Invexidade Generalizada e Soluções Fracamente Eficientes de Problemas de Otimização Vetorial entre Espaços de Banach

L.B. dos SANTOS¹, Universidade Estadual de Campinas. Instituto de Matemática e Computação Científica, Depto. de Matemática Aplicada.

R. OSUNA-GÓMEZ², Universidad de Sevilla. Facultad de Matemáticas, Depto. de Estadística e Investigación Operativa.

M.A. ROJAS-MEDAR³, Universidade Estadual de Campinas. Instituto de Matemática e Computação Científica, Depto. de Matemática Aplicada.

A.R. LIZANA⁴, Universidad de Sevilla. Facultad de Matemáticas, Depto. de Estadística e Investigación Operativa.

Resumo. Neste trabalho, introduzimos a noção de ponto crítico vetorial e de ponto crítico de Kuhn-Tucker para uma certa classe de problemas de otimização vetorial entre espaços de Banach. Através destas noções, obtivemos uma caracterização para as soluções fracamente eficiente de tais problemas.

1. Introdução

Em otimização escalar, as condições de Kuhn-Tucker são suficientes para a otimalidade quando todas as funções envolvidas são convexas. Atualmente, consideráveis progressos têm sido obtidos com o intuito de enfraquecer as hipóteses de convexidade de maneira a ampliar a classe de problemas que verificam a suficiência das condições de Kuhn-Tucker.

Uma importante contribuição neste sentido foi dada por Hanson em [6]. Para este fim, considerou as funções invexas. Para tais funções, as clássicas condições de Kuhn-Tucker são suficientes para garantir otimalidade global. Mais tarde, Martin [10] observou que em problemas sem restrições, a invexidade é condição necessária e suficiente para garantir a otimalidade global. Assim, surge a seguinte questão: Qual

 $^{^1{\}rm Aluna}$ de Doutorado em Matemática Aplicada, parcialmente financiada por CNPq e CAPES. E-mail:lucelina@ime.unicamp.br.

²E-mail: rafaela@us.es

 $^{^3{\}rm Este}$ autor é financiado por CNPq-Brazil, processo no. 301354/03-0. E-mail: marko@ime.unicamp.br

 $^{^4\}mathrm{E\text{-}mail}\colon$ rufian@us.es

é a maior classe de funções para a qual as condições de Kuhn-Tucker são necessárias e suficientes para garantir a otimalidade global? A resposta a esta questão foi dada por Martin em [10] para problemas escalares.

Consideremos o seguinte problema escalar irrestrito:

$$\begin{cases} \text{Minimizar} & \theta(x) \\ \text{sujeito a} & x \in S \subseteq \mathbb{R}^n \end{cases}, \tag{P}$$

onde $\theta(x)$ é uma função escalar e $S \subseteq \mathbb{R}^n$.

Recordemos que \overline{x} é um ponto estacionário se $\nabla \theta(\overline{x})=0$ e o problema de otimização com restrições

$$\begin{cases} \text{Minimizar} & \theta(x) \\ \text{sujeito a} & -g_j(x) \le 0 \ j = 1, ..., m \\ & x \in S \subseteq \mathbb{R}^n \end{cases} , \tag{CP}$$

onde $\theta(x)$ é uma função escalar e $g = (g_1, ..., g_m) : \mathbb{R}^n \to \mathbb{R}^m$ é uma função vetorial, ambas diferenciáveis no conjunto aberto $S \subseteq \mathbb{R}^n$.

Também, lembramos que $(\overline{x}, \overline{u}) \in S \times \mathbb{R}^m$ é um ponto estacionário Kuhn-Tucker [9], se

$$\nabla \theta(\overline{x}) + \overline{u}^T \nabla g(\overline{x}) = 0, \overline{u}^T g(\overline{x}) = 0, \overline{u} \ge 0.$$

Além disso, uma função diferenciável $\theta:S\subseteq\mathbb{R}^n\to\mathbb{R}$ é chamada invexa em \overline{x} se existe uma função vetorial $\eta:S\times S\longrightarrow\mathbb{R}^n$ tal que

$$\theta(x) - \theta(\overline{x}) \ge \langle \nabla \theta(\overline{x}), \eta(x, \overline{x}) \rangle$$

e dizemos que é invexa em $S_0 \subseteq S$, se é invexa em cada ponto $\overline{x} \in S_0$.

