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Abstract. This paper studies optimal control problems for dynamical systems
governed by neutral functional-differential inclusions that linearly depend on
delayed velocity variables. Developing the method of discrete approximations,
we derive new necessary optimality conditions for such problems in both Euler-
Lagrange and Hamiltonian forms. The results obtained are expressed in terms of
advanced generalized differential constructions in variational analysis.
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1. Introduction

This paper considers the optimal control problem (P ) formulated as follows: mini-
mize the cost functional:

J [x] := ϕ(x(a), x(b)) +

∫ b

a

f(x(t), x(t− ∆), t) dt (1.1)

over arcs x : [a − ∆, b] → IRn, which are absolutely continuous on [a − ∆, a) and
[a, b] (t = a could be a point of discontinuity) and satisfy the following neutral
functional-differential inclusion:

{
ẋ(t) −Aẋ(t− ∆) ∈ F (x(t), x(t− ∆), t) a.e. t ∈ [a, b],

x(t) = c(t), t ∈ [a− ∆, a),
(1.2)

with the endpoint constraints

(x(a), x(b)) ∈ Ω ⊂ IR2n. (1.3)
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We always assume that F : IRn × IRn × [a, b] →→ IRn is a set-valued mapping, that
Ω is a closed set, that ∆ > 0 is a constant delay, and that A is a n × n constant
matrix.

The main objective of this paper is to derive necessary optimality conditions for
problem (P ) under natural assumptions on the initial data. For optimal control
systems governed by delayed differential inclusions (A = 0) necessary optimality
conditions have been studied in several papers, particularly by Clarke and Watkins
[2], Clarke and Wolenski [3], Minchenko [7], Mordukhovich and Trubnik [12], and
Mordukhovich and Wang [13]. Quite recently [14, 15], Mordukhovich and Wang de-
veloped first results on optimal control of the so-called neutral functional-differential
inclusions (i.e., with A 6= 0 in (1.2)) given in the Hale form

d

dt

[
x(t) −Ax(t− ∆)

]
∈ F (x(t), x(t− ∆), t) a.e. t ∈ [a, b]

that happens to be a simplification of (1.2) and does not allow us to derive appro-
priate intrinsic results for the conventional form (1.2) of neutral systems. The main
goal of this paper is to obtain necessary optimality conditions for problem (P ) given
in the conventional form of neutral functional-differential inclusions, which have not
been considered in the literature from the viewpoint of optimality conditions.

The techniques used in this paper are based on the method of discrete approxi-
mations, which was developed by Mordukhovich [8, 10] for ordinary differential in-
clusions, then extended by Mordukhovich and Trubnik [12] and Mordukhovich and
Wang [13] for delay-differential inclusions, and then by Mordukhovich and Wang
[14, 15] for neutral functional-differential inclusions given in the Hale form. This
method allows us to construct a well-posed parametric family of optimal control
problems for approximating systems governed by discrete-time neutral functional-
difference inclusions, which can be reduced in turn to problems of nonsmooth math-
ematical programming with many geometric constraints. To handle such problems,
we use generalized differential tools of variational analysis. Finally, passing to the
limit from discrete approximations, we obtain necessary optimality conditions for
the original continuous-time problem (P ). Observe that considering functional-
differential inclusions in the general (but linear in velocities) form (1.2) requires a
more careful variational analysis from both viewpoints of discrete approximations
and deriving necessary optimality conditions. Note also that the linear dependence
on velocities in (1.2) is essential in our techniques involving limiting procedures.

The paper is organized as follows. In Section 2 we present some results ensuring
the strong convergence of optimal solutions in the process of discrete approxima-
tion, which play a substantial role in our approach. In Section 3 we review basic
constructions and calculus rules of generalized differentiation that are needed to
perform a variational analysis of discrete-time and continuous-time systems in the
subsequent sections. Section 4 is devoted to necessary optimality conditions for
nonconvex discrete-time neutral functional-difference inclusions. The main results
on the new Euler-Lagrange and Hamiltonian optimality conditions for the original
problem (P ) are derived in Section 5 by passing to the limit in the above optimality
conditions for discrete-time systems.

The notation in this paper is basically standard. The transposed matrix of A
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is denoted by A∗; the symbol IB always stands for the closed unit ball of IRn, and
haus(Ω1,Ω2) denotes the Hausdorff distance between two compact sets Ω1 and Ω2

in IRn. Given a set-valued mapping F : X →→ Y between finite-dimensional spaces,
the Painlevé-Kuratowski upper/outer limit of F (x) as x→ x̄ is defined by

Lim sup
x→x̄

F (x) :=
{
y ∈ Y | ∃ xk → x̄, ∃ yk → y with yk ∈ F (xk),∀ k ∈ IN

}
.

Some special symbols are introduced and explained in Section 3. We refer the
reader to Mordukhovich [10] and Rockafellar and Wets [17] for additional material
and more discussions on generalized differentiation.

2. Convergence of Discrete Approximations

In this section we consider the construction of well-posed discrete approximations
to problem (P ) and present some results on the strong approximation and strong
convergence of optimal solutions.

