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Abstract. A discrete-space state representation is used to provide a feedback
control-theoretical formulation for the iterative shooting method. This method
historically defined for boundary value problem in ordinary differential equations,
now is presented for the numerical solution of elliptical partial differential equations,
specifically it is focused on the numerical solution of the Poisson equation, which
leads to a new a more efficient method for the solution of this type of equations.

1. Introduction

The objective of this paper is to discuss the concept of the shooting method us-
ing a control theoretical perspective, for the numerical solution of the Dirichlet
problem for the elliptical second order partial differential equation (Poisson equa-
tion) expressed as

Au=f in Q. (1.1)

The Poisson equation (1.1) is subjected to Dirichlet boundary conditions
u=g on JQ, where (z,y) € Q.

y < 1} are expressed as u(0,y) = aq(y); w(l,y) = ap(y); u(z,0) = ac(x); u(z, 1)

agq(z). Since we are interested in the numerical solution of Poisson equation, we
discretize the square domain € using an uniform mesh with spacing h = 1/N
in both directions (z and y), hence, we obtain a discrete square grid domain
Q" = {(hi,hj) : 4,5 = 0,1,..., N}. In the interior of the discrete domain Q" the

These boundary conditions in a square domain Q = {(z,y) : 0 < 2z < 1,0 <
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well known “five points finite differences approximation” describes the relationship
between the values of the variables at the grid points. This difference equation is
normally arranged in a lexicographic ordering by rows of constant i, so that the
unknowns corresponding to the row i of the grid may be arranged into a vector
u; = [uiyl...ui,n]T for 1 <i < n, where n = N — 1. Similarly with the input function
fi=1fi1sen fiyn]T, in consequence, the difference equation can be written in a form
Au = b with the structure

[ T F Ul [ b1 + FUO
F T F Uy bg
= . (12)
T F UN_3 by_3
F T F UN—2 bN_2
L F T 1| un—1 | i by_1+ Fun ]

where matrix A has dimension A € §R"2X"2, the unknown vector u € R" and
the vector b € R"°. Matrices T,F € R"*™ where matrix F' = —1 is an identity
matrix and T is a tridiagonal matrix. In equation (1.2), the vector uy corresponds
to the unknowns at row k of the discrete domain, and uy and uy correspond to the
prescribed boundary values at the upper and lower borders of the square domain
(row i = 0 and i = N), respectively, i.e. u(0,hj) = a,(hj) and u(1,hj) = ap(hj).
The values of the subvector b1, b2, ..., by—1 correspond to the values of u; ; at the
point of the boundary (u(hi,0) = a.(hi) and u(hi,1) = ag(hi)) and the values of
the function f; ; at the interior points of the domain Qh.

2. The state space representation

Taking an arbitrary row ¢ in equation (1.2), we have

F’U,i,1 + T’U,Z + FUiJrl = bz (21)

From this equation, it is possible that the values of u; ; at the row ¢ 4+ 1 (which
is given by the vector u;4+1) be computed using the values of the two previous rows
(rows i and ¢ — 1). Defining the state space vector z; at row i, the output vector
y; € R" and the input vector g; € R" as

T T
zi=[ug wia] 21 :=[ur wol Wi i= U1, q= —bigas

Hence, the difference equation (2.1) can be arranged into a state space repre-
sentation of the form

Zi+1 = WZZ + qu, (22)

yi = Cz, i=1,..,n,
where z; € R, ¢; € R™ and y; € R” are respectively the state variable, the input
and the output of the system at the i** iteration. The matrices W, B and C have
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dimensions 2n X 2n; 2n x n; and n X 2n, respectively. Let I be an identity matrix
with dimension n x n. The matrices W, B and C, and the boundary conditions of
the state space representation (2.2), are defined as follows:

VI IR Y e R R T

With this new definition the boundary conditions are understood as a two point
boundary value conditions, i.e. the boundary conditions are specified at the “points
i =0and i = N”. Hence, we define equation (2.2), as the state space representation
of the two point boundary value problem (TPBVP) associated to the Dirichlet
problem expressed by equation (1.1). The solution of this state-space representation
is that of the difference equation (2.1) or, equivalently, the solution of the linear
system (1.2).