Definição 1.1. (Hanson e Mond, [6]) A função $\theta: S \subseteq \mathbb{R}^n \to \mathbb{R}$ é chamada pseudoinvexa em $u \in S$ se existe uma função $\eta: S \times S \to \mathbb{R}^n$ tal que

$$\langle \nabla \theta(u), \eta(x, u) \rangle > 0 \Longrightarrow \theta(x) > \theta(u), \forall x \in S.$$

A função θ é chamada pseudoinvexa em S se θ é pseudoinvexa em cada ponto de S

Observamos que, para o caso escalar, os conceitos de invexidade e de pseudoinvexidade coincidem. Em [10], Martin provou o seguinte resultado para problemas sem restrições:

Teorema 1.1. A função θ é invexa em S se, e somente se, cada ponto estacionário é um mínimo global de θ em S.

Entretanto, para problemas com restrições, a invexidade apenas garante a suficiência para a otimalidade. Martin [10] define uma classe de problemas para os quais cada ponto crítico Kuhn-Tucker é ótimo global. Desta maneira, ele obtém

uma caracterização completa das soluções para o problema com restrições, dada em termos dos pontos críticos.

Lembramos que o problema (CP) é KT- invexo em S se existe uma função vetorial $\eta: S \times S \longrightarrow \mathbb{R}^n$ tal que, $\forall x_1, x_2 \in S$ com $g(x_1) \leq 0$ e $g(x_2) \leq 0$, então

$$\theta(x_1) - \theta(x_2) \ge \langle \nabla \theta(x_2), \eta(x_1, x_2) \rangle - \langle \nabla g_j(x_2), \eta(x_1, x_2) \rangle \ge 0, \forall j \in I(x_2),$$

onde $I(x_2) := \{j \in \{1, ..., m\} : g_j(x_2) = 0\}$ é o conjunto dos índices das restrições ativas em x_2 . O resultado obtido por Martin em [10] é:

Teorema 1.2. Todo ponto estacionário Kuhn-Tucker para (CP) é um mínimo global de (CP) se, e somente se, (CP) é KT-invexo.

Antes de formularmos os problemas de otimização vetorial que serão tratados neste trabalho, relembramos algumas conceitos preliminares.

Dado um conjunto arbitrário E, uma relação binária em E é, por definição, um subconjunto B de $E \times E$, ou seja um elemento $x \in E$ está relacionado com $y \in E$ se $(x,y) \in B$.

Seja B uma relação binária em E. Dizemos que B é

- 1. Reflexiva se $(x,x) \in B$ para cada $x \in E$. (caso contrário, é chamada irreflexiva);
- 2. Simétrica se $(x,y) \in B \Rightarrow (y,x) \in B, \ \forall x,y \in E$ (caso contrário, é assimétrica);
- 3. Transitiva se $(x, y), (y, z) \in B \Rightarrow (x, z) \in B, \forall x, y, z \in E;$
- 4. Completa se $\forall x, y \in E, x \neq y$ se tem $(x, y) \in B$ ou $(y, x) \in B$;
- 5. Linear (no caso em que E é um espaço vetorial) se $(x,y) \in B$ implica $(tx+z,ty+z) \in B, \forall x,y,z \in E, t>0.$

Uma relação binária é dita ser uma *ordem parcial* se é reflexiva e transitiva. Se, além disso, for completa é dita ser uma *ordem total*

É bem conhecido (veja [8]) que se B é uma ordem parcial linear (definida em um espaço vetorial), então o conjunto

$$C = \{x \in E : (x,0) \in B\}$$
(1.1)

é um cone convexo. Se, além disso, B for simétrica, então C é um cone ponteado (isto é, $C \cap (-C) = 0$). Reciprocamente, cada cone convexo C em E fornece uma relação binária

$$B_C = \{(x, y) \in E \times E : x - y \in C\},$$
 (1.2)

a qual é reflexiva, transitiva e linear.