Let x̄(t) be an arbitrary trajectory. Assume that the set-valued mapping F (x, y, t)
is locally bounded, locally Lipschitzian in (x, y) around x̄(t), and Hausdorff contin-
uous a.e. on [a, b]. More precisely, we impose the following assumptions throughout
the paper:

(H1) There are an open set U ⊂ IRn and two positive numbers `F , mF such that
x̄(t) ∈ U for any t ∈ [a− ∆, b], the sets F (x, y, t) are closed, and

F (x, y, t) ⊂ mF IB,

F (x1, y1, t) ⊂ F (x2, y2, t) + `F (|x1 − x2| + |y1 − y2|)IB

for all (x, y), (x1, y1), (x2, y2) ∈ U × U and t ∈ [a, b].

(H2) F (x, y, t) is a.e. Hausdorff continuous on t ∈ [a, b] uniformly in U × U .

Regarding functions c, ϕ, and f , we assume that:

(H3) The function c(·) is absolutely continuous on [a− ∆, a].

(H4) ϕ(x, y) is continuous on (x, y) ∈ U×U , f(x, y, t) is continuous for a.e. t ∈ [a, b]
uniformly in (x, y) ∈ U × U , and continuous on (x, y) ∈ U × U uniformly in
t ∈ [a, b].

To construct discrete approximations, we replace derivatives in (1.2) by Euler
finite differences

ẋ(t) ≈ [x(t+ h) − x(t)]/h, ẋ(t− ∆) ≈ [x(t+ h− ∆) − x(t− ∆)]/h.

For any natural number N , let hN := ∆/N and tj := a + jhN for j = −N, . . . , k,
where k is a natural number defined by a + khN ≤ b < a + (k + 1)hN . Denote
tk+1 := b. Then the discrete approximations to (1.2) are given as follows:





xN (tj+1) −AxN (tj+1 − ∆) ∈ xN (tj) −AxN (tj − ∆)

+hNF (xN (tj), xN (tj − ∆), tj) for j = 0, . . . , k,

xN (tj) = c(tj) for j = −N, . . . ,−1.

(2.1)
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A collection of vectors {xN (tj) | j = −N, . . . , k + 1} satisfying (2.1) is called a
discrete trajectory; the corresponding collection

{xN (tj+1) − xN (tj)

hN

∣∣ j = 0, . . . , k
}

is called a discrete velocity. Extended discrete velocities to [a, b], denoted by
ẋN (t), are defined as piecewise constant extensions of discrete velocities for t ∈
[tj , tj+1), j = 0, . . . , k. The extended discrete trajectories to [a − ∆, b], denoted
by xN (t), are defined as piecewise constant extensions of discrete trajectories on
[a− ∆, a) and piecewise linear extensions on [a, b]. It is easy to see that

xN (t) = x̄(a) +

∫ t

a

ẋN (s) ds, t ∈ [a, b].

The next two theorems (see Wang [19]) justify the strong approximation of continuous-
time trajectories for the neutral inclusion by discrete ones as well as the strong
convergence of discrete optimal solutions; cf. also [10, 15].

Theorem 2.1. Assume that x̄(t) is a trajectory for (1.2) under hypotheses (H1),
(H2), and (H3). Then there is a sequence of solutions to (2.1), zN (tj), j =
−N, . . . , k + 1, such that zN (t0) = x̄(a), the extended discrete trajectories zN (t)
converge to x̄(t) uniformly on [a− ∆, b], and the extended discrete velocities żN (t)
converge to ˙̄x(t) in the L2-norm on [a, b] as N → ∞.

In what follows we always assume that x̄(t), a − ∆ ≤ t ≤ b, is an optimal
solution to (P ). Employing Theorem 2.1, construct the sequence of discrete-time
optimization problems (PN ), N ∈ IN , defined as follows:

minimize JN [xN ] := ϕ(xN (a), xN (b)) + |xN (a) − x̄(a)|2

+hN

k∑

j=0

f(xN (tj), xN (tj−N ), tj)

+

k∑

j=0

∫ tj+1

tj

∣∣∣
zN (tj+1) −AzN (tj+1−N ) − zN (tj) +AzN (tj−N )

hN

−[ ˙̄x(t) −A ˙̄x(t− ∆)]
∣∣∣
2

dt,

(2.2)

subject to the dynamic and endpoint constraints:

xN (tj+1) −AxN (tj+1−N ) ∈ xN (tj) −AxN (tj−N )
+hNF (xN (tj), xN (tj−N ), tj), j = 0, . . . , k,

(2.3)

xN (tj) = c(tj), j = −N, . . . ,−1, (2.4)

(xN (a), xN (b)) ∈ ΩN := Ω + ηNB, (2.5)

|xN (tj) − x̄(tj)| ≤ ε, j = 0, . . . , k + 1, (2.6)

where ε > 0 is a fixed number, and where ηN := |zN (b) − x̄(b)| is constructively
built in Theorem 2.1.
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To obtain necessary optimality conditions for (P ), we need to impose an intrinsic
property of (P ) called relaxation stability. This property means that the optimal
value (infimum) of the cost functional in the original problem agrees with the one in
its relaxation/convexification; see [6],[10],[15], and [20] for more details, discussions,
and efficient conditions ensuring the relaxation stability in various settings. Note
that the relaxation stability of (P ) always holds if the velocity sets F (x, y, t) are
convex.

