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Abstract Our aim in this work is to make a brief review of the results related to
the search of the Infimum and Supremum Values of the Steiner Ratio for point sets
in R

3. We show the fundamental achievements which were obtained in a research
period of 35 years. We also comment on a recently proposed new upper bound
value which is an improvement of Smith and Mac Gregor Smith’s bound.

1. Introduction

A Minimal Spanning Tree (MST) is the minimal length network which span a set of
points V in a metric space M. If additional points are necessary to get the minimum,
the corresponding minimal length tree is the Steiner Minimal Tree (SMT), with
these additional points being the Steiner points. There is a set V in the space M

such that its MST length (lMST ) is the best approximation to the SMT length
(lSMT ) over all sets in M. This means that there is a number ρ such that ρ lMST is
the greatest lower bound for lSMT (V ).

In this sense, the Steiner Ratio

ρ(V ) = infV ∈M

lSMT (V )

lMST (V )
(1.1)

is a measure of the MST length decrease by the introduction of Steiner points.
In the present work, we are interested in the case M = E3, and the corresponding

problem is the Euclidean Steiner Problem in D = 3 spatial dimensions. The history
of this problem is intermingled with that of the Steiner problem for the Euclidean
plane, since researchers have used their expertise with the D = 2 problem, to solve
some cases of the D = 3 problem. We include the reference of a very famous paper
[9], since it is essential in the understanding of the fundamental characteristics of the
Steiner Problem. It has also the tendency of inducing researchers into error. This
will be treated in detail in section 2. The third section reports on some tentatives
to derive upper and lower bounds for configurations with an infinite number of
dimensions. It also gives some inferences from these results for D = 2 and D = 3.

This has led researchers to think the other way: the possibility of deriving results
in dimensions D ≥ 3 from results already proven in D = 2. This was the source of

1mondaini@cos.ufrj.br
2nilomar@cos.ufrj.br



250 Mondaini e Oliveira

wrong results in the literature since some specific properties of the Euclidean plane
favour the construction of proofs. These properties are absent in D = 3. Section 4
is then the place for deriving a new upper bound of the Euclidean Steiner Ratio in
D = 3 in a direct modelling approach. In section 5 we introduce some comments
and remarks about a conjecture on the existence of a gap between lower and upper
bounds for the Steiner Ratio. We also stress the usefulness of the direct approach
of section 4 which was inspired by the study of biomacromolecular structure.

2. A Collection of results and the Gilbert-Pollak’s

paper

The first derived result for a lower bound to the Euclidean Steiner Ratio in any
number of spatial dimensions is Moore’s [9]. In Figure 1 below, let lP be the
perimeter of the external polygon obtained by the connection of all given points.

Figure 1: A sketch diagram for deriving the Moore’s lower bound.

We can see that lMST ≤ lP ≤ 2lSMT , which means ρ ≥ 0.5. Gilbert and Pollak
have made two important conjectures. A successful one that the point set V in
which to realize the infimum defined into (1.1) was given by the vertices of an
equilateral triangle with the corresponding value ρ =

√
3/2. This conjecture can

be written as lSMT /lMST ≥
√

3/2. The other conjecture is to consider the simplex
as the best configuration in which we have to look for an ratio (lSMT /lMST ). This
second conjecture of Gilbert and Pollak, it was disproved by the work of Smith and
Mac Gregor Smith (S - MacG-S) as we show in the fourth section. However, we
can consider that this conjecture has motivated 35 years of research work since only
recently we have disproved the main conjecture of the work of Smith and MacGregor
Smith [11].

Gilbert and Pollak in their breakthrough paper have also made some calculations
of upper bounds. In D = 2 and D = 3 they got ρ2 =

√
3/2 = 0.866026 and
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ρ3 = 0.813052, respectively. For D large, their value was

lim
D→∞

lSMT

lMST

≤ 1 +
√

3

4
= 0.683010 . . . (2.1)

The next important results to report came in 1976 [1], [10]. The first work seems
to have been done under the direct influence of Gilbert and Pollak simplex conjec-
ture in their search of upper bounds of the Steiner ratio for large D-dimensional
configurations. It improves the Gilbert and Pollak’s result (2.1) and it is given by

lim
D→∞

lSMT

lMST

≤
√

3

4 −
√

2
= 0.66984 . . . . (2.2)

The second work derives a lower bound. This was done by an independent
geometrical construction which is valid in any number of spatial dimensions. This
lower bound can be written as

lSMT

lMST

≥
√

3

3
= 0.577 . . . . (2.3)

This is a valid result in any number D of spatial dimensions. We shall give now
the derivation corresponding to the bound above. This is going to be proved for full
Steiner Trees with 2n−2 > 4 vertices (a tree with n−2 Steiner points). In terms of
the proof to be made, we can also start from a Steiner Tree which is not full, since
this can be decomposed into a union of full Steiner Trees and an induction process
can be applied.

Let Ri j to be the D-dimensional Euclidean distance between points i, j. Let us
take the tree to be that represented in Figure 2 below

Figure 2: The Steiner Minimal Tree (—-) and the Minimal Spanning Tree (- - -).