Por este motivo, consideraremos neste trabalho, apenas relações binárias definidas por cones convexos.

No que segue, utilizaremos as seguintes notações: Seja, F um espaço de Banach, $C \subset F$ um cone convexo, fechado, ponteado (i.e., $C \cap (-C) = \{0\}$), distinto de F e com interior não vazio,

$$\begin{array}{lll} x \leqq_C y & \Leftrightarrow & y-x \in C, \\ x \leq_C y & \Leftrightarrow & y-x \in C \setminus \{0\}, \\ x <_C y & \Leftrightarrow & y-x \in \text{int } C. \end{array}$$

Desta maneira, o cone convexo $C \subset F$ caracteriza a preferência do decisor (por exemplo, y é preferível a x se $x \leq_C y \Leftrightarrow y - x \in C$).

Lembramos que $h: E \longrightarrow F$ é Fréchet diferenciável no ponto x (veja [1]) (por brevidade, diferenciável no ponto x) se existe um operador linear e contínuo $Dh(x): E \longrightarrow F$ tal que

$$\lim_{z \to 0} \frac{\|h(x+z) - h(x) - Dh(x)z\|_F}{\|z\|_E} = 0.$$

A função h é dita ser diferenciável em $S \subseteq E$ se h é diferenciável em cada ponto de S. Sejam E e F dois espaços de Banach e $f:E\longrightarrow F$ e $g:E\longrightarrow G$ duas funções diferenciáveis sobre o conjunto aberto e não vazio E, $S\subset E$, e assumimos que F é parcialmente ordenado pelo cone convexo fechado, ponteado e com interior não vazio $C\subset F$ (com $C\neq E$), e $K\subset G$ é um cone convexo fechado e distinto de G. Os problemas que serão considerados são:

(1) Sem restrições:

$$\begin{cases} \text{Minimizar} & f(x) \\ \text{sujeito a} & x \in S \subseteq E \end{cases}$$
 (VOP)

(2) Com restrições:

$$\begin{cases} \text{Minimizar} & f(x) \\ \text{sujeito a} & -g(x) \in K \\ & x \in S \subseteq E \end{cases}$$
 (CVOP)

Observamos que para (VOP) o conjunto factível é S e para (CVOP) é

$$\mathcal{F} := \{ x \in S : -q(x) \in K \}.$$

Os seguintes conceitos são conhecidos:

Definição 1.2. O ponto factível $\overline{x} \in S$ é chamado solução eficiente se não existe x factível tal que $f(\overline{x}) - f(x) \in C \setminus \{0\}$ (ou, equivalentemente \overline{x} factível é eficiente se não existe x factível tal que $f(x) \leq_C f(\overline{x})$).

Definição 1.3. O ponto factível $\overline{x} \in S$ é chamado solução fracamente eficiente se não existe x factível tal que $f(\overline{x}) - f(x) \in int C$ (ou equivalentemente, \overline{x} é uma solução fracamente eficiente se não existe x factível tal que $f(x) <_C f(\overline{x})$).

Denotaremos F^* o dual topológico de F, e $\langle \cdot, \cdot \rangle$ a dualidade canônica entre F^* e F. Dado um cone convexo $C \subset F$ define-se o cone dual de C,

$$C^* := \{ \xi \in F^* : \langle \xi, x \rangle \ge 0, \forall x \in C \}.$$

Vale notar que, nos últimos anos, têm aparecido novos tipos de funções que pretendem generalizar as que citamos anteriormente. São o caso, por exemplo, das funções F-convexas, ρ -convexas e (F, ρ)-convexas (veja [5], [7], [11]). Entretanto, embora seja verdade que estas funções generalizem as que tratamos neste trabalho, pode-se demonstrar (e isto é feito em detalhes em [13]) estas não conduzem a nada novo sobre a otimalidade, porque para provar alguma condição de otimalidade é necessário impor certas hipóteses adicionais, de tal forma que recaem em algum dos tipos tratados neste trabalho.