The next strong convergence theorem builds a bridge between optimization prob-
lems for neutral functional-differential inclusions and their discrete-time counter-
parts; it is one of the basic ingredients for deriving necessary optimality conditions
in (P ) by the limiting process via discrete approximations.

Theorem 2.2. Suppose that assumption (H1)–(H4) are satisfied and that problem
(P ) is stable with respect to relaxation. Then for any sequence of optimal solutions
x̄N (tj), j = −N, . . . , k + 1, to (PN ) the extended trajectories x̄N (t) converge uni-
formly to x̄(t) on [a − ∆, b] while the extended velocities ˙̄xN (t) converge to ˙̄x(t) in
the L2-norm on [a, b] as N → ∞.

3. Tools of Generalized Differentiation

This section describes generalized differential tools of variational analysis for nons-
mooth and set-valued objects that used in the paper to derive necessary optimality
conditions for discrete-time and continuous-time inclusions. We refer the reader to
[8, 10] and [17] for details and discussions.

Recall that the basic/limiting normal cone to the set Ω ⊂ IRn at the point x̄ ∈ Ω
is defined by

N(x̄; Ω) := Lim sup
x

Ω
→x̄

N̂(x; Ω), (3.1)

where x
Ω
→ x̄ means that x→ x̄ with x ∈ Ω, and where

N̂(x̄; Ω) :=
{
x∗ ∈ IRn

∣∣∣ lim sup
x

Ω
→x̄

〈x∗, x− x̄〉

|x− x̄|
≤ 0

}
(3.2)

is the so-called cone of Fréchet normals to Ω at x̄. For convex sets Ω both cones
N(x̄; Ω) and N̂(x̄; Ω) reduce to the normal cone of convex analysis. Note also that
the basic normal cone (3.1) is often nonconvex while satisfying a comprehensive
calculus in contrast to (3.2).

Given an extended real-valued function ϕ : IRn → IR := [−∞,∞] finite at x̄, the
basic subdifferential of ϕ at x̄ is

∂ϕ(x̄) :=
{
x∗ ∈ IRn

∣∣ (x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)
}
, (3.3)

where epiϕ := {(x, µ) ∈ IRn+1| µ ≥ ϕ(x)}.
The coderivative D∗F (x̄, ȳ) : IRm →→ IRn of a set-valued mapping F : IRn →→ IRm

at a point (x̄, ȳ) ∈ gphF is defined by

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ IRn

∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )
}
. (3.4)
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In this paper we need the following properties of generalized differentiation.

Proposition 3.1. Suppose that f is locally Lipschitzian around x̄ with modulus lf .
Then one has

∂f(x̄) 6= ∅ and |x∗| ≤ lf , x
∗ ∈ ∂f(x̄).

Proposition 3.2. Let f1 and f2 be two lower semicontinuous functions one of
which is locally Lipschitzian around x̄. Then

∂(f1 + f2)(x̄) ⊂ ∂f1(x̄) + ∂f2(x̄).

Proposition 3.3. Let F : IRn →→ IRm be a closed-graph set-valued mapping locally
bounded around x̄. Then the following properties are equivalent:

1. F is locally Lipschitzian at x̄.

2. There exist a neighborhood U of x̄ and a number L > 0 such that

sup{|x∗| : x∗ ∈ D∗F (x, y)(y∗)} ≤ L|y∗| for x ∈ U, y ∈ F (x), y∗ ∈ IRm.

Note that the latter coderivative criterion for Lipschitzian stability established
in [9] (see also [17, Theorem 9.40]) plays a crucial role in justifying the required
convergence of adjoint trajectories in discrete approximations; see Section 5.

For applications in this paper we also need the following extensions of the basic
constructions (3.1), (3.3), and (3.4) to the case of sets, functions, and set-valued
mappings depending on parameters; cf. [11, 13].

Given a moving set Ω: [a, b] →→ IRn and x̄ ∈ Ω(t̄), the extended normal cone to
Ω(t̄) at x̄ is defined by

Ñ(x̄; Ω(t̄)) := Limsup
(t,x)→(t̄,x̄), (t,x)∈gphΩ

N̂(x; Ω(t)). (3.5)

If ϕ : IRn × [a, b] → IR is finite at (x̄, t̄), the extended subdifferential of ϕ at (x̄, t̄)
with respect to x is defined by

∂̃xϕ(x̄, t̄) :=
{
x∗ ∈ IRn

∣∣ (x∗,−1) ∈ Ñ((x̄, ϕ(x̄, t̄)); epiϕ(·, t̄))
}
. (3.6)

Given F : IRn × [a, b] →→ IRm and ȳ ∈ F (x̄, t̄), the extended coderivative of F at
(x̄, ȳ, t̄) ∈ gphF with respect to x is defined by