3. A simple shooting method

Once the Dirichlet problem has been transformed into an associated TPBVP, we are
interested in solving it by using a shooting procedure. A state space representation
is used in the shooting method as it was presented in [4] for the case of ODEs. The
iterative simple shooting method initially transforms the boundary value problem
into an initial value problem (IVP) [4] by arbitrating some initial values which
are not specified by the boundary conditions [3]. After this transformation, the
numerical solution can be obtained via numerical integration which here will be
called the “marching” process [1]. The estimated “initial values”, usually, do not
correspond to the correct ones and, as a consequence, there is a discrepancy between
the computed values, by the marching process, and the values given by the boundary
conditions of the problem. This discrepancy is defined as the “error” of the shooting
procedure. Consequently, in each iteration of the shooting, these values are adjusted
in order to minimize the discrepancy (error) in the next iteration. In the context
of this work, the adjustment of adopted values is performed via a feedback control
law.

3.1. The state space representation of the iterative simple
shooting method

Marching part. For equation (2.2) be an IVP, all boundary conditions need to be
specified at one single point, and consequently all elements of the initial state vector
zo would be known. In the case of two point boundary value problems, only the
subvector ug = «q, that corresponds to the values that are associated to the first row
of the grid, is known. Consequently, in order to solve (iterate) the equation (2.2),
the subvector u1 needs to be estimated. As a consequence, in order to transform the
TPBVP associated to the Dirichlet problem, into an IVP, the “initial conditions”
vector zg is split into two subvectors as follows:
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o-[4)-12]

where the subvectors zJ € R" and z§ € R" correspond, respectively, to the given
initial values and the values that need to be supplied. With this initial condition
vector (3.3), the solution of the initial value problem associated to the Dirichlet
problem is given at the k" iteration of the equation (2.2) by [2]

k-1
2= Whzo + Wi—;—1Bg;,
k 0 ]Z:o k—j—1294; (3‘4)

Y = C,Zk k= 0,...,n.
Equation of the error. If the given subvector has been set correctly, the elements
of the computed vector uy must be equal to the elements of the vector ay which,
by its turn, is given by the boundary condition «;(hi) for i = 1,...,n. We define the
error equation, in each iteration of the shooting associated to the iteration counter
“m”, by the discrepancy between the prescribed correct value ay and the computed
vector un(m), i.e.,

e(m) = any —un(m), (3.5)
where e(m) € R". Considering un(m) = yn(m) and defining w(m) := zo(m), and
using (2.2) and (3.5) at the m*", an error equation as a function of the the arbitrated
subvector z® is obtained as follows:

e(m) = ay — (CW™w(m) + Cb), where b:= Y W"7~!Bg;. (3.6)
j=0
Feedback control law. In order to obtain a state-space representation for the
shooting method, it is necessary to define an updating law for the corresponding
state variables (arbitrated initial conditions) as a function of the error e(m). This
can be done through a so called “dynamic feedback law” of the form

d(m+1) = A.0(m)+ B.Ke(m),

w(m) C.o(m)+v, m=0,1,2,..,
where § := 2§ is the state vector which corresponds to the subvector of zy. In the
specific case of the Poisson equation that we are dealing with, the initial vector

is u1. On other hand, the vector v in equation (3.7) corresponds to the part of

the vector zg that is given by the boundary conditions, i.e. v := [ 0 =z ]T is a

constant vector.

The matrix K € R™*™ expresses a gain matrix and the matrices B, € R"*"
and C, € R2"*" play, respectively, the role of an input and output matrix of this
dynamic controller in the sense that §(m) does not affect all elements of the initial
values vector w(m). Combining (3.4), (3.5) and (3.7) the following state-space
recurrent equation is obtained.

§(m+1) = (Ac = B.KCWNC.) § (m) + B.K (an — CWNv — Cb),
w(m)=C(m)+v, m=0,1,2,....

