate boundary conditions are given.
The free surface stress conditions are treated in details. A novel formulation for
calculating the extra stress components on rigid boundaries is given. The numerical
technique presented in this work employs the finite difference method on a staggered
grid and employs the ideas of the MAC (Marker-and-Cell) method. Numerical
results demonstrating that this numerical technique can solve viscoelastic flows
governed by the Maxwell model are presented. Moreover, validation results are
presented.

1. Introduction

Non-Newtonian fluid flows with free surfaces appear in many industrial pro-
cesses: injection moulding (plastic industries), container filling (food industry), ink
jet devices, wire coating, among others, are all examples of non-Newtonian free sur-
face flows problems. Many numerical techniques have been proposed over the past
three decades to treat non-Newtonian flows. Today there is an intense activity in
this area: a general overview of free surface flows can be found in the book of Griebel
et al. [4]. Usually, attention has been given to the upper convected Maxwell model
or to the Oldroyd-B constitutive equation. Numerical techniques have included fi-
nite element methods (eg. Crochet and Keunings [2]), finite volume methods (eg.
Mompean and Deville [5]) and finite difference methods (eg. Yoo and Na [8], Tomé
et al. [6]). In this paper two-dimensional viscoelastic flows in the presence of moving
free surfaces are considered. A numerical technique for solving flows governed by
the upper convected Maxwell constitutive equation is developed. The approach em-
ployed is based upon the SMAC (Marker-and-Cell) method of Amsden and Harlow
[1]. The method described herein is applied to two-dimensional channel flow and
jet buckling. The channel flow is used to validate the numerical method presented
in this paper and it is shown that viscoelasticity has a strong influence on the jet
buckling phenomenon. This paper is organized as follows: the governing equations
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are presented and Section 3 presents the boundary conditions. The essence of the
method is given in Section 4 while in Section 5 the basic finite difference equations
are presented. Section 6 provides validation results and the numerical simulation
of jet buckling.

2. Basic Equations

The basic equations governing the viscoelastic incompressible flows of a Maxwell
fluid are the equation of motion, the mass conservation equation and the constitutive
equation for the upper convected Maxwell model which are given by

T + λ
▽

T = 2µ0D , (2.1)

ρ

[
∂u

∂t
+ ∇ · (uu)

]
= −∇p+ ∇ · T + ρg , ∇ · u = 0 , (2.2)

where p is the pressure, ρ is the density, g is the gravity, T is the extra-stress tensor,
D rate of deformation tensor, µ0 is coeficient of the solvent viscosity and λ is a time

constant. The convected derivative
▽

T and the rate of deformation tensor are defined
by

▽

T=
∂T

∂t
+ ∇ · (uT) − (∇u)T

· T − T · (∇u), D =
1

2
[(∇u) + (∇u)T ] , (2.3)

respectively. To solve equations (2.1)–(2.2), we employ the splitting (known as
EVSS- Elastic-Viscous Stress-Splitting)

T = S + 2µ0D , (2.4)

where S represents the non-Newtonian contribution to the extra stress tensor. In-
troducing (2.4) into (2.1) and (2.2) we obtain

S + λ
▽

S = −2λµ0

▽

D , (2.5)

∂u

∂t
+ ∇ · (uu) = −

1

ρ
∇p+

µ0

ρ
∇

2
u +

1

ρ
∇ · S + g , ∇ · u = 0 . (2.6)

We consider two-dimensional Cartesian flows and let L and U denote reference
values for length and velocity. By introducing the nondimensionalization

u = U ū, x = Lx̄, t =
L

U
t̄, p = ρU2p̄, S =

µ0U

L
S̄, g = gḡ ,

equations (2.5) and (2.6) produce the following nondimensional equations (the bars
have been dropped for convenience)