D̃∗

xF (x̄, ȳ, t̄)(y∗) :=
{
x∗ ∈ IRn

∣∣ (x∗,−y∗) ∈ Ñ((x̄, ȳ); gphF (·, t̄))
}
, (3.7)

where y∗ ∈ IRm. Note that the sets (3.5)–(3.7) may be bigger in some situations
than the corresponding sets N(x̄; Ω(t̄)), ∂xϕ(x̄, t̄), and D∗

xF (x̄, ȳ, t̄)(y∗), where the
latter two sets stand for the subdifferential (3.3) of ϕ(·, t̄) at x̄ and the coderivative
(3.4) of F (·, t̄) at (x̄, ȳ, t̄), respectively. Efficient conditions ensuring equalities for
these sets are discussed in [11], [13], [14], and [15]. In particular, the following
robustness property holds.
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Proposition 3.4. Let Ω: [a, b] →→ IRn with x̄ ∈ Ω(t̄). Then

Ñ(x̄; Ω(t̄)) = Limsup
(t,x)→(t̄,x̄), (t,x)∈gphΩ

Ñ(x; Ω(t)). (3.8)

Finally in this section, consider the nonsmooth problem (MP ) of mathematical
programming with many geometric constraints given by:





minimize φ0(z) subject to

φj(z) ≤ 0, j = 1, . . . , r,

gj(z) = 0, j = 0, . . . ,m,

z ∈ Λj , j = 0, . . . , l,

where φj : IRd → IR, gj : IRd → IRn, and Λj ⊂ IRd. We need the following version
of the generalized Lagrange multiplier rule established in [8, Corollary 7.5.1].

Theorem 3.5. Let z̄ be an optimal solution to (MP ). Assume that all φi are
Lipschitz continuous, that gj are continuously differentiable, and that Λj are locally
closed near z̄. Then there exist real numbers {µj | j = 0, . . . , r} as well as vectors
{ψj ∈ IRn| j = 0, . . . ,m} and {z∗j ∈ IRd| j = 0, . . . , l}, not all zero, such that

µj ≥ 0, j = 0, . . . , r, (3.9)

µjφj(z̄) = 0, j = 1, . . . , r, (3.10)

z∗j ∈ N(z̄; Λj), j = 0, . . . , l, (3.11)

−
l∑

j=0

z∗j ∈ ∂
( r∑

j=0

µjφj

)
(z̄) +

m∑

j=0

∇gj(z̄)
∗ψj . (3.12)

4. Necessary Optimality Conditions for Discrete

Approximations

In this section we reduce the discrete-time dynamic optimization problem (PN ),
for each N ∈ IN , to the mathematical programming problem (MP ) with many
geometric constraints considered in Section 3. Then applying Theorem 3.5 to (MP ),
we derive in this way necessary optimality conditions for discrete approximation
problems (PN ) with the use of generalized differential calculus.

Let zN := (xN
0 , x

N
1 , . . . , x

N
k+1, y

N
0 , y

N
1 , . . . , y

N
k ) ∈ IRn(2k+3). Define

φ0(z) := ϕ(xN
0 , x

N
k+1) + |xN

0 − x̄(a)|2 + hN

k∑

j=0

f
(
xN

j , x
N
j−N , tj

)

+

k∑

j=0

∫ tj+1

tj

∣∣yN
j − [ ˙̄x(t) −A ˙̄x(t− ∆)]

∣∣2 dt,
(4.1)
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φj(z) := |xN
j − x̄(tj)| − ε, j = 1, . . . , k + 1,

Λj :=
{
(xN

0 , . . . , y
N
k )

∣∣ yN
j ∈ F (xN

j , x
N
j−N , tj)

}
, j = 0, . . . , k,

Λk+1 :=
{
(xN

0 , . . . , y
N
k )

∣∣ (xN
0 , x

N
k+1) ∈ ΩN

}
,

gj(z) := xN
j+1 −AxN

j+1−N − xN
j +AxN

j−N − hNy
N
j , j = 0, . . . , k,

where xN
j := c(tj) for j < 0. Let z̄N = (x̄N

0 , . . . , x̄
N
k+1, ȳ

N
0 , . . . , ȳ

N
k ) be an optimal

solution to (MP ). Applying Theorem 3.5, we find real numbers µN
j and vectors

z∗j ∈ IRn(2k+3) for j = 0, . . . , k + 1 as well as vectors ψN
j ∈ IRn for j = 0, . . . , k, not

all zero, such that conditions (3.9)–(3.12) are satisfied.

Taking z∗j = (x∗0,j , . . . , x
∗

k+1,j , y
∗

0,j , . . . , y
∗

k,j) ∈ N(z̄N ; Λj) for j = 0, . . . , k, we
observe that all but one components of z∗j are zero and the remaining one satisfies

(x∗j,j , x
∗

j−N,j , y
∗

j,j) ∈ N((x̄N
j , x̄

N
j−N , ȳ

N
j ); gphF (·, ·, tj)), j = 0, . . . , k.