(3.7)

(3.8)
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Figure 1: Block diagram of the shooting method from a control feedback perspective
when using to solve numerically the Poisson equation

In this case, the dynamics of this iterative system is ruled by the feedback law
given by (3.7) and the error, in each iteration, is defined by (3.5). Therefore, equa-
tion (3.8) describes a “state space representation of the iterative shooting method”.
Figure 1 presents the block diagram of the simple shooting for the numerical solution
of the Poisson equation (1). A control problem for the shooting method consists in
building the feedback control law (3.7) specified by the controller matrix A.., the in-
put matrix B, the output matrix C, and the feedback gain matrix K. The problem
consists in choosing a set of these matrices in order that equation (3.8) will converge
to the desired solution. The condition to obtain the convergence of the system (3.7)
is the Schwarz condition for the iteration matrix H := (4. — B.KCWNC,). This
condition establishes that all the eigenvalues of the matrix H in modulus are less
than one, or in other words, the espectral radius is less than one, i.e. p(H) < 1.

3.2. Multiple subdomains: a multiple shooting method

The multiple shooting is performed by subdividing the domain in several subdo-
mains and using the simple shooting in each of these subdomains. In the case of
ODEs, the domain of the independent variable z, defined as an interval or domain
6 := [0, 1], it is subdivided into p intervals: 0 = zg < 2 < ... < xp_1 < x, = 1, and
the simple shooting is performed in each subinterval 6, := [, 2541], 0 < k < p—1.
Here we generalize this concept to the square domain €2 in which the Poisson equa-
tion is defined. In this case, as the domain () represents a 2-D domain, we determine
a direction for the marching process of the shooting. We choose the = direction,
and in consequence, we subdivide the 2-D domain 2 into p “strips”. Therefore, we
can define the subdomain Qj = {(z,y) : ¢ € 6,0 <y < 1} where 0 < k <p—1.
With the domain 2 subdivided in this way, the Dirichlet problem for the Poisson
equation in each subdomain is defined as

Auk = fk in Qy, (3.9

where u¥ is the value of u(z, y) such that the point (z,y) € €. Hence, the boundary
conditions for a k*" subdomain are defined as
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3.3. The discrete two point boundary value problem in a
subdomain

Since we are interested in the numerical solution of the PDE in the domain €2, now
this is subdivided in the z direction in p subdomains such that p = N/Ns, where
N is the number of points in the z direction, and Ny is smaller than the maximum
number of points that the simple shooting can solve in this direction. Hence, the k"
discrete strip subdomain is defined as QF = {(hi + di, hj) : i =0,1,..., Ns and j =
0,1,..., N}, where dj, := hkNs.

Defining the state space vector z for the k" subdomain as z*, then we define
the state space representation for the associated two point boundary value problem
in the k" subdomain as:

zf_};l = sz—l—qu,
Yy = CzF

7

i=1,..,ns, (3.10)
subject to the initial condition off := uf = [ak(h)...ak (hns)]T and the final condi-
tion af, =uf = [a’g(h)...a{f(hns)]T.

The initial condition o in the first subdomain (k = 0) and the final condition
oz?\,:l in the last subdomain (k = p—1) correspond to the boundary conditions given
by the Dirichlet to which the Poisson equation is subjected. In other words, a = ag
and a1]7v—sl = ay, respectively. Equation (3.10) is the TPBVP in the subdomain k*".
This problem is solved using the simple shooting method presented in section 3.

The continuity of the solution: Once the simple shooting reaches the solu-
tion in each subdomain QF, the local solutions are patched up to form an overall
global solution over the entire domain 2. By using (3.10), the continuity (or match-
ing) conditions for the solutions associated to the subdomains are given by [5]

2 — =0, for k=0,1,2,...p— 2. (3.11)

Using expression (3.4) in each subdomain k' (vector zF at the i iteration
for i = ng (marching process at each subdomain)), then the continuity conditions
expressed by (3.11) for the k** subdomain take the form

