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Abstract. We investigate spatial fluctuations in a cylindrical plasma arc column

in the interval of electric current I = 100 - 200 A and gas flow G = 4 − 8 g/s.
The distribution functions of these oscillations were obtained. On the basis of

experimental results we proposed a model for the description of the fluctuations.

In this model the axis of the arc O′ participates at the same time on two movements:

random oscillation and axial rotation. The lateral and radial intensities and radial

temperatures were calculated for different rotation radii and standard deviations.

For this study the spectral line of Ar I 415,8 nm was chosen. Experimental and

theoretical results are in good agreement.

1. Introduction

As a rule, the radial temperature is determined by spectrometric methods such
as the absolute line intensity and the relative line intensity [1]. With the absolute
line intensity method, first the lateral intensity I(x) is determined experimentally.
After that the radial intensities and temperatures are determined solving the inte-
gral equation of Abel, knowing the relationship between the intensity and tempera-
ture. This procedure leads to good results when the plasma torch is stationary. But
the experimental results show that the sources in plasma generators are not station-
ary. The electric current, tension, radiation intensity and temperature, as well as
gas flow, velocity and the electric arc, oscillate [2-7]. In [4] studied the fluctuations
of velocity, arc voltage and optical signal in a DC plasma torch. They found fluc-
tuations of about 15% in these parameters. In Inductively Coupled Plasma (ICP)
torch are hydrodynamic instabilities, due to the interaction of the plasma with cold
atoms acting as heat sinks [5]. As these atoms present a near-turbulent movement,
this interaction has a probability to occur in the whole plasma, rather than only
in the injection region. The result of the study on pulsations in ICP plasma torch
[6] show that it is almost free of spatial pulsations, but the pulsations in the radi-
ation intensity due to the high frequency electric current exist. These pulsations
are almost harmonic, superimposed by random oscillations. The amplitude of these
pulsations reaches 10%. In [7] it was studied the spatial and radiation intensity
fluctuations of the vortex stabilized electric arc in the plasma generator. The study
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showed that for small gas flow rate these pulsations follow a Gaussian distribution,
with relative standard deviation varying from 7 to 38 %.

These pulsations can affect the precision of experimental results. In [3], the
influence of the frequency on the temperature of ICP torch was studied. It was
shown that with an increase on frequency, the temperature in the axis decreases. In
[8, 9] we studied the influence of the spatial and intensity pulsations on the radiation
intensity and on the radial temperature profile on the supposition that they follow
a Gaussian distribution. The results show that the pulsations of the plasma can
significantly influence the experimental data and can explain the differences between
the theoretical calculations and experimental measurements.

In the present work we studied ourselves more detailed the spatial oscillations
on the stabilized electric arc aiming to find the arc axis distribution functions in the
wide interval of gas flow and electric current. Based on the experimental results,
a mathematical model of the cylindrical plasma is proposed, and the influence of
pulsations on the radial temperature is calculated.

2. Experimental investigation

The experimental outline of the plasma generator is presented in Figure 1. The
plasma generator consists of cathode (1), anode (2), coolant channels (3) and vortex
chamber (4). The diameter of the arc channel is 1 cm and the distance between
cathode and anode is 10 cm. The working gas which produces vortex stabilization
of the arc (6) enters tangentially at the anode through small orifices (5). The
deviation of the arc at the yOz plan was registered on a film installed in a rotating
chamber (7). The spatial pulsations of DC arc in the plasma generator for the
range of current I = 100 − 200 A and gas flow G = 4 − 8 g/s were studied. The
results show that distribution functions were not Gaussian. A typical behavior of
the electric arc oscillations for z = 8,5 cm, I = 200 A and G = 6 g/s is presented
in Figure 1b. It is possible to observe quasi-harmonic oscillations superimposed by
random oscillations.

The frequency of these pulsations varies between 9400 and 12400 Hz and de-
pends weakly on the plasma gas flow rate and the current intensity. This quasi-
harmonic pulsations may be associated with the rotation of the arc around its center.
The experimental results [2] are in favor of this conclusion, as it was shown that
the electric arc in the gas flow has a spiral form. This form of the arc explains that
the area of the minimum pressure is distributes along the spiral line.

The treatment of the experimental results of the electric arc oscillations have
allowed us to build the arc axis distribution functions. In Figure 2 the distribution
functions for the range of current I = 100 − 200 A and gas flow G = 4 − 8 g/s
are represented. It can be seen that as the current increases the area of oscillations
also increases. This can be explained by the deviation of the electric arc under
influence of the own magnetic field, which intensity increases with the increase
in current intensity. Bases on these experimental results, a model of the non-
stationary cylindrical plasma arc was proposed. Both types of pulsations occurring
simultaneously in the plasma are considered in this model. The arc axis position



Numerical Investigation of Pulsations 137

Figure 1: The experimental outline of the plasma generator (a) and a typical be-
havior of the electric arc oscillations for z = 8.5 cm, I = 200 A and G = 6 g/s
(b).

describes the spatial pulsations around its center, which itself pulsates describing a
circular motion.