Similarly, the condition z∗k+1 ∈ N(z̄N ; Λk+1) is equivalent to

(x∗0,k+1, x
∗

k+1,k+1) ∈ N((x̄N
0 , x̄

N
k+1); ΩN )

with all the other components of z∗k+1 equal to zero. By Theorem 2.2 we conclude

that φj(z̄
N ) < 0 for j = 1, . . . , k+ 1 whenever N is sufficiently large. Thus µN

j = 0

for these indexes due to the complementary slackness conditions (3.10). Let λN :=
µN

0 ≥ 0. Observe further that

k∑

j=0

(∇gj(z̄
N ))∗ψN

j

=
(
− ψ0 +A∗(ψN

N − ψN
N−1), ψ0 − ψ1 +A∗(ψN

N+1 − ψN
N ), · · · ,

ψk−N−1 − ψk−N +A∗(ψN
k − ψN

k−1), ψk−N − ψk−N+1 −A∗ψN
k , · · · ,

ψN
k−1 − ψN

k , ψ
N
k , −hNψ

N
0 , · · · ,−hNψ

N
k

)
.

From the subdifferential sum rule of Proposition 3.2 applied to φ0 in (4.1) we have

∂φ0(z̄
N ) ⊂ ∂ϕ(x̄N

0 , x̄
N
k+1) + 2(x̄N

0 − x̄(a)) + hN

k∑

j=0

∂f
(
x̄N

j , x̄
N
j−N , tj

)

+
k∑

j=0

∫ tj+1

tj

2
(
ȳN

j − [ ˙̄x(t) −A ˙̄x(t− ∆)]
)
dt,

where ∂f is the basic subdifferential of f with respect to the first two variables.
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Thus inclusion (3.12) in Theorem 3.5 implies that

−x∗0,0 − x∗0,N − x∗0,k+1 = λNuN
0 + λNhNϑ

N
0 + λNhNκ

N
0

+2λN (x̄N
0 − x̄(a)) − ψN

0 −A∗(ψN
N−1 − ψN

N ),

−x∗j,j − x∗j,j+N = λNhNϑ
N
j + λNhNκ

N
j + ψN

j−1 − ψN
j

−A∗(ψN
j+N−1 − ψN

j+N ), j = 1, . . . , k −N,

−x∗k−N+1,k−N+1 = λNhNϑ
N
k−N+1 + ψN

k−N − ψN
k−N+1 +A∗ψN

k ,

−x∗j,j = λNhNϑ
N
j + ψN

j−1 − ψN
j , j = k −N + 2, . . . , k,

−x∗k+1,k+1 = λNuN
k+1 + ψN

k ,

−y∗j,j = λNθN
j − hNψ

N
j , j = 0, . . . , k,

with the notation

(uN
0 , u

N
k+1) ∈ ∂ϕ(x̄N

0 , x̄
N
k+1), (ϑN

j , κ
N
j−N ) ∈ ∂f(x̄N

j , x̄
N
j−N , tj),

θN
j := −2

∫ tj+1

tj

(
˙̄x(t) −A ˙̄x(t− ∆) − ȳN

j

)
dt.

Let fj(·, ·) := f(·, ·, tj) and Fj(·, ·) := F (·, ·, tj). Based on the above relationships,
we derive the following necessary optimality conditions for discrete-time problems
(PN ) governed by neutral functional-difference control systems.

Theorem 4.1. Let z̄N be an optimal solution to problem (PN ). Assume that gphFj

is closed for each j = 1, . . . , k, and that the functions ϕ is Lipschitz continuous
around the point (x̄N

0 , x̄
N
k+1). Then there exist λN ≥ 0, pN

j (j = 0, . . . , k +N + 1),

and qN
j (j = −N, . . . , k + 1), not all zero, such that

(PN
j+1 − PN

j

hN

− qN
j , q

N
j−N , −

λNθN
j

hN

+ pN
j+1

)

∈ λN (ϑN
j , κ

N
j−N , 0) +N((x̄N

j , x̄
N
j−N , ȳ

N
j ); gphFj), j = 1, . . . , k,

(4.2)

pN
j = 0, j = k + 2, . . . , k +N + 1, (4.3)

qN
j = 0, j = k −N + 1, . . . , k + 1, (4.4)

(pN
0 ,−p

N
k+1) ∈ λN∂ϕ(x̄N

0 , x̄
N
k+1) +N((x̄N

0 , x̄
N
k+1); ΩN ), (4.5)

with the notation
PN

j = pN
j −A∗pN

j+N .

Proof. Let pN
j := ψN

j−1 for j = 1, . . . , k+1, and pN
j := 0 for j = k+2, . . . , k+N+1,

let qN
j := λNκN

j + x∗j,j+N/hN for j = −N, . . . , k −N, and qN
j := 0 for j = k −N +

1, . . . , k + 1, and let pN
0 := λNuN

0 + x∗0,k+1. Then it is easy to verify that all the
relationships (4.2)–(4.5) hold.