∂u

∂x
+
∂v

∂y
= 0 , (2.7)
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Sxx +We

(
∂Sxx

∂t
+ conv(uSxx) + conv(v Sxx) − 2

∂u

∂x
Sxx

− 2
∂u

∂y
Sxy

)
=

−2We

[
∂

∂t
(Dxx)+ conv(uDxx) + conv(vDxx) − 2

(
∂u

∂x

)2

−

(
∂u

∂y

)2

−
∂u

∂y

∂v

∂x

]
,(2.8)

Syy +We

(
∂Syy

∂t
+ conv(uSyy) + conv(v Syy) − 2

∂v

∂x
Sxy

− 2
∂v

∂y
Syy

)
=

−2We

[
∂

∂t
(Dyy)+ conv(uDyy) + conv(vDyy) −

∂v

∂x

∂u

∂y
− 2

(
∂v

∂y

)2

−

(
∂v

∂x

)2
]
,(2.9)

Sxy +We

(
∂Sxy

∂t
+ conv(uSxy) + conv(v Sxy) −

∂v

∂x
Sxx

−
∂u

∂y
Syy

)
=

−We

[
∂

∂t
(Dxy) + conv(uDxy) + conv(vDxy) − 2

∂v

∂x

∂u

∂x
−2

∂u

∂y

∂v

∂y

]
, (2.10)

∂u

∂t
+ conv(u2) + conv(v u)=−

∂p

∂x
+

1

Re

[
∂2u

∂x2
+
∂2u

∂y2
+
∂Sxx

∂x
+
∂Sxy

∂y

]
+

1

F 2
r

gx, (2.11)

∂v

∂t
+ conv(u v) + conv(v2)=−

∂p

∂y
+

1

Re

[
∂2v

∂x2
+
∂2v

∂y2
+
∂Sxy

∂x
+
∂Syy

∂y

]
+

1

F 2
r

gy, (2.12)

where Re = ρU(L/µ0), We = λ(U/L) e Fr =
√
Lg/U denote the Reynolds number,

the Weissenberg number and the Froude number, respectively. Terms like conv(u •)
and conv(v •) are related to the convective terms ∂(u •)

∂x
and ∂(v •)

∂y
. The components

of the rate of deformation tensor are defined by (2.3) and are given by

Dxx =
∂u

∂x
, Dxy =

1

2

(
∂u

∂y
+
∂v

∂x

)
, Dyy =

∂v

∂y
. (2.13)

3. Boundary Conditions

To solve equations (2.7)–(2.12) we need to impose boundary conditions for u. On
rigid boundaries the velocity must obey the no-slip condition u = 0 while on inflows
it is prescribed by un = Uinfand uT = 0 and on outflows we should have ∂un

∂n
=

∂uT

∂n
= 0, where the subscripts n and T denote normal and tangential directions to

the inflow/outflow, respectively. When calculating the velocity field and the non-
Newtonian extra stress tensor, the values of the non-Newtonian extra stress tensor
on the boundaries of the domain are required. They are obtained by following the
ideas of Tomé et al. [6] as follows. On inflows we assume that Sxx = Sxy = Syy = 0

and on outflows we impose ∂Sxx

∂n
= ∂Sxy

∂n
= ∂Syy

∂n
= 0. On rigid boundaries, the

components of the extra stress tensor are calculated from (2.8)–(2.10) which we
assume to hold with the initial condition S = 0. Following Tomé et al. [6], it can
be shown that on rigid boundaries parallel to the x-axis, Sxx, Syy and Sxy given
by

Syy(x, y, t+ δt)=0 ,

Sxy(x, y, t+ δt)=e−
1

W e
δtSxy(x, y, t)+ 1

2

(
∂u(x,y,t)

∂y
−

∂u(x,y,t+δt)
∂y

)
[1 + e−

1
W e

δt] ,

Sxx(x, y, t+ δt)=e−
1

W e
δtSxx(x, y, t) + δt

[
∂u(x,y,t)

∂y
e−

1
W e

δtSxy(x, y, t)

+ ∂u(x,y,t+δt)
∂y

Sxy(x, y, t+ δt)
]

+ 1
2
We

(
∂u(x,y,t)

∂y
+ ∂u(x,y,t+δt)

∂y

)2

[1 − e−
1

W e
δt] .