Figure 2: The experimental distribution functions ϕ(x) for G = 4 g/s (a), 6 g/s (b)
and 8 g/s (c), I = 100 A (�), I =150 A (o) and I = 200 A (N).
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3. Description of the model

In present model we suppose the presence of two types of coupled pulsations, as
shown in Figure 3. The axis O′ of the arc of radius R describes in the, z = constant
plan, a circular motion around the axis O with radius a in the laboratory coor-
dinate system. The axis O′ also describes spatial pulsations following a Gaussian
distribution

ϕ1(x) =
1

σ
√

2π
exp

(

−
x2

2σ2

)

, (3.1)

where σ is the standard-deviation. The projection of the circular motion of O′

around O on the xOz plan oscillates according to

x = asinωt, (3.2)

where a is the rotation radius, ω is the angular frequency.

Figure 3: Scheme of the oscillations of the plasma arc; xOy is the laboratory system
and x′O′y′ is the arc coordinate system.

The distribution function of these harmonic oscillations (3.2) is

ϕ2 (x) =
1

π
√
a2 − x2

, −a ≤ x ≤ a. (3.3)

The total distribution function, which takes into account both types of pulsations
can be expressed as:

ϕ (x) =

∫ +a
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ϕ1 (x− ξ)ϕ2 (ξ) dξ (3.4)

or, by substitution of equations (3.1) and (3.3),
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Calculation of
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ϕ (x) dx,
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changing the integration order, implies
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and, with consideration of the well-known integral
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This means that for introduced function (3.5) the condition of the normalization
is satisfied. In the limit case σ → 0 we have

lim
1

σ
√

2π
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2
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= δ (x− ξ)

and, respectively, ϕ(x) = ϕ2(x). In the other limit case when a → 0, as it can
be seen from Eq. (3.5), ϕ(x) = ϕ1(x). Then, the equation (3.5) generalizes the
functions (3.1) e (3.3).

With introduction of the dimensionless quantities α = x/a; β = ξ/a; ζ = σ

a
;

ψ(a) = πaϕ(x) the Eq. (3.5) can be rewritten as follows:

ψ (α) =
1
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dβ. (3.6)

It can be seen on this relationship that ψ(α) depends only of ζ. This relation
ψ(α) is presented in Figure 4.

The curve 4 corresponds the case ζ=0 (random oscillations absent) and it is
determined by the relationship

ψ (α) =
1

√
1 − α2

. (3.7)

Curves 1 and 2 refer to ζ = 0.2 e 0.4 respectively. The dependence ψ(0) on ζ is
shown by curve 3. It can be observed that on the axis the function ψ(0) increases
with ζ, it reaching a maximum and later decreasing again.

Considering the relationships

ϕ =
ϕmax

ϕ (0)
, ψ =

ψmax

ψ (0)
and ϕ = ψ

we can find ζ from the illustrations 2 and 4 (curve 5). The theoretical dependence
of ψ(ζ) in Figure 4 is presented by the curve 5. The values a and σ are found from

the relationships a =
ψ (0)

πϕ (0)
and σ = ζa.
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Figure 4: The theoretical dependence ψ(α). 1 − ζ = 0.2, 2 − ζ = 0.4, 3 − ψ(0) of
ζ, 4 − ζ = 0, 5 − ψ(ζ).

Table 1: Data for ζ, a and σ as function of G and I.

G, I,A ϕmax, ϕ (0), ϕmax ζ ψ (0) a, σ,
g/s 1/mm 1/mm mm mm

1 4 100 0,63 0,6 1,05 0,47 1,144 0,607 0,285
2 4 150 0,41 0,39 1,03 0,46 1,14 0,931 0,428
3 4 200 0,285 0,26 1,115 0,38 1,105 1,354 0,515
4 6 100 0,62 0,59 1,034 0,47 1,14 0,615 0,289
5 6 150 0,415 0,32 1,297 0,285 1,055 1,05 0,299
6 6 200 0,28 0,18 1,56 0,19 1,02 1,805 0,343
7 8 150 0,535 0,43 1,244 0,31 1,07 0,794 0,246
8 8 200 0,31 0,235 1,292 0,29 1,055 1,43 0,425

Data for of ζ, a and σ are presented in Table 1. The table shows that, with
increase of current and decrease of gas flow, the rotation radius of the electric arc
and the standard-deviation σ increase.

The comparison of experimental and theoretical results are presented in Fig-
ure 5. In this illustration the continuous curves are theoretical (build up by 3.6).
Isolated points represent experimental data. The numbers associated to the symbols
correspond to the numbered lines on Table 1. It can be seen from this figure, that
the distribution function ψ (α) depends only on ζ and that equation (3.6) correctly
describes the pulsations in the plasma generator. This corroborates the proposed
model.
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Figure 5: The comparison of experimental and theoretical results.