Corollary 4.2. In addition to the assumptions of Theorem 4.1 suppose that Fj is
bounded and Lipschitz continuous around (x̄N

j , x̄
N
j−N ) for each j = 0, . . . , k. Then
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conditions (4.2)–(4.5) and λN ≥ 0 hold with (λN , pN
k+1) 6= 0 simultaneously; i.e.,

we can set
(λN )2 + |pN

k+1|
2 = 1. (4.6)

Proof. The proof is similar to the one for Corollary 5.2 in [15].

5. Necessary Optimality Conditions for Functional-

Differential Inclusions

The main results of this paper are given in this section. By passing to the limit in
discrete necessary optimality conditions obtained in Section 4, we derive necessary
optimality conditions for problem (P ) in both Euler-Lagrange and Hamiltonian
forms involving generalized differential constructions of Section 3. Note that, in
contrast to neutral systems in the Hale form in [15], we ensure the absolute continuity
of the adjoint arcs p(·) and q(·) in the main theorem on the corresponding intervals.

Theorem 5.1. Let x̄(·) be an optimal solution to problem (P ) under assumptions
(H1)–(H4). Suppose also that (P ) is stable with respect to relaxation. Then there
exist a nonnegative number λ and two absolutely continuous adjoint arcs p : [a, b+
∆] → IRn and q : [a− ∆, b] → IRn such that the following conditions hold:

λ0 + |p(b)| = 1, (5.1)

p(t) = 0, t ∈ (b, b+ ∆], (5.2)

q(t) = 0, t ∈ (b− ∆, b], (5.3)

(p(a) + q(a),−p(b)) ∈ λ∂ϕ(x̄(a), x̄(b)) +N((x̄(a), x̄(b)); Ω), (5.4)
(
ṗ(t) −A∗ṗ(t+ ∆), q̇(t− ∆) −A∗q̇(t)

)

∈ co
{
(u,w, p(t) + q(t)) ∈ λ(∂̃f(x̄(t), x̄(t− ∆), t), 0)

+Ñ((x̄(t), x̄(t− ∆), ˙̄x(t) −A ˙̄x(t− ∆)); gphF (t))
}

a.e. t ∈ [a, b].

(5.5)

Proof. Employing Theorem 2.2, construct a sequence of optimal solutions x̄N =
(x̄N

0 , . . . , x̄
N
k+1) to (PN ) that strongly approximates to the optimal solution x̄(t)

to (P ). Then Theorem 4.1 applied to x̄N ensures the existence of a real number
λN ≥ 0 as well as vectors pN

j (j = 0, . . . , k + N + 1) and qN
j (j = −N, . . . , k + 1),

not all zero, such that (4.2)–(4.5) are satisfied.
Due to Corollary 4.2 one has that λN → λ ≥ 0 along some subsequence of

N → ∞. In what follows we use the notation pN (t) and x̄N (t), qN (t) for piecewise
linear extensions of the corresponding discrete mappings on [a, b+∆] and [a−∆, b],
respectively.

Let θN (t) := θN
j /hN for t ∈ [tj , tj+1) and j = 0, 1, . . . , k. Theorem 2.2 gives

∫ b

a

|θN (t)| dt =

k∑

j=0

|θN
j | ≤ 2

k∑

j=0

∫ tj+1

tj

∣∣ ˙̄x(t) −A ˙̄x(t− ∆) − ȳN
j

∣∣ dt

= 2

∫ b

a

∣∣ ˙̄x(t) −A ˙̄x(t− ∆) − [ ˙̄xN (t) −A ˙̄xN (t− ∆)]
∣∣ dt := νN → 0.
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Without loss of generality suppose that

˙̄xN (t) −A ˙̄xN (t− ∆) → ˙̄x(t) −A ˙̄x(t− ∆) and θN (t) → 0 as N → ∞ (5.6)

for a.e. t ∈ [a, b]. Let us now establish the uniform boundedness of (pN (t), qN (t −
∆)) for sufficiently large N based on the above coderivative characterization of
Lipschitzian multifunctions. Indeed, taking into account that pN

j+N = 0 and qN
j = 0

for j = k −N + 2, . . . , k + 1, we get from (4.2) that

(pN
j+1 − pN

j

hN

− λNϑN
j , q

N
j−N − λNκN

j−N , −
λNθN

j

hN

+ pN
j+1

)

∈ N((x̄N
j , x̄

N
j−N , ȳ

N
j ); gphFj).

By the definition of coderivative (3.4) one has

(pN
j+1 − pN

j

hN

− λNϑN
j , q

N
j−N − λNκN

j−N

)

∈ D∗Fj(x̄
N
j , x̄

N
j−N , ȳ

N
j )

(λNθN
j

hN

− pN
j+1

)
.