198 Carvalho et al.

If the rigid boundary is parallel to the y-axis the calculation of Sxx, Sxy, Syy on the
rigid boundary is similar to the case above.

3.1. Free Surface Stress Conditions

We consider transient free surface flows of viscous fluid flowing into a passive atmo-
sphere and neglect surface tension effects. In this case, the appropriate boundary
conditions on the free surface can be written as (see Tomé et al. [6])

p =
1

Re

{
Sxxn2

x+2Sxynxny+Syyn2
y+2

[
∂u

∂x
n2

x+

(
∂u

∂y
+
∂v

∂x

)
nxny+

∂v

∂y
n2

y

]}
, (3.1)

1

Re

{[
Sxx

−Syy+2

(
∂u

∂x
−
∂v

∂y

)]
nxny+

(
Sxy +

∂u

∂y
+
∂v

∂x

)
(n2

y − n2
x)

}
= 0, (3.2)

where n = (nx, ny) is the normal outward unit vector to the free surface.

4. Numerical Method

To solve equations (2.7)-(2.12) we employ the procedure used by Tomé et al. [6]. We
suppose at time t0 the velocity field u(x, t0) and the non-Newtonian tensor S(x, t0)
are known and the values of u and S on the boundary are given. To compute the
velocity field u(x, t) and the non-Newtonian tensor S(x, t), where t = t0 + δt, we
proceed as follows:
Step 1: Calculate a tentative velocity field, ũ(x, t), from

∂ũ

∂t
= −∇ · (uu) −∇p̃+

1

Re
∇

2
u +

1

Re
∇ · S +

1

Fr2
g (4.1)

with ũ(x, t0) = u(x, t0) using the correct boundary conditions for u(x, t0). The
pressure field p̃(x, t0) can be arbitrary with the restriction that p̃(x, t0) must satisfy
the pressure condition on the free surface (see equation (3.1)).

Step 2: Solve the Poisson: ∇2ψ(x, t) = ∇.ũ(x, t). The appropriate boundary

conditions for this equation are:
∂ψ(x, t)

∂n
= 0 on rigid boundary and inflows and

ψ = 0 on the free surface and outflows.

Step 3: Compute the final velocity: u(x, t) = ũ(x, t) −∇ψ(x, t) .

Step 4: Compute the pressure: p(x, t) = p̃(x, t0) + ψ(x,t)
δt

.

Step 5: Update the components of the non-Newtonian extra stress tensor according
to the equations derived in Section 3.1.

Step 6: Compute the components of the extra-stress tensor using equations (2.8)–
(2.10).

Step 7: Update the marker particles positions. The last step in the calculation is
to move the marker particles to their new positions. This is performed by solving
dx
dt

= u, dy
dt

= v by Euler’s method. The fluid surface is defined by a list containing
these particles and the visualization of the free surface is obtained by connecting
them by straight lines.
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5. Finite Difference Approximation

The equations describing the numerical method presented in Section 4 will be solved
by the finite difference method on a staggered grid (see Figure 1a.). The velocity u
and v are staggered by δx/2 and δy/2 while the pressure and the components of the
non-Newtonian extra stress are located at cell centres. A scheme for identifying the
fluid region and the free surface is employed. To effect this the cells in the mesh can
be of several types, namely: cells Full of fluid (F), Surface cells (S), Empty cells (E),
Inflow cells (I), Outflow cells (O) and Boundary cells (B). The F-cell is required to
contain fluid and to have no E-cell face in contact with any of its faces and S-cells
are defined to contain fluid and to have at least one face in contact with an E-cell
face. I-cells define an inflow boundary while O-cells define an outflow boundary.
B-cells define a rigid boundary where the no-slip condition is imposed. Figure 1b
displays the types of cells within the mesh.

a)

ui+1/2,jui−1/2,j

vi,j+1/2

vi,j−1/2

S
xx
i,j

S
xy
i,j

yy
i,j

pi,j

S

b)

B B B B B

B

B

B B B B B B

BBBBBBB

B

B

BBBBB

B

I

I

I

O

O

O

O

O

O

O

O

O

S

S

F F F F F

F

FFFF

F FF

FF

FFF

F F

F F F

F

S

SSS

S S S

E

E

EE

EE

EE

E E

E E

E E

E

E E E

EEE

E E E

EEE

E E E

E

EE

E

EE

E

E

E

EE

EE

E

E

Figure 1: Cells in the computacional domain.