_ _ n—1 .
st _ Z(I)chl — A"SZ(])C + bk — Zé =0, bk .= E anjleq;c. (3‘12)
§=0
In order to arrange the equations (3.12) and (3.10), we define matrices Cyp, Cy,
By and By as expressed at equation (3.13) below

Qo

0 _ -1 _ 0 -1 _
Cozg = ag, Cnzh7" =an, BoCozy + BnCnzhT" = [ ax

} =8, (3.13)
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Hence, equations (3.12), (3.10) and (3.13) can be arranged in an Az = b form
as: Amsé = bms, where & € R2"®P=1) is the unknown vector, b,s € R2P~1) is a
given vector and the matrix A,,, € R2"(#—1>22(r—1) presents the structure below

wns -1
wns T

Ams = . (3.14)
BoCo BnyCNWDs

and the vectors & and b,,s are given by & = [ 2y .. 2! ]T and bp,s =

[0 ... =2 B ByOnbP-T ]T. Here, after having solved the linear system
of equations A,,s& = b,,s, the solution is formed by iterating the marching process
(3.10) in each subdomain €, using the corresponding initial vector z§. Clearly,
the linear system of equations A,,s{ = b,,s can be solved directly or iteratively.
The matrix A,,s is block diagonal dominant [1]. Direct methods for the solution
of equation A,,s¢ = b,,s which ignore the special structure of the system, are not
a good choice. In the next subsection we introduce the so called iterative multiple

shooting method for the solution of equation A,,s& = byys-

The iterative multiple shooting method: Defining, for the subdomain €,
the reduction matrix R, € R?"*?"(P~1) and expansion matrix R} as: reduction
matrix Ry : z{f = R;&; then, the simple shooting in a specific k** subdomain can
be expressed as

2E(m+1) = 25(m) + MpRg (byns — Apms€(m)), (3.15)
for k = 0,1,...,p — 1 where the preconditioner matrix Mj € R?"*2" is defined as:
My, := C.B.KC for k =0, and My, := C.B.KC — BNCy for k=1,...,p— 1.

In the expression for the matrix M) the matrices B. and C. are the input and
output matrices of the feedback control law. The matrix K is a feedback gain matrix
associated to the feedback control law which was defined in section 3. and matrix C
is the output matrix. The B.K is a preconditioner matrix for A, = CW"C,, and
for the particular case of the dead-beat controller, we choose the input B, as an
identity matrix and the gain matrix K as the inverse of A. In terms of the vector
¢, and using the simple shooting to solve each subdomain k*”, the iterative multiple
shooting is described by the expression

§m+ 725) = €(m + 5=1) + REM Ry (s — Ams(m + 521))

p—1

(3.16)
k=0,1,2,...,p— L

Note that, the mt" iteration of the multiple shooting occurs when the simple
shooting has been completed in all the subdomains 2.
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4. Computational results for the Poisson equation

The iterative shooting method described in this work was implemented in Fortran 77
using double precision arithmetic, and was tested on a four node IBM-SP2 parallel
computer at NACAD/COPPE/UFRJ. The test problem was the Poisson equation
(1.1) subject to Dirichlet boundary conditions: w(0,y) =0; u(l,y) =0; wu(z,0) =
1; w(x,1) = 1, with domain Q" = {(ih, jh) : i,j = 0,1,..., N}. The convergence
criterion for all computations is ||e(m)|| < Tolerance where the error was defined
by equation (3.5) in subsection 3.1.

Results for the iterative simple shooting method: For the matrix B K,
the input matrix B, was taken as an identity matrix and the gain matrix K was
taken formally as the “inverse” of A; = CW"™C,.. The inverse does not need to be
explicitly computed, since it is more efficient to perform the computations using the
LU decomposition of this matrix.