Then Proposition 3.3 yields that

∣∣∣
(pN

j+1 − pN
j

hN

− λNϑN
j , q

N
j−N − λNκN

j−N

)∣∣∣ ≤ LF

∣∣∣
λNθN

j

hN

− pN
j+1

∣∣∣. (5.7)

Since |(vN
j , κ

N
j−N )| ≤ lf due to the Proposition 3.1 and the Lipschitz continuity of

f with modulus lf , one further has

|pN
j+1 − pN

j | ≤ |(pN
j+1 − pN

j , hNq
N
j−N )| ≤ LF |θ

N
j | + lfhN + LFhN |pN

j+1|

that together with (4.6) ensure the estimate

|pN
j | ≤ LF |θ

N
j | + lfhN + (LFhN + 1)|pN

j+1|

≤ LF |θ
N
j | + (LFhN + 1)LF |θ

N
j+1| + lfhN + (LFhN + 1)lfhN

+(LFhN + 1)2|pN
j+2| ≤ · · · ≤ exp[LF (b− a)](1 + lf (b− a) + LF νN ).

Thus the sequence {pN
j | j = k−N+2, . . . , k+1} is uniformly bounded. Furthermore,

(5.7) implies
|qN

j−N − λNκN
j−N | ≤ LF |θ

N
j |/hN + LF |p

N
j+1|,

which justifies the uniform boundedness of {qN
j−N | j = k−N+2, . . . , k+1} follows.

Therefore the sequence {pN (t), qN (t − ∆)} is uniformly bounded on [b − ∆, b] and
so is {PN (t), qN (t− ∆)} on [b− ∆, b].

Considering discrete inclusions (4.2) for j = k − 2N + 2, . . . , k −N + 1, we get

∣∣∣
(pN

j+1 − pN
j

hN

− λNϑN
j , q

N
j−N − λNκN

j−N

)∣∣∣

≤ LF

∣∣∣
λNθN

j

hN

− pN
j+1

∣∣∣ +
∣∣∣
(A∗pN

j+N+1 −A∗pN
j+N

hN

− qN
j , 0

)∣∣∣.
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This readily implies the estimates

|pN
j+1 − pN

j | ≤ LF |θ
N
j | + lfhN + LFhN |pN

j+1| + LqhN

+|A| · |pN
j+N | + |A| · |pN

j+N+1| and

|pN
j | ≤ LF |θ

N
j | + (lf + Lq)hN + (LFhN + 1)|pN

j+1|

+|A| · |pN
j+N | + |A| · |pN

j+N+1|,

where Lq stands for a uniform bound of {qN
j }. As before, the latter estimates ensure

the uniform boundedness of pN
j and qN

j−N for j = k−2N+2, · · · , k−N+1, and thus

the boundedness of the sequences {pN (t), qN (t − ∆)} and {PN (t), qN (t − ∆)} on
the interval [b−2∆, b−∆]. Repeating this procedure, we justify the boundedness of
{pN (t)}, {PN (t)}, and {qN (t)} on the whole intervals [a, b+∆], [a, b], and [a−∆, b].

Next let us estimate ṖN (t). For tj ≤ t < tj+1 with j = 0, . . . , k we have

|ṖN (t)| ≤ |ṖN (t) − qN
j | + |qN

j | ≤
∣∣∣
(PN

j+1 − PN
j

hN

− qN
j , q

N
j−N

)∣∣∣ + |qN
j |

≤ LF

∣∣∣
λNθN

j

hN

− pN
j+1

∣∣∣ + lf + |qN
j |,

which gives the uniform boundedness of ṖN (t) on [a, b]. Hence the sequence {ṖN (·)}
is weakly compact in L1[a, b]. Thus there is an absolutely continuous mapping
P : [a, b] → IRn such that ṖN (t) → Ṗ (t) weakly in L1[a, b] and that PN (t) → P (t)
uniformly on [a, b] as N → ∞. Since pN (t) and qN (t − ∆) are uniformly bounded
on [a, b + ∆], they surely converge to some mappings p̃(t) and q̃(t − ∆) weakly in
L2[a, b+ ∆]. Thus we have P (t) = p̃(t) −A∗p̃(t+ ∆) for t ∈ [a, b].

Rewrite now (4.2) in the form

(ṖN (t) − qN (t), qN (t− ∆)) ∈
{
(u, v) |

(
u, v, pN (tj+1)) − λNθN

j /hN

)

∈ λN (∂f(x̄(tj), x̄(tj − ∆), tj), 0)

+N(x̄N
j , x̄

N
j−N , ȳ

N
j ); gphFj)

}
, t ∈ [tj , tj+1], j = 0, 1, . . . , k.

(5.8)

According to the classical Mazur theorem, there is a sequence of convex combina-
tions of (ṖN (t) − qN (t), qN (t − ∆)) that converges to (Ṗ (t) − q̃(t), q̃(t − ∆)) for
a.e. t ∈ [a, b]. Passing to the limit in (5.8) as N → ∞ and using (5.6), we obtain
the inclusion

(
Ṗ (t) − q̃(t), q̃(t− ∆)

)
∈ co

{
(u,w, p̃(t)) ∈ λ(∂̃f(x̄(t), x̄(t− ∆), t), 0)

+Ñ((x̄(t), x̄(t− ∆), ˙̄x(t) −A ˙̄x(t− ∆)); gphF (t))
}

a.e. t ∈ [a, b]
(5.9)

with the normalization condition

λ+ |p̃(b)| = 1 (5.10)

that follows from (4.6). Furthermore, (4.3) and (4.4) give

p̃(t) = 0, t ∈ (b, b+ ∆], (5.11)

q̃(t) = 0, t ∈ (b− ∆, b]. (5.12)
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By the robustness property of the basic subdifferential one has

λN∂ϕ(x̄N
0 , x̄

N
k+1) → λ∂ϕ(x̄(a), x̄(b)).