We point out that when solving the equations (4.1) it is usual to approximate the
time derivative by the explicit Euler method (see Tomé et al. [6]). In this work we
shall approximate the time derivative in (4.1) by the explicit modified Euler method
which is second order accurate. The pressure gradient and the linear terms of the
momentum equations are approximated by central differences. For the convective
terms we employ the high-order upwind VONOS (Variable-Order Non-Oscillatory
Scheme) method ([7]). The terms involving the divergent of the non-Newtonian
extra stress are approximated by central differences, namely,

∂Sxx

∂x

∣∣∣i+ 1
2

,j =
Sxx

i+1,j − Sxx
i,j

δx
,

∂Sxy

∂y

∣∣∣i+ 1
2

,j =
Sxy

i+ 1
2

,j+ 1
2

− Sxy

i+ 1
2

,j− 1
2

δy
, (5.1)

where terms like Sxy
i+ 1

2 ,j+
1
2

are obtained by averaging the four nearest values, e.g.

Sxy

i+ 1
2

,j+ 1
2

:= (Sxy
i,j + Sxy

i+1,j + Sxy
i,j+1 + Sxy

i+1,j+1)/4 . However, if the cell (i, j) is adja-

cent to a B-Cell or to an E-cell, a forward difference or a backward difference is

used to approximate the derivatives ∂Sxy

∂y

∣∣∣i+ 1
2 ,j

and ∂Sxy

∂x

∣∣∣i,j+ 1
2
. Therefore, the
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u-momemtum equation is approximated by

u∗

i+ 1
2

,j
= ui+ 1

2
,j + δt F (u, v) , ũi+ 1

2
,j = ui+ 1

2
,j +

δt

2
[F (u∗, v∗) + F (u, v)] , (5.2)

F (u, v) =

[
−(conv(u2) + conv(uv))i+ 1

2
,j −

p̃i+1,j − p̃i,j

δx
+

1

Re

(
∂Sxx

∂x
+
∂Sxy

∂y

) ∣∣∣i+ 1
2

,j

+
1

Re

(
ui− 1

2
,j − 2ui+ 1

2
,j + ui+ 3

2
,j

δx2
+
ui+ 1

2
,j−1 − 2ui+ 1

2
,j + ui+ 1

2
,j+1

δy2

)
+

1

Fr2
gx

]
.

The v-momentum equations is approximated in the same manner. We would like to
point out that the approximations described for discretizing the momentum equa-
tions are second order accurate in time and space. In a similar manner, the com-
ponents of the non-Newtonian extra stress eqs. (2.8)– (2.10) are approximated by
finite differences. The time derivative is explicitly approximated by the modified
Euler method, the convective terms are computed using the VONOS method [7]
and the spatial first order derivatives are second order approximated. For instance,
the component Sxx is computed as follows:

Sxx∗

i,j = Sxx
i,j + δtH1(S

xx, Sxy, Syy),

Sxx(n+1)

i,j = Sxx
i,j +

δt

2
[H1(S

xx, Sxy, Syy) +H1(S
xx∗ , Sxy∗ , Syy∗)] .