O trabalho tem a seguinte estrutura: na Seção 2, estudamos o problema sem restrições; definimos funções pseudoinvexas e provaremos que para este problema, f é pseudoinvexa se e somente se ser ponto crítico vetorial é condição necessária e suficiente para a eficiência fraca. Na Seção 3, consideraremos o problema com restrições e definimos problemas KT-invexos; provamos que esta classe de problemas tem a propriedade de que ser ponto crítico Kuhn-Tucker é condição necessária e suficiente para a eficiência fraca.

2. Condições Necessárias e Suficientes de Otimalidade para o Problema Irrestrito

Sejam E e F dois espaços de Banach, $C \subset F$ um cone convexo fechado com interior não vazio e diferente do espaço todo F. Seja S um subconjunto aberto e não vazio de E e $f: E \longrightarrow F$ uma função diferenciável em S.

Definição 2.1. $\overline{x} \in S$ é um ponto crítico vetorial de (VOP) se existe $\lambda^* \in C^* \setminus \{0\}$ tal que $\lambda^* \circ Df(\overline{x}) = 0$.

O seguinte resultado é provado em [2].

Teorema 2.1. Se $\overline{x} \in S$ é uma solução fracamente eficiente de (VOP), então \overline{x} é um ponto crítico vetorial.

Definição 2.2. Seja $f: S \subseteq E \longrightarrow F$ uma função diferenciável no conjunto aberto S. Dizemos que f é pseudoinvexa em S com respeito a η , se existe uma função vetorial $\eta: S \times S \longrightarrow E$ tal que

$$x_1, x_2 \in S \ e \ f(x_1) - f(x_2) <_C 0 \Rightarrow Df(x_2)\eta(x_1, x_2) <_C 0$$

(onde $Df(x_2)\eta(x_1,x_2)$ denota o valor da função $Df(x_2) \in \mathcal{L}(E,F)$ aplicada no vetor $\eta(x_1,x_2) \in E$ e $\mathcal{L}(E,F)$ é o conjunto dos operadores lineares e contínuos de E em F).

Para provar que pontos críticos coincidem com as soluções fracamente eficientes do problema (VOP) quando a função f é pseudoinvexa, necessitaremos do seguinte resultado, que pode ser encontrado em [3],

Lema 2.1. Sejam F um espaço de Banach, $C \subset E$ um cone convexo fechado e $\xi \in C^* \setminus \{0\}$. Então, $\langle \xi, x \rangle > 0$ quando $x \in \text{int} C$.

O seguinte teorema prova que a pseudoinvexidade é condição suficiente para que um ponto crítico vetorial seja solução fracamente eficiente. Com efeito:

Teorema 2.2. Se no problema (VOP), f é pseudoinvexa e $\overline{x} \in S$ é um ponto crítico vetorial, então \overline{x} é uma solução fracamente eficiente.

Demostração: De fato, provaremos que se $\overline{x} \in S$ é um ponto crítico vetorial e não é solução fracamente eficiente e obteremos uma contradição. Neste caso, existe $\lambda^* \in C^* \setminus \{0\}$ tal que

$$\lambda^* \circ Df(\overline{x}) = 0 \tag{2.1}$$

e existe $x \in S$ tal que

$$f(x) - f(\overline{x}) \in - \text{ int } C.$$
 (2.2)

Por outro lado, como f é pseudoinvexa, obtemos de (2.2) que

$$Df(\overline{x})\eta(x,\overline{x}) \in -\mathrm{int}C,$$

e (pelo Lema 2.1)

$$\lambda^*(Df(\overline{x})\eta(x,\overline{x})) = [\lambda^* \circ Df(\overline{x})]\eta(x,\overline{x}) < 0,$$

esta última desigualdade contradiz (2.1). Assim, \overline{x} é solução fracamente eficiente de (VOP).