=
O\

H
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Minimal tolerance for convergence

Tl I I I

1 1 1 1
6 8 10 12 14 16 18 20 22
N (dimension of the grid) = grid: NxN

Figure 2: Admissible tolerance to obtain the convergence of the iterative simple
shooting method in each subdomain

Even though, the iterative simple shooting method corresponds to a direct
method when using infinite precision arithmetic in the computations, the method
still remains an iterative method in finite precision arithmetic. From Figure 2, it
is possible to see that admissible tolerance to assure convergence depends on the
dimension of the grid N.
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Additionally, we can see that the “maximum length of the shot” for the itera-
tive simple shooting method, when using double precision arithmetic, is N = 22 or,
equivalently, the maximum power for the matrix W is n =21 (n = N —1). We can
conclude that, for the numerical solution of the Poisson equation, the method be-
comes numerically unstable when the grid is refined beyond some limit. This insta-
bility comes from the fact that in order to compute the marching part it is necessary
to compute powers of matrix W. This matrix can be mildly ill conditioned; how-
ever it’s powers will be progressively ill conditioned. Additionally, this limit, using
double precision for the computations, is a grid of Q" = (hi, hj) : i,5 =0,1,2,..., N
for N = 22, and with this grid, its finds a high precision solution (up to round off)
for the adopted initial values.

An iterative multiple shooting method: For the iterative multiple shooting
method, we recall that the convergence criterion is ||b — Az(m)]||2/||b — Az(0)]2 <
tolerance, where we adopt the tolerance for the convergence as 10~7.

Iterative multiple shooting Gauss-Seidel SOR Alt. Schwarz GS
N P N it. time it. time it. time it. time
18 2 34 60 0.8e-1 499 0.23 178 0.11 196 0.11
18 3 50 101 0.27 1004 0.94 367 0.40 360 0.75
18 4 66 152 0.60 1648 2.56 609 0.99 545 1.84
18 5 82 213 1.47 2413 6.26 899 2.20 739 4.03
18 6 98 280 3.16 3290 12.46 1234 4.7 934 7.55
18 7 | 114 | 354 6.00 4268 | 21.28 1610 8.21 1125 12.54

Table 1: Comparison between the iterative multiple shooting, the Gauss-Seidel method
and the iterative multiplicative Schwarz method with 5 iterations of the Gauss-Seidel
in each subdomain. The item time in the table corresponds to CPU time (it. means
iterations).

A comparison between the iterative multiple shooting procedure, Gauss-Seidel
method, the successive over relaxation (SOR) and the alternating Schwarz technique
using the Gauss-Seidel method as a solver for each subdomain is presented at table
1. In this table, the dimension Ny of the shooting is maintained constant although
the dimension of the grid is increased. Consequently, in order to refine the grid
the number of subdomains is increased. It can be noted that, the iterative multiple
shooting is faster, in CPU time and number of iterations, than the Gauss-Seidel, the
SOR and the alternating Schwarz Gauss-Seidel method. So, the iterative multiple
shooting is 4 times faster than the Gauss-Seidel, 1.5 times the SOR and 2.7 times
the alternating Schwarz Gauss-Seidel.

5. Conclusions

In this paper, a control theoretical interpretation for the shooting method is pre-
sented for the numerical solution of the Poisson equation; the TPBVP is defined now
in the context of PDEs. In the feedback controller discussion, it can be seen that
choosing the matrices B, = I and K = A;!, the shooting method can be viewed
theoretically as a direct method. However, in practice, due to roundoff errors, which
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are present in the computations, the method remains an iterative method. There-
fore, the simple shooting method presents the property of having an optimal order
of complexity but limited to the size of the grid. This property makes the simple
shooting method a strong candidate for a solver in a domain decomposition context.

The iterative multiple shooting method is understood as a kind of domain de-
composition method, and overcomes the numerical instability, by subdividing the
domain in subdomains and performing the simple shooting in each subdomain. Ad-
ditionally, if the feedback gain matrix K is pre-computed, the order of complexity
for the simple shooting in each subdomain corresponds to the order of complexity of
one matrix vector multiplication only (O((N —1)?)). This conduces to an iterative
method for the Poisson equation which, in each iteration, has an optimal order of
complexity. Finally, it is important to remark that this new point of view for the
numerical solution of elliptical PDEs leads to new and more efficient methods by
using some initial value methods, so far used only in the context of ODEs.
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