We observe that the time derivative on the right hand side of equations (2.8)– (2.10)
is going to be multiplied by δt and we suppose its contribution will be small and
therefore it is neglected. Thus, the function H1(S

xx, Sxy, Syy) can be written as

H1(S
xx, Sxy, Syy) = −

(
1

We

)
Sxx

i,j −
[
conv(uSxx)i,j + conv(vSxx)i,j − 2Dxx

i,jS
xx
i,j

−2
(ui,j+ 1

2
− ui,j− 1

2
)

δy
Sxy

i,j

]
− 2 [conv(uDxx)i,j + conv(vDxx)i,j − 2(Dxx)2i,j

−

(ui,j+ 1
2
− ui,j− 1

2

δy
−

)2

−

ui,j+ 1
2
− ui,j− 1

2

δy

vi+ 1
2

,j − vi− 1
2

,j

δx

]
. (5.3)

In equation (5.3), terms which are not defined at cell position are obtained by
averaging, e.g.

ui,j+ 1
2

:=
ui+ 1

2
,j + ui+ 1

2
,j+1 + ui− 1

2
,j + ui− 1

2
,j+1

4
.

Equations (2.9) and (2.10) are approximated in a similar manner. The Poisson
equation (see Step 2 Section 4) is discretized at cell centres using the five-point
Laplacian, namely,

ψi+1,j − 2ψi,j + ψi−1,j

δx2
+
ψi,j+1 − 2ψi,j + ψi,j−1

δy2
=
ũi+ 1

2
,j − ũi− 1

2
,j

δx
+
ṽi,j+ 1

2
− ṽi,j− 1

2

δy
.

(5.4)
Equation (5.4) leads to a symmetric and positive definite linear system for ψi,j . In
order to solve this linear system we employ the conjugate gradient method. The
final velocities are given by

un+1

i+ 1
2

,j
= ũi+ 1

2
,j −

(
ψi+1,j − ψi,j

δx

)
, vn+1

i,j+ 1
2

= ṽi,j+ 1
2
−

(
ψi,j+1 − ψi,j

δy

)
(5.5)
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and the pressure is calculated by pi,j = p̃i,j+
ψi,j

δt
. The free surface stress conditions

eqs. (3.1) and (3.2) are approximated in the same way as in Tomé et al. [6].

6. Validation and Numerical Results

We validate the numerical technique presented in this paper by simulating the flow
in a two-dimensional channel governed by the Maxwell constitutive equation. We
consider a 2D-channel formed by two parallel walls at a distance L from each other
and having a length of 10L. At the channel entrance we impose the analytical
profiles of fully developed flow given by

u(y) = −4
U

L2

(
y − L

2

)2

+ U, v = 0 , (6.1)

Sxx(y) = 2We

(
∂u

∂y

)2

, Sxy = 0 , Syy = 0 . (6.2)

On the channel walls the no-slip condition is imposed and at the channel exit the
conditions for outflow boundaries are applied (see Section 3). To simulate this
problem the following input data was employed: L = 1, U = 1, ν = µ0/ρ = 2,
ρ = 1, λ = 0.4 Hence Re = LU/ν = 0.5 and We = λU/L = 0.4. To demonstrate
the convergence of the numerical method we ran this problem using three meshes as
follows: Mesh1 - δx = δy = 0.2 (50×5 cells); Mesh2 - δx = δy = 0.1 (100×10 cells)
and Mesh3 - δx = δy = 0.05 (200 × 20 cells). We started with the channel empty
and injected fluid at the inflow until the channel became full and the steady state
was reached. Under steady state conditions the velocity field and the viscoelastic
extra-stress on the channel must have the same values as those imposed at the
inflow. Figure 2 displays the values of the velocity field and the values of the non-
Newtonian extra-stress components Sxx at the line x = 5 (middle of the channel)
together with the respective analytic values (see eqs. (6.1), (6.2)). The solid lines
in Figure 2 are the analytic solutions while the symbolds represent the numerical
solutions of the velocity field and the extra-stress component Sxx at the position
x = 5 using the three meshes. As we can see in Figure 2 the agreement between
the exact and the numerical solutions is very good. Indeed, the relative l2-norm of
the error

Exx =

∑
(Sxxexact − Sxxnumerical)

2

∑
(Sxxexact)

2

are displayed in Table I where we can see that the errors decrease with mesh re-
finement. These results demonstrate the convergence of the numerical method pre-
sented in this paper.