O seguinte resultado é uma generalização do Teorema de Farkas (veja [2]):

Lema 2.2. Sejam $X, Y \in V$ espaços vetoriais normados, $A \in \mathcal{L}(X, V)$ e $M \in \mathcal{L}(X, Y)$ dados, $T \subseteq V \in Q \subseteq Y$ cones convexos int $Q \neq \phi$ e $b \in -T$, $s \in -Q$. Supor que o cone $[A, b]^T(T^*)$ é fraco*-fechado. Então o sistema

$$\begin{cases} Ax + b \in -T \\ Mx + s \in -int \ Q \end{cases}$$

não tem solução se, e somente se, existem $\tau \in Q^* \setminus \{0\}$, $\lambda \in T^*$ tais que

$$\begin{cases} \tau M + \lambda A = 0 \\ \langle \lambda, b \rangle = 0 \\ \langle \tau, s \rangle = 0 \end{cases} .$$

O seguinte teorema é o principal resultado desta seção:

Teorema 2.3. A função f em (VOP) é pseudoinvexa em S se, e somente se, cada ponto crítico vetorial é solução fracamente eficiente de (VOP).

Demostração: Segue, do Teorema 2.2, que se f é pseudoinvexa, então cada ponto crítico vetorial é solução fracamente eficiente de (VOP). Agora, suponha que cada ponto crítico vetorial é solução fracamente eficiente de (VOP). Fixemos $\overline{x} \in S$ e consideremos os seguintes sistemas:

$$f(x) - f(\overline{x}) \in -\text{int}C \ (x \in S)$$
 (2.3)

$$Df(\overline{x})u \in -intC \ (u \in E).$$
 (2.4)

Provaremos que o se o sistema (2.3) tem uma solução, então o sistema (2.4) também tem solução. De fato, se (2.3) tem solução, então \overline{x} não é fracamente eficiente e por hipótese, não é um ponto crítico vetorial, i.e., não existe $\lambda^* \in C^* \setminus \{0\}$ tal que $\lambda^* \circ Df(\overline{x}) = 0$. Fazendo: $A = 0 \in \mathcal{L}(E, F), M = Df(\overline{x}) \in \mathcal{L}(E, F), b = 0 \in E$ e $s = 0 \in F$, obtemos que não existe $\tau \in Q^* \setminus \{0\}$ e $\lambda \in Q^*$ tal que

$$\begin{cases} \tau M + \lambda A = 0 \\ \langle \lambda, b \rangle = 0 \\ \langle \tau, s \rangle = 0 \end{cases}.$$

Por outro lado, pelo Lema 2.2, existe $u \in E$ tal que

$$\left\{ \begin{array}{l} Au+b=0\in -Q\\ Mu+s=Df(\overline{x})u\in -\mathrm{int}Q \end{array} \right..$$

Em particular, o sistema (2.4) tem solução $u \in E$. Fazendo $\eta(x, \overline{x}) = u$, obtemos que f é pseudoinvexa.

3. Condições Necessárias e Suficientes para Eficiência Fraca para o Problema com Restrições

Nesta Seção, consideraremos o seguinte problema de otimização vetorial:

$$\begin{cases} \text{Minimizar} & f(x) \\ \text{sujeito a} & -g(x) \in -K \\ & x \in S \subseteq E \end{cases}, \tag{CVOP}$$

onde E,F e G são espaços de Banach, $C\subset F$ e $K\subset G$ são cones convexos fechados e distintos de F e G, respectivamente, int $C\neq \phi$, $S\subseteq E$ é aberto e não vazio e as funções $f:E\longrightarrow F$ e $g:E\longrightarrow G$ são diferenciáveis em S.

Definição 3.1. Dizemos que (CVOP) é KT-invexo em $x_2 \in \mathcal{F}$ se existe uma função vetorial $\eta: S \times S \longrightarrow E$ tal que para cada $x_1 \in \mathcal{F}$, se verifica:

$$\begin{cases} f(x_1) - f(x_2) \in - \text{ int } C \Rightarrow Df(x_2)\eta(x_1, x_2) \in - \text{ int } C \\ -Dg(x_2)\eta(x_1, x_2) \in K. \end{cases}$$

e se, o problema é KT-invexo em cada $x \in \mathcal{F}$, dizemos que (CVOP) é KT-invexo.

Para o caso finito-dimensional Osuna-Gómez, Rufián-Lizana e Ruiz-Canales [12] provaram que ser ponto crítico vetorial Kuhn-Tucker é condição necessária e suficiente para a eficiência fraca quando (CVOP) é KT-invexo.

