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Abstract. Implicit schemes are studied with the purpose of introducing them in the
two-dimensional GENSMAC method, for the numerical solution of unsteady new-
tonian incompressible flows. By using the fractional-step approach, the Freeflow2D
simulation system is employed to solve the conservation equations. The viscous
terms in the Navier-Stokes equations are implicitly treated via the Implicit Back-
ward (IR), Crank-Nicolson (CN) and Adams-Bashforth/Crank-Nicolson (AB/CN)
schemes. The convective terms are explicitly treated by the upwind differencing
Variable Order Non-Oscillatory Scheme (VONOS) scheme. For channel and im-
pinging jet flows, the numerical techniques are robust and produce results that
compare very well with the analytical solutions.

1. Introduction

A well-known technique for the numerical simulation of free surface fluid flow pro-
blems is the MAC (Marker-And-Cell) method [11]. An improvement on the MAC
method was presented by Amsden and Harlow in their paper [1], where they in-
troduced the SMAC (Simplified Marker-And-Cell) method. The main purpose of
the SMAC method was to overcome the difficulties of the MAC method in deal-
ing with boundary conditions. In 1994, Tomé and McKee [16] introduced another
improvement on the SMAC method known as GENSMAC (GENeralized Simplified
Marker-And-Cell) method. The GENSMAC extends the SMAC methodology to
cope with arbitrary 2D geometries. Later on, Castelo et al. [6] designed a proce-
dure to introduce surface tension into GENSMAC and, Tomé et al. [17] extended
GENSMAC to axisymmetric flows. True to the fact that GENSMAC is an extension
of the MAC method, the diffusion term of the Navier-Stokes equations is discretized
explicitly. This brings the parabolic stability restriction into play, making the time
step very small for some applications, justifying the need for methods with better
stability properties.

In 1947, Crank and Nicolson derived, the now famous CN method, an uncon-
ditionally stable implicit method to solve the diffusion equation. Approximately,
ten years later, Peaceman and Rachford [8,15] introduced the Alternating Direction
Implicit method (ADI). Many authors (see, for instance, [4,12,18]) have contributed
to the study and understanding of implicit and semi-implicit methods for solving
the conservation equations in fluid flow problems.
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The main purpose of this work is to describe ways of adding implicit schemes to
the GENSMAC method for the numerical simulation of transient, viscous, incom-
pressible newtonian flows. For numerically solving the conservation equations, the
Freeflow2D [5] simulation environment will be used. This environment is composed
of three module: a modeling module (modeler) a simulation module (simulator,
which implements the GENSMAC method for solving the Navier-Stokes equations)
and the visualization module.

2. Mathematical Model

In non-dimensional conservative form, the equations for an incompressible newto-
nian flow are, respectively, the momentum equations and continuity equation

∂u

∂t
+ ∇ � (uu) = −∇p+

1

Re
∇2u +

1

Fr2
g, (2.1)

∇ � u = 0, (2.2)

where t is time, u = [u(x, y, t), v(x, y, t)] is the velocity field, p = p(x, y, t) is pres-
sure per unit of mass and g = (gx, gy) is the gravity field. The non-dimensional
parameters Re = LU/ν and Fr = U/

√
gL are the Reynolds and Froude numbers,

respectively, where L and U are the length and velocity scales and ν is the kinematic
viscosity coefficient of the fluid.

3. Numerical Method

The procedure we propose to solve the conservation equations is basically a modi-
fication of the GENSMAC method, which uses a fractional step method. Firstly, a
provisional velocity field is calculated from the momentum equations and then this
velocity field is updated so as to satisfy the continuity equation. When updating the
provisional velocity field, a Poisson equation is obtained for an auxiliary potential
function ψ. In the GENSMAC method, the convective and diffusive terms of the
Navier-Stokes equations are discretized explicitly, details of how to proceed can be
found in references [9,16,17]. Hence, the main modification we shall introduce into
GENSMAC is the calculation of the provisional velocity field, which will be made
implicit. Three different implicit methods will be tried. The first discretizes the
diffusive term using IR, the second uses CN [2], and the third uses AB/CN [13,14].
We shall present the provisional velocity field calculation for these three implicit
schemes.

As in GENSMAC, from (2.1) we derive the equation

∂ũ

∂t
= −∇ � (uu)n −∇p̃n +

1

Re
∇2un +

1

Fr2
gn, (3.3)

for the calculation of the provisional velocity field ũ, where p̃ is a guessed pres-
sure field. For the implicit schemes IR, CN and AB/CN, the equation (3.3) takes,
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respectively, one of the following forms:

∂ũ

∂t
− 1

Re
∇2ũ = −∇ � (uu)n −∇p̃n +

1

Fr2
gn, (3.4)

∂ũ

∂t
− 1

2Re
∇2ũ = −∇ � (uu)n −∇p̃n +

1

2Re
∇2un +

1

Fr2
gn, (3.5)

∂ũ

∂t
− 1

2Re
∇2ũ = −3

2
∇ � (uu)n +

1

2
∇ � (uu)n−1 −∇p̃n +

1

2Re
∇2un +

1

Fr2
gn. (3.6)

Hence, one computational cycle consists of updating the discrete variables from
the initial time t0 to a latter time t = t0 + δt, by using a sequence of inter-related
steps, whose details can be found in references [9, 16,17].