The structures corresponding to the minimal spanning tree and Steiner minimal
tree are clearly represented in this figure. The external points are given by rj

(1 ≤ j ≤ n) and Steiner points by sk (1 ≤ k ≤ n − 2) and we restrict ourselves to
full Steiner Trees.
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Let us suppose that

Rr2 s1
≥ Rr1 s1

. (2.4)

We shall use the equation

(Rr1 s1
+ Rr2 s1

) sinα = Rr1 r2
cos β (2.5)

which was obtained from the diagram of Figure 3 below.

Figure 3: The diagram used in the derivation of equation (2.3).

We consider the angle β to be small and the angle α in the left neighbourhood
of (π/3) or

β = ǫ1, α =
π

3
− ǫ2, (2.6)

where ǫ1, ǫ2 are infinitesimal positive numbers.

We have from equation (2.5),

(Rr1 s1
+ Rr2 s1

)

√
3

2
≥ (Rr1 s1

+ Rr2 s1
)

(√
3

2
− ǫ2

2

)

≈ Rr1 r2
. (2.7)

By using equation (2.4), we get

Rr1 r2
≤ (Rr1 s1

+ Rr2 s1
)

√
3

2
≤ Rr2 s1

√
3. (2.8)

We now consider the set

A1 = {rj} − {r1} , j = 1, 2, . . . , n. (2.9)

This set corresponds to the tree in Figure 4.
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Figure 4: Graphical representation of part of a full Steiner Tree corresponding to set A1.

We now consider the set A2 = A1 − {r2}. After an analogous calculation, as
was done for set A1, by using

Rr2 r3
≥ Rr3 s2

, (2.10)

we can have
Rr2 r3

≤ Rr3 s2

√
3. (2.11)

The induction process is then self-evident and we sum up all the inequalities
derived above to obtain

Rr1 r2
+ Rr2 r3

+ Rr3 r4
+ · · · ≤ (Rr2 s1

+ Rr3 s2
+ Rr4 s3

+ · · ·)
√

3. (2.12)

The left hand side is the length of the minimal spanning tree lMST . The length
of the Steiner minimal tree is an upper bound for the right hand side. We can then
write,

lMST ≤ lSMT

√
3. (2.13)

This is a proof of the result introduced in equation (2.3).
The same induction process can be used to prove the Moore’s bound if we start

from the triangle’s inequality and equation (2.4),

Rr1 r2
≤ Rr1 s1

+ Rr2 s1
≤ 2Rr2 s1

. (2.14)

We think it is useful to stress that this last proof will depend on the angle α to
be in the neighbourhood of π/3.

D. -Z. Du [4] has improved the lower bound given by equations (2.3), (2.13) to

ρD =
lSMT

lMST

(

V ⊂ ED
)

≥ 0.615 . . . . (2.15)

The present work is not the right place of deriving this lower bound. We shall
do it elsewhere. The improvement of this bound in a generic number of spatial
dimensions is still an open problem [7].
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3. The History of the D = 2 Lower Bound

The two last results of Section 2 could be also written as

ρ2 > ρ3 > · · · > lim
D→∞

ρD ≥ 0.577 . . . , (3.1)

ρ2 > ρ3 > · · · > lim
D→∞

ρD ≥ 0.615 . . . , (3.2)

since it seems to be a commonly observed effect the reduction of the Euclidean
Steiner ratio when the number of spatial dimensions increases.

The works of the references [4] and [10] got the influence of Gilbert and Pollak’s
paper on its polemical part: the validity of the D-dimensional simplex configuration
as the best set point candidate for an infimum of the Steiner Ratio. However, the
research towards the greatest lower bound in D = 2 has produced some very good
pieces of work. They can be summarized by the table below

Authors year Value of D=2 lower bound ρ2 = lSMT/lMST

Chung and Hwang 1978 ρ2 ≥ 1/3
(

2
√

3 + 2 −
√

7 + 2
√

3
)

= 0.743 . . .

Du and Hwang 1983 ρ2 ≥ 0.8
Chung and Graham 1983 ρ2 ≥ 0.8241 . . .

Du and Hwang 1990 ρ2 ≥
√

3/2 = 0.866 . . .

Du and Hwang 1992 ρ2 ≥
√

3/2 = 0.866 . . .

Table 1: Lower bounds for D = 2.

The last line on Table 1, corresponds to the value obtained in a full proof of the
Gilbert-Pollak’s conjecture. It took 22 years of research work to achieve this lower
bound. We are now convinced that there is no gap between the lower and an upper
bounds for the Euclidean Steiner Ratio in D = 2 dimensions. All the authors of
the bounds quoted above and published before the work of Du and Hwang knew
about the existence of the value

√
3/2 corresponding to the Steiner Ratio for the

equilateral triangle. Du and Hwang have derived a new bound, ρ
(n)
2 ≥

√
3/2 which is

valid for an arbitrary n-point configuration. The value of the new bound is exactly

the value of the equilateral triangle configuration. The result ρ
(n)
2 =

√
3/2 then

follows from the fact that we also have

infV ∈R2

lSMT (V )

lMST (V )
= ρ(V ) ≤ ρ

(3)
2 =

√
3

2
.