Teorema 3.1. Quando $E = \mathbb{R}^n$, $F = \mathbb{R}^p$, $G = \mathbb{R}^m$, $C = \mathbb{R}^p_+$ e $K = \mathbb{R}^m_+$, todo ponto crítico vetorial Kuhn-Tucker é solução fracamente eficiente de (CVOP) se, e somente se, (CVOP) é KT-invexo.

Agora, enunciaremos e provaremos resultados análogos para o problema infinitodimensional.

Teorema 3.2. (suficiência) Se (CVOP) é um problema KT-invexo, então cada ponto crítico Kuhn-Tucker é solução fracamente eficiente de (CVOP).

Demostração: Assuma que (CVOP) é KT-invexo e seja \overline{x} um ponto crítico Kuhn-Tucker. Neste caso, existem $\lambda^* \in C^* \setminus \{0\}$ e $\mu^* \in K^*$ tais que

$$\lambda^* \circ Df(\overline{x}) + \mu^* \circ Dg(\overline{x}) = 0 \\ \langle \mu^*, g(\overline{x}) \rangle = 0$$

e, em particular,

$$\lambda^* \circ Df(\overline{x})\eta(\overline{x}, x) + \mu^* \circ Dg(\overline{x})\eta(\overline{x}, x) = 0, \ \forall x \in \mathcal{F}, \langle \mu^*, g(\overline{x}) \rangle = 0.$$
 (3.1)

Assuma que \overline{x} não é solução fracamente eficiente de (CVOP). Então existe $x \in S$, $g(x) \in -K$ tal que $f(x) - f(\overline{x}) \in -$ int C e como $\lambda^* \in C^* \setminus \{0\}$, então pelo Lema 2.1 temos que

$$\lambda^*(Df(\overline{x})\eta(x,\overline{x})) < 0. \tag{3.2}$$

De (3.1) e (3.2), obtemos

$$\mu^*(Dg(\overline{x})\eta(x,\overline{x})) > 0. \tag{3.3}$$

Como (CVOP) é KT-invexo, $-Dg(\overline{x})\eta(x,\overline{x}) \in K$ e $\mu^* \in K^*$, temos que

$$\mu^*(Dg(\overline{x})\eta(x,\overline{x})) \le 0,$$

o que contradiz (3.3) e, assim, \overline{x} é solução fracamente eficiente de (CVOP).

Teorema 3.3. (Necessidade) Assuma que \overline{x} é um ponto crítico Kuhn-Tucker de (CVOP) e que o conjunto $[Dg(\overline{x}), g(\overline{x})]^T(K^*)$ é fraco*-fechado. Então, se cada ponto crítico vetorial Kuhn-Tucker é solução fracamente eficiente de (CVOP), então (CVOP) é KT-invexo.

Demostração: Seja $\overline{x} \in S$ fixo, consideremos os sistemas:

$$\begin{cases}
Df(\overline{x})u \in -\inf C \\
Dg(\overline{x})u \in -K
\end{cases}$$
(3.4)

e

$$\begin{cases}
f(x) - f(\overline{x}) \in - \text{ int } C \\
g(x) \in -K.
\end{cases}$$
(3.5)

Então provar que (CVOP) é KT-invexo em \overline{x} é equivalente a provar que (3.4) tem solução $u \in E$ quando o sistema (3.5) tem solução $x \in S$ (em tal caso, é suficiente tomar $\eta(x,\overline{x})=u\in E$). Assuma que o sistema (3.5) tenha solução. Então, \overline{x} não é solução fracamente eficiente e por hipótese \overline{x} não é ponto crítico vetorial Kuhn-Tucker. Assim, não existem $\tau \in C^* \setminus \{0\}$ e $\lambda \in K^*$ tais que

$$\tau M + \lambda A = 0,
\langle \lambda, b \rangle = 0,
\langle \tau, s \rangle = 0$$