4. Discrete Equations

Equations (2.1) e (2.2) are approximated in a staggered mesh. In this mesh, the
pressure is stored at cell centers and the components of the velocity u and v are
stored in the middle of the lateral faces (see for instance [9]). As in [16], the dif-
fusion terms and the pressure gradient in equations (3.4)–(3.6) are approximated
by central differences, whereas the time derivatives are approximated by forward
differences (Euler explicit). Poisson’s equation for the potential ψ is approximated
by the laplacian five point stencil. The resulting linear system is solved by the con-
jugate gradient method [10]. The convective terms (denoted here by CONV (·)) are
discretized by the VONOS scheme [19], which is a bounded upwind technique with
limited artificial viscosity. Further details of the implementation of the VONOS
scheme can be found in [9]. Summarizing, the conservation equations are approxi-
mated by following finite difference equations:

• Components ũ and ṽ - IR Formulation:

ũn+1

i+ 1

2
,j
− δt

Re

{

ũi+ 3

2
,j − 2ũi+ 1

2
,j + ũi− 1

2
,j

δx2
+
ũi+ 1

2
,j+1 − 2ũi+ 1

2
,j + ũi+ 1

2
,j−1

δy2

}n+1

= un
i+ 1

2
,j

+ δt

{

−CONV (u)|i+ 1

2
,j −

(p̃i+1,j − p̃i,j)

δx
+

1

Fr2
gx

}n

,

ṽn+1

i,j+ 1

2

− δt

Re

{

ṽi+1,j+ 1

2

− 2ṽi,j+ 1

2

+ ṽi−1,j+ 1

2

δx2
+
ṽi,j+ 3

2

− 2ṽi,j+ 1

2

+ ṽi,j− 1

2

δy2

}n+1

= vn
i,j+ 1

2

+ δt

{

−CONV (v)|i,j+ 1

2

− (p̃i,j+1 − p̃i,j)

δy
+

1

Fr2
gy

}n

.
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• Components ũ and ṽ - CN Formulation:

ũ
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,j + ũi+ 1

2
,j−1

δy2

}n+1

= u
n

i+ 1

2
,j

+ δt

{

1

2Re

(

ui+ 3

2
,j − 2ui+ 1

2
,j + ui− 1

2
,j

δx2
+

ui+ 1

2
,j+1

− 2ui+ 1

2
,j + ui+ 1

2
,j−1

δy2

)

−CONV (u)|i+ 1

2
,j −

(p̃i+1,j − p̃i,j)

δx
+

1

Fr2
gx

}n

,

ṽ
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• Components ũ e ṽ - AB/CN Formulation:

ũ
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ũi+ 1

2
,j+1

− 2ũi+ 1
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5. Numerical Results

In this section, we present numerical experiments for two problems: channel and im-
pinging jet flows. In all the simulations, we used the final simulation time, specified
in the modeling module, as the stopping criterion.
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5.1. Channel Flow

In this example, we compare the exact [3] and the approximate solutions for Reynolds
numbers of 0.001, 0.1 and 1.0. The approximate solutions are shown at the middle
of the channel. The channel model used in the simulations has length 10L and width
L. The mesh used in the numerical simulations has 110 × 20 computational cells
(δx = δy = 0.10m). The time simulation for each example was t = 15s. Two differ-
ent simulations were performed: For the first, the channel is empty (free surface);
for the second, the channel is full of fluid (confined).

The velocity profiles for u obtained by the explicit, IR and CN schemes, together
with the analytical profile, are presented in figure 1. Figure 1(a) corresponds to the
problem with free surface, simulated with the explicit and IR schemes, and figure
1(b) corresponds to the confined one, simulated by the explicit and CN schemes.
It is seen from this figure that the agreement between computed results with these
schemes and analytical results can be said to be satisfactory. Moreover, the numeri-
cal results by using the explicit and implicit schemes are similar. It should also be
observed from this set of figures that this problem was simulated by using the CN
and AB/CN schemes for the case with free surface, and IR and AB/CN for the
confined case. These results are similar to the previous ones (not shown).

It is also worth mentioning that in the case of the free surface flow simulation
the minimum time step used was δt = 4.0 × 10−3s for the IR scheme (see figure
1 (a)); δt = 2.0 × 10−3 for the CN scheme; and δt = 2.2 × 10−3s for the AB/CN
scheme, Re = 1. For the confined problem, the numerical results are also in good
agreement with the exact solution. For this problem, the minimum time steps were:
δt = 1.5×10−5 for the IR scheme; δt = 1.875×10−5s for the CN scheme (see figure
1(b)); and δt = 1.975 × 10−5s for the AB/CN scheme, Re = 0.001.