Taking this into account and also that ΩN = Ω + ηNIB, we get

(p̃(a),−p̃(b)) ∈ λ∂ϕ(x̄(a), x̄(b)) +N((x̄(a), x̄(b)); Ω). (5.13)

by passing to the limit in (4.5). Define q : [a− ∆, b] → IRn by

q̃(t) := q̇(t) −A∗(t+ ∆)q̇(t+ ∆)

and put p(t) := p̃(t) − q(t). Then q(t) = 0 on (b − ∆, b] while both q(·) and
q(·) are absolutely continuous on the corresponding intervals. Finally, it is easy
to verify that the required relations (5.1)–(5.5) follow from the obtained relations
(5.9)–(5.13). This completes the proof of the theorem.

In conclusion of this section, consider a special case of problem (P ) with f = 0
called the Mayer problem for neutral functional-differential inclusions and labelled
as (M). Let us prove that the extended Euler-Lagrange inclusion (5.5) obtained in
Theorem 5.1 implies two other principal necessary optimality conditions expressed
in terms of the Hamiltonian function built upon the mapping F in (1.2). The first
condition called the extended Hamiltonian inclusion is given below in terms of a
partial convexification of the basic subdifferential (3.3) for the Hamiltonian func-
tion. The second one is an analog of the classical Weierstrass-Pontryagin maximum
condition for neutral functional-differential inclusions.

Define the Hamiltonian function for system (1.2) assumed for simplicity to be
autonomous by

H(x, y, p) := max
{
〈p, v〉

∣∣ v ∈ F (x, y)
}

and consider the basic subdifferential ∂H of H with respect to (x, y).

Theorem 5.2. Let x̄(·) be an optimal solution to problem (M) under the assump-
tions made. Suppose also that (M) is stable with respect to relaxation. Then
there exist a nonnegative number λ and two absolutely continuous adjoint arcs
p : [a, b+∆] → IRn and q : [a−∆, b] → IRn such that, besides the necessary conditions
of Theorem 5.1, one has the maximum condition

〈
p(t) + q(t), ˙̄x(t) −A ˙̄x(t− ∆)

〉
= H(x̄(t), x̄(t− ∆), p(t) + q(t)) (5.14)

and the Hamiltonian inclusion
(
ṗ(t) −A∗ṗ(t+ ∆), q̇(t− ∆) −A∗q̇(t)

)
∈ co

{
(u,w) | (−u,−w,

˙̄x(t) −A ˙̄x(t− ∆)) ∈ ∂H(x̄(t), x̄(t− ∆), p(t) + q(t))
} (5.15)

for a.e. t ∈ [a, b]. Moreover, if F is convex-valued around (x̄(t), x̄(t−∆)), then the
extended Hamiltonian inclusion (5.15) is equivalent to the extended Euler-Lagrange
inclusion in the coderivative form

(
ṗ(t) −A∗ṗ(t+ ∆), q̇(t− ∆) −A∗q̇(t)

)

∈ coD∗F (x̄(t), x̄(t− ∆), ˙̄x(t) −A ˙̄x(t− ∆))(−p(t) − q(t)) a.e. t ∈ [a, b],
(5.16)
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Proof. Note that the Euler-Lagrange inclusions (5.5) is equivalently expressed in
terms of the coderivative (3.4) with respect to (x, y), i.e., in the form

(
ṗ(t) −A∗ṗ(t+ ∆), q̇(t− ∆) −A∗q̇(t)

)
∈ coD∗F (x̄(t), x̄(t− ∆),

˙̄x(t) −A ˙̄x(t− ∆))(−p(t) − q(t)), a.e. t ∈ [a, b].
(5.17)

By Theorem 5.1 the optimal solution x̄(·) satisfies conditions (5.1)–(5.5) and the
relaxed counterpart of (5.17), which is the same as (5.16) in this case with F replaced
by coF . By Theorem 3.3 in Rockafellar [16] one has

co
{
(u, v)

∣∣ (u,w, p) ∈ N((x, y, v); gph(coF )
}

= co
{
(u,w)

∣∣ (−u,−w, v) ∈ ∂HR(x, y, p, t)
}
,

where HR stands for the Hamiltonian of the relaxed system; i.e., with F replaced
with the convexification coF . It is easy to check that HR = H. Thus the extended
Euler-Lagrange inclusion for the relaxed system readily implies the necessary opti-
mality conditions (5.14) and (5.15). When F is convex-valued, conditions (5.15) and
(5.16) are equivalent due to the mentioned result of Rockafellar [16]. This completes
the proof of the theorem.
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