4. Intensity and Temperature of the Oscillating

Plasma

The lateral intensity I(x) of observed radiation by the spectrometer can be
related to the intensity in the plasma system q(x) by the Fredholm integral equation
of the first kind

I(x) =

∫

R

−R

q(x
′

)ϕ(x− x
′

)dx
′

. (4.1)

Here ϕ(x−x
′

) is the distribution function associated with the oscillations of the
torch axis described by (3.5). R is the radius of the plasma torch. In accordance to
[8], we assume that the actual lateral intensity I(x) can be described by:

I(x) = I(0)exp
(

−kx2
)

. (4.2)

We solved the Fredholm’s equation (4.1) for the Phillips - Twomey regularization
method [10] using a program in language C. This equation was solved numerically
for k =10, R = 0.5 cm, σ and a= 0.05, 0.075, 0.10 cm. The results of the calculations
of q(x) for k = 10, R = 0.5 cm, σ and a= 0.05 cm are presented in Fig. (6).

It can be seen from this graph that the presence of oscillations reduces the
intensity in the axis and it increases it in the periphery of the torch.

To find the radial temperatures, the radial intensities were calculated, solving
Abel’s integral equation:

I(x) = 2

∫

R

x

ε (r) rdr
√
r2 − x2

, 0 ≤ r ≤ R, (4.3)

where ε (r) is the radial intensity. For the calculations of ε (r) equation (4.3) was
solved numerically [1]. The calculations of ε (r) were performed for σ and a = 0,
0.05, 0.1, 0.015 cm. The particular results of ε (r) for σ = 0.05 cm, a = 0.05 cm are
presented in Figure 7.
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Figure 6: Relative lateral intensities in laboratory system (1) and in plasma system
for σ = 0.05 cm and a = 0.05 cm (2).

Figure 7: Relative radial intensities in laboratory system (1) and in plasma system
for σ = 0.05 cm and cm and a = 0.05 cm (2).

To find the radial temperature of the plasma the following relationship is used
which related the local intensity of a spectral line to the temperature [1]:

εν = Am

n

gm

Z
naexp

(

−
Em

kT

)

hν, (4.4)

where Am
n

is the radioactive decay probability from m to n energy levels, Em and
gm are respectively the energy and statistical weight of level m, Z is the partition
function, na is the concentration of the atoms, k is Boltzmann’s constant, h is the
Planck’s constant and ν is the frequency.

We calculated the dependence (4.4) for the spectral line Ar I 415.8 nm in the
interval of temperatures 3000 - 26000 K [8]. The graph of the relationship (4.4) in
the interval of temperatures 8000 - 12000 K is presented in Figure 8.

The calculations of radial temperatures starting from radial intensities (Figure
7) and the dependence between the intensity and the temperature (Figure 8) were
accomplished for two temperatures in the axis of the arc T = 10000 K and 12000
K. The calculations were made for the stationary plasma (σ = 0, a = 0) and
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Figure 8: Relative intensity of the line Ar I 415.8 nm in function of the temperature.

not stationary plasma (σ and a = 0.05, 0.1, 0.15 cm). Figure 9 presents radial
temperatures for T = 12000 K on the axis, σ = 0.05 cm, a = 0.05. The curve 1
in this illustration corresponds the radial temperature in plasma system. It should
be noted from this figure that the pulsations exert considerable influence on the
radial temperature. This influence depends on the radius of rotation a and on the
standard deviation σ.

Figure 9: Radial distribution temperature in laboratory system (1) and in plasma
system for σ = 0.05 cm and a = 0.05 cm (2).

5. Analysis of Results and Conclusion

The comparison of experimental and theoretical results presented in Figure 5
show that the theoretical distribution function equation (3.6) correctly describes the
space fluctuations of the arc in the plasma generator. This means that the proposed
model is satisfactory. It can be seen from Figures 6 and 9, that space pulsations
of the electric arc provoke a decreasing of the line intensity and of the temperature
at the axis of the arc as well as an enlargement of the profile and an increasing of
the lateral distribution and temperature in the periphery. The shape of the curve
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is dependent of the combination of the parameters σ and a. From results of this
work we conclude that the plasma space pulsations can influence considerably in
the precision of the determination of the radial temperature.

Resumo: Neste trabalho, foram investigadas flutuações em plasma de arco elétrico

estabilizado com simetria ciĺındrica, em intervalos de corrente elétrica I = 100 −

200 A e de injeção de gás G = 6−8 g/s. A função de distribuição destas oscilações foi

obtida a partir de dados experimentais. Foi proposto um modelo f́ısico-matemático

que descreve estas flutuações. Neste modelo o eixo do arco O′ participa ao mesmo

tempo de dois tipos de movimentos: oscilações randômicas e rotação axial. A

partir deste modelo, a intensidade radial, lateral e a temperatura radial foram

calculadas para diferentes raios de rotação e desvios padrões. Para este estudo

foram utilizadas as linhas espectrais do Ar I 415, 8 nm. Os resultados experimentais

e teóricos mostraram-se em boa concordância.
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