It is important to note that, when solving the free surface problem, the minimum
time step size for the explicit method was δt = 1.3 × 10−3s for Re = 1. For the
confined problem the values of the minimum time step size is: δt = 2.5 × 10−6s for
Re = 0.001.

For a comparison of the CPU time obtained from the explicit and implicit meth-
ods, we used the problem of the channel of length 5L. The mesh used in this case
was 100× 20 computational cells (δx = δy = 0.05m) and Re = 0.1. Table 1 displays
the relative error (Erel), the time step and CPU time for this problem. It can be
observed from this table that the order of the error for all the methods was the
same. The δt of the implicit schemes is larger than that the explicit scheme. And
the CPU time is considerably larger in the explicit method.

Table 1: Results for confined flow. Re = 0.1 with simulation time t = 20s.

Method Erel δt(s) CPU time-(m:s)
Explicit 1.8689 × 10−6 2.5 × 10−5 104 : 40

IR 1.8689 × 10−6 2.5 × 10−4 25 : 08
CN 1.8691 × 10−6 5.0 × 10−4 22 : 41

AB/CN 1.8691 × 10−6 5.0 × 10−4 30 : 41
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Figure 1: Comparison between numerical and analytical solutions: (a) IR Scheme
with Re = 1 and (b) CN Scheme with Re = 0.001, respectively.
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These results show that the procedure allows larger time steps than Euler ex-
plicit, as it would be expected. Nevertheless, the presence of the free surface imposes
a more stringent restriction on the time step than it would be expected otherwise.

5.2. Impinging Jet Flow

The three implicit schemes introduced in previous section were also employed to
simulate the flow of an impinging jet onto an impermeable rigid wall, under gravity.
For this problem, the Reynolds number, based on the inlet velocity U = 1.0m/s
and on the nozzle diameter L = 0.010m, is Re = 5 × 103 and the Froude num-
ber is Fr = 3.19254. The grid used was 800 × 40 cells (δx = δy = 0.00050m).
Figure 2 shows a comparison between the numerical solution and the exact solu-
tion derived by Watson [20]. This picture shows the non-dimensional free surface
of the fluid (h/0.5L) plotted against the non-dimensional distance from the origin
(x/0.5L)Re−1. These results were produced by the implicit numerical schemes IR,
CN and AB/CN and plotted at time t = 4.0s. The picture shows good agree-
ment between the numerical solution and Watson’s exact solution. It is also worth
remarking that this same problem was solved for two other coarser meshes. The
results were very similar, indicating grid independence.

6. Conclusion

The main purpose of this work is the design and the test of implicit numerical
schemes, which can be used in conjunction with the GENSMAC method, for the
simulation of transient viscous incompressible newtonian flows. The derived implicit
schemes were implemented into the Freeflow2D environment.

Two problems were then simulated, namely: the channel flow and the impinging
jet under gravity flow. The numerical results show that the implicit schemes allow
for larger time steps when compared with the explicit one, implemented in the
original code. For the channel flow problem, the numerical results of the implicit
schemes shown very close to the explicit method (in spite of the δt for these schemes
be larger). This can be seen in Figure 1 or Table 1.

The implicit schemes presented larger overall computational costs due to the
need to solve an additional linear system per time step. However, as it was seen in
confined problems, the CPU time was much smaller than of the original method.

It should be stressed that the boundary conditions were treated explicitly in
this work. Further work will be needed to investigate the influence of the boundary
conditions on the stability constraints of implicit schemes. The authors will be
looking into these problems in the near future, including the implicit treatment of
the free surface boundary conditions and their influence in the time step bound.
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Figure 2: Comparison between Watson’s exact solution and the numerical solution
for the impinging jet flow, with Re = 5× 103 : (a) IR Scheme,(b) CN Scheme and
(c) AB/CN Scheme.
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Resumo. Formulações impĺıcitas são adaptadas na metodologia GENSMAC para
problemas bidimensionais, transientes, newtonianos e incompresśıveis. Usando um
método de passos fracionários, o ambiente de simulação Freeflow2D é utilizado
para resolver numericamente as equações de conservação. Os termos difusivos nas
equações de Navier-Stokes são tratados implicitamente pelas formulações Impĺıcita
Regressiva (IR), Crank-Nicolson (CN) e Adams-Bashforth/Crank-Nicolson (AB/CN).
Os termos convectivos são tratados expĺıcitamente pelo esquema upwind de alta
ordem e limitado Variable Order Non-Oscillatory Scheme (VONOS). Para escoa-
mentos em canais e jatos sobre superf́ıcies ŕıgidas, as formulações são robustas e
fornecem resultados que comparam muito bem com soluções anaĺıticas.
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