The value of the Steiner Ratio for a n-point configuration is then given effectively

by ρ
(n)
2 =

√
3/2.
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4. The D-Sausage configuration of Smith and Mac

Gregor Smith. The improvement of the upper

bound for D = 3.

The works of Smith and Mac Gregor Smith [15, 16], as well as Du and Smith [8],
have disproved the Simplex Gilbert-Pollak conjecture in dimensions 3 ≤ D ≤ 9. A
D-dimensional point set structure was introduced, the D-sausage. In D = 3, it is
achieved by the vertices of regular tetrahedra bounded together at common faces in
an infinite structure. The D-sausage Steiner Minimal Tree has a topology like that
of Figure 2 which the authors have called the “path-topology”. The best upper
bound value to the Euclidean Steiner Ratio was found to be

ρ3 ≤ 1

10

(

3
√

3 +
√

7
)

= 0.784190 . . . . (4.1)

This should be compared to the reported value of ρ3 ≤ 0.813052 by Gilbert and
Pollak. In D = 2, the 2-sausage structure which is realized by abutting equilateral
triangles has also confirmed the successful D = 2 Gilbert and Pollak’s conjecture.

In some recent works [11, 12, 13, 14], which have been inspired by the observation
of biomacromolecular structure, we have adopted the topology of Figure 2 to derive
a direct approach to the Steiner Ratio in D = 3. All the vertices of the 3-sausage
belong to a right circular helix. We can take it with unit radius and write for the
position vectors of the vertices,

~rj = (cos jω, sin jω, αjω) , 1 ≤ j ≤ n, (4.2)

where ω is the polar angle, 0 ≤ ω ≤ 2π, and 2πα is the helix pitch.
The Steiner tree point distribution is also along an helix [12] of radius r (ω, α).

~sk = (r (ω, α) cos kω, r (ω, α) sin kω, αkω) , 1 ≤ k ≤ n − 2. (4.3)

A tedious but straightforward derivation leads to the expressions for the radius
r (ω, α) and the Steiner Ratio for a 3-dimensional infinite set of points (n → ∞)

r (ω, α) =
αω

√

2(1 − cos ω)(1 − 2 cos ω)
, (4.4)

ρ (ω, α) =
1 + αω

√

1−2 cos ω
2(1−cos ω)

√

α2ω2 + 2(1 − cos ω)
, (4.5)

where (ω, α) ∈ V, V = {(ω, α)|(ω, α) ∈ R++, arccos 1
3 < ω < 2π − arccos 1

3 , α ≥ 0}.
For (ω, α) values taken from the helix whose vertices belong to regular tetrahe-

dra (ω = 2.300523 . . . , α = 0.264540 . . .), we get a coincidence of the values from
equation (4.1) and (4.5) up to the 38th decimal place [11, 13]. By cutting the sur-
face ρ(ω, α) with a plane α = 0.264540 . . ., we obtain an example of a new upper
bound in a structure formed from irregular chiral tetrahedra [14].

ρ3 ≤ 0.776001 . . . . (4.6)
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This value for the new upper bound was proposed as a possible disproof of the
conjecture of ref. [16].

However, the lower bound as obtained from equation (4.5) is the trivial Moore’s
bound ρ3 ≥ 0.5. We think that this is due to the poorness of our modelling in
spite of its success at reproducing value (4.1). Nevertheless, we should observe
that there is some hidden assumption of regularity in the literature related to the
D-sausage. Some bias can be also observed towards to favour a modelling which
does not violate a Copernican axiom of geometric perfection. From the observation
of helical patterns of input points in D = 3 as taken from protein databases, we
were able to improve the upper bound given into equation (4.1). This was done by
keeping the 3-sausage topology but deforming the configuration until a new rigid
structure is found.

5. Concluding Remarks

There are two lines of research work which seem to be worthwhile to follow in
forthcoming contributions. The first is the search for lower bounds according the
development of section 2. The second is to look for the improvement of upper bounds
by the direct approach of section 4. The last one depends strongly on modelling
and should be based on a deep understanding of biomacromolecular structure.

We believe that the existence of a gap between lower and upper bound values
in D = 3 is mandatory. It should correspond to the specification of a region which
nature has elected for biomacromolecular organization and life emergence. In this
sense, the D = 3 euclidean problem is essentially different from the 2-dimensional
problem in which researchers have obtained the excellency of their works. We stress
this point because we think that the Steiner Problem has a fundamental importance
for the understanding of biomacromolecular structure. This Was shown in refs.
[11, 12, 13, 14, 16] and we have been a engaged in this research program.

Resumo O objetivo do presente trabalho é fazer um breve sumário dos resultados
relacionados à pesquisa dos valores Ínfimo e Supremo da Razão de Steiner para
conjuntos de pontos em R

3. São mostradas as realizações fundamentais conseguidas
em um peŕıodo de pesquisa de 35 anos. É também comentado um novo valor do
limite superior proposto recentemente, que aperfeiçoa o limite superior de Smith e
Mac Gregor Smith.
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