Table I
Mesh1 Mesh2 Mesh3

E(Sxx) 1.1669 10−2 8.5200 10−4 5.6000 10−5
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Figure 2: Numerical solution of 2D channel flow: Comparison between numeri-
cal and analytic solutions. u(y) velocity (left) and Sxx(y) extra-stress component
(right).

6.1. Numerical Simulation of jet buckling

To demonstrate that the technique presented in this paper can simulate viscoelastic
free surface flows we applied it to simulate the buckling instability of thin jets. This
problem has been investigated by several authors (e.g. Cruickshank [3], Tomé et
al. [6]) and a theory explaining this instability fully has not yet been presented.
However, Cruickshank [3] have presented experimental and theoretical estimates
predicting when a two-dimensional Newtonian jet will buckle. These estimates
were based upon the jet length (L), the height of the inlet to the rigid plate (H)
and the Reynolds number. From their study they concluded that if both conditions
Re < 0.5 and H/D > 10 then a two-dimensional Newtonian jet will buckle. To
illustrate that viscoelasticity has a strong influence on the jet buckling phenomenon
we present three calculations: one calculation for a Newtonian fluid; the other two
calculations we used the Maxwell and the Oldroyd-B constitutive equations. In
these calculations we used the following input data: jet length L = 6mm, inlet
velocity U = 0.25ms−1, height of the inlet to the rigid plate H = 5cm, mesh
spacing δx = δy = 1mm. The Newtonian fluid was defined by having viscosity
µ0 = 6Pas and fluid density ρ = 1000kgm−3 and therefore ν = 0.006m2s−1. The
Maxwell model was defined by having λ = 0.006s and the Oldroyd-B model by
the constants λ1 = λ and λ2 = 0.1 and µ0 was used for both the Maxwell and
Oldroyd-B fluids. The scaling parameters were L,U, λ and ν, giving Re = UL/ν =
0.25, We = λU/L = 0.25. In this case, the ratio H/L = 8.3 which does not
satisfy Cruickshank’s second condition and therefore the Newtonian jet should not
buckle. The results of these calculations are displayed in Figure 3. Indeed, Figure 3
shows that the Newtonian jet does not undergo buckling confirming Cruickshank’s
prediction. However, the viscoelastic jets modelled by the Maxwell and the Oldroyb-
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B constitutive equations did undergo buckling. Moreover, the Maxwell jet starts
buckling by initially bending to the right while the Oldroyd-B jet bends first to left.
These results show that the buckling instability when it occurs has no preferencial
direction. We believe that these results are due to the viscoelastic effects of the
Maxwell and Oldroyd-B models confirming that the numerical method presented in
this paper can indeed simulate flows governed by the Maxwell constitutive equation.

Figure 3: Numerical simulation of jet buckling: Fluid flow configuration at different
times. Re = 0.25,We = 0.25.

Newtonian Maxwell Oldroyd-B

t = 0.20s

t = 0.40s

t = 0.60

t = 0.71s
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7. Concluding Remarks

This paper has been concerned with the development of a numerical method for
solving the upper convected Maxwell equation for free surface flows. The finite
difference method was validated by simulating the flow of a Maxwell fluid in a
2D channel. The numerical results were compared with analytic solutions and
good agreement was obtained. Mesh refinement was performed which showed the
convergence of the method. The problem of jet buckling was simulated and it was
found that viscoelasticity has a strong effect on the jet buckling instability.

Resumo. Neste trabalho é apresentado uma técnica numérica utilizando o método
de diferenças finitas para simular escoamentos bidimensionais com superf́ıcies livres
para um fluido viscoelástico do tipo Maxwell. São apresentados as equações gov-
ernantes juntamente com as condições de contorno, as formulações para o cálculo
do tensor extra-tensão em contornos ŕıgidos e as condições para a superf́ıcie livre.
Resultados numéricos demonstrando a capacidade desta técnica na simulação de es-
coamentos viscoelásticos tipo Maxwell são apresentados. Também são apresentados
resultados numéricos que mostram a convergência do método numérico.
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