(onde $A = Dg(\overline{x}) \in \mathcal{L}(E, G)$, $M = Df(\overline{x}) \in \mathcal{L}(E, F)$, $b = g(\overline{x}) \in -K$ e $s = 0 \in -C$). Segue, do Lema 2.2, que o sistema

$$\begin{cases}
Au + b \in -K \\
Mx + s \in - \text{ int } C
\end{cases}$$

tem solução ou, equivalentemente, existe $u \in E$ tal que

$$\begin{cases} Dg(\overline{x})u + g(\overline{x}) \in -K \\ Df(\overline{x})u \in -\text{ int } C \end{cases}.$$

Mas,

$$Dq(\overline{x})u = [Dq(\overline{x})u + q(\overline{x})] - q(\overline{x}) \in -K - K \subseteq -K$$

e, assim, o sistema (3.5) tem solução.

Observação: O conjunto $[Dg(\overline{x}), g(\overline{x})]^T(K^*)$ é fraco* fechado, quando o cone K é poliédrico, qualquer que seja $\overline{x} \in \mathcal{F}$. Veja [4]. Desta maneira,os resultados deste trabalho generalizam os correspondentes obtidos por Osuna-Gómez et al. [12], em que os autores consideram o caso $K = \mathbb{R}^p_+$.

Observação: Queremos salientar que os resultados obtidos neste trabalho são válidos ainda para espaços normados. Pois, segundo nosso conhecimento o Teorema de Alternativa de Farkas (Lema 2.2 no trabalho) permanece válido (veja [4]), o qual é um dos resultado essenciais na nossa argumentação.

4. Conclusões

Este trabalho é uma extensão dos resultados obtidos em [12] para o contexto de otimização entre espaços de Banach, cuja estrutura de dominação é dada por cones. Estes resultados caracterizam os problemas pseudoinvexos (caso irrestrito) e KT-invexos (problemas com restrições) em termos de pontos críticos vetoriais e pontos críticos Kuhn-Tucker, respectivamente.

Agradecimentos O presente trabalho foi parcialmente financiado pelo Ministerio de Educación de España, através do projeto BFM 2003-06579. A primeira Autora agradece à CAPES (processo número BEX 2444/02-0) pelo financiamento de sua estância na Universidad de Sevilla, durante a qual se realizou este trabalho. Também agradece ao Departamento de Estadística e Investigación Operativa desta universidade pelas facilidades oferecidas durante o referido período de Estágio.

Referências

- [1] A. Avez, "Calcul Differentiel", Mason, Paris, 1983.
- [2] B.D. Craven, Lagrangean Conditions and Quasiduality, Bull. Austral. Math. Soc., 16 (1977), 325-339.

[3] B.D. Craven, "Mathematical Programming and Control Theory", Chapman and Hall: London, 1978.

- [4] B.D. Craven, "Control and Optimization", Chapman and Hall, 1995.
- [5] R.R. Egudo, M.A. Hanson, Duality with generalized convexity, J. Austral. Math. Soc. Ser. B, 28 (1986), 10-21.
- [6] M.A. Hanson, On Sufficiency of Kuhn- Tucker Conditions, J. Math. Anal. and Appl., 30 (1981), 545-550.
- [7] V. Jeyakumar, Strong and weak invexity in Mathematical Programming, Collection: Methods of Operations Research, **55** (1980), 109-125.
- [8] D. The Luc, "Theory of Vector Optimization", Lect. Notes in Economics and Mathematical Systems, 319, Berlin, Springer-Verlag (1989).
- [9] O.L. Mangasarian, "Nonlinear Programming", Mac Graw-Hill: New York, 1969.
- [10] D.H. Martin, The Essence of Invexity, J. Optim. Theory Appl., 47 (1985), 65-76.
- [11] V. Preda, On duality with generalized convexity, Boll. Un. Mat. Ital. A (7), 5 (1991), 291-305.
- [12] R. Osuna-Gómez, A. Rufián-Lizana and P. Ruiz-Canales, Invex Functions and Generalized Convexity in Multiobjective Programming, J. of Optim. Theory Appl., 98 (1998), 651-661.
- [13] R. Osuna-Gómez, "Programción con Objetivos Múltiples: Dualidad", Tese de Doutorado, Universidad de Sevilla, España, Sevilla, Espanha, 1996.