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Abstract. The point reactor kinetics model is an initial value problem character-
ized by a system of ordinary differential equations that describe the time depen-
dence of the neutron population within a nuclear reactor core and the decay of the
delayed neutron precursors. This approach is useful as it permits to develop effi-
cient algorithms for real time simulation training in nuclear power plants. In this
paper, we describe a quasi-conservative linear discontinuous finite element method
to numerically solve the nuclear reactor point kinetics equations with six groups of
delayed neutron precursors. This method is based on the expansion of the solution
in Legendre polynomials within each time step. As we truncate the expansion in
the first degree Legendre polynomial, we refer to the offered method as the linear
discontinuous (LD) method. In deriving the LD discretized equations, we find the
discretized balance equations for the ¢ order moments, £ = 0,1. For the case of
prescribed reactivity change as a linear function of time, in the first-order moment
equation, we are left with the second-order moment that we need to approximate.
Therefore, we obtain a quasi-conservative numerical scheme, as the discretized ba-
lance equation for the first-order moment is approximated. Moreover, considering
linear expansion of the solution within each time step, we obtain auxiliary equations
that, together with the balance equations, form a system of fourteen algebraic li-
near equations in fourteen unknowns for each time step. We show numerical results
to two typical model problems to illustrate the LD method’s accuracy.

1. Introduction

Accurate simulation of the time-dependent behavior of neutron population in a
fission chain-reacting system in response to either a planed change in the system
conditions or to an abnormal condition is essential for the safe operation of nuclear
reactors. The dynamics of a nuclear reactor under normal operation is governed
primarily by the characteristics of the delayed emission of neutrons from the decay
of fission products, which can be modeled by defining six effective groups of de-
layed neutron precursor fission products. The conventional point kinetics model for
nuclear reactor physics is an initial value problem, composed by seven ordinary dif-
ferential equations, that are obtained by assuming separation of variables solutions
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of the time-dependent neutron diffusion equation coupled with six-group delayed
neutron precursor equations. The limiting assumption for the accurate simulation
of the point kinetics equations is the assumption of a constant spatial shape, which
is expected to be reasonable for transients caused by uniform changes in reactor
proprieties.

In practice, numerical methods are used to solve the neutron dynamics equa-
tions, and a class of accurate and efficient algorithms has been developed for over
twenty years [2, 3, 4]. In this paper, we describe a discontinuous finite element
method to numerically solve the nuclear reactor point kinetics equations with six
groups of delayed neutron precursors. This method, extended from the applications
to the neutron transport equation in the discrete ordinates formulation, is based
on the expansion of the solution in Legendre polynomials within each time step.
As we truncate the expansion in the first degree Legendre polynomial, we refer
to the offered method as the linear discontinuous (LD) method. In deriving the
LD discretized equations, we first find the discretized balance equations for the ¢t®
order moments, £ = 0,1. For the case of prescribed reactivity change as a linear
function of time, in the first order moment equation, we are left with the second
order moment that we need to approximate, and thus, obtain a quasi-conservative
numerical scheme, as the discretized balance equation for the first order moment
¢ =1 is approximated.

Moreover, considering the linear expansion of the solution within each time step,
we obtain auxiliary equations that, together with the balance equations, form a sys-
tem of fourteen algebraic linear equations in fourteen unknowns for each time step.
We consider five different schemes to approximate the second-order moment of neu-
tron density and we describe them in section 2. In section 3 we show the numerical
results to two test problems. We consider one test problem with the purpose of
testing the accuracy of the different schemes to approximate the second-order mo-
ment. In the test problem No. 2 we compare the present quasi-conservative LD
finite element method for nuclear reactor point kinetics model with recent numeri-
cal methods published in the literature. In section 4 we list a number of general
conclusions and suggestions for future works.

2. Quasi-Conservative Linear Discontinuous Finite
Element Method

The point kinetics equations with six-groups of delayed neutron precursors [5] can
be written as

d]cvu(t) _ {p(t)A 5] N+ mz::l AnCon (1), (2.1)
dCy(t)  BmN() o
20— Bl () =16 )

where
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N - neutron density,

C,, - concentration of delayed neutron precursors of the mt® group,

Bm - fraction of delayed neutrons emitted by the m™ group,

[ - total fraction of fission neutrons, that are delayed,

A - mean generation time between neutron birth and subsequent absorption
inducing fission,

Am - decay constant of the m!® group,

p - reactivity.

We assume that the reactivity p(¢) is a linear function of time [4], that is

t—t
o) = o + 20510, (23)
where
s - width of the time step in a uniform grid,
v - reactivity insertion control as a function of time,
po - initial reactivity.

For initial conditions ¢ = 0 we consider normalized value of neutron density
N(0) = 1. Therefore in accordance with equation (2.2), we obtain

_ B =1:6. (2.4)

Cm(0) = XA m =

Considering constant physical properties within each time step, we divide the
time domain T into elements S;, i = 1 : I. To find the discretized balanced equations
for the £t* order moments within each element S, we apply the operator

@iﬁ/m”HFﬁ;@Pt (2.5)
.

S S

to equations (2.1) and (2.2). Here, we have defined
ti = (tiz1/2 + tiy12)/2,
P, - the t" degree Legendre polynomial,
s - uniform width of element S;.

By setting £ = 0 in equation (2.5) and applying the resulting operator to equation
(2.1), we obtain the zero-th order discretized balance equation
Nig12 = Nicyjp _ Li
A

S

B vy A
*Ni )"m m,is 2.
A +m§:1 Cm, (2.6)

where we have defined the average quantities

_ 1 [ti+i/2
m:_/ N(t)dt,
s ti_1/2
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and

that is equivalent to

where we have defined the first order moment of the neutron density

R tit1/2 9 (¢ _ ¢ tiyi/2
N, = §/ uN(t)dt = E/ (t —t;) N(t)dt.
i—1/2

2
& ti—1/2 8 &

By substituting expression (2.7) into equation (2.6), we obtain

Niy1/2 — Ni71/2 (po — [3) -
- =5 Z (2.8)

Now we set £ = 0 in equation (2.5) and apply the resulting operator to equation
(2.2). The result is

oy —Chi
myi+1/2 — COmyi=1/2 ﬂAmN m=1:6. (2.9)

= _)\mém,i +
S

Furthermore, to obtain the first-order discretized balance equations, we apply
operator (2.5) with £ =1 to equations (2.1) and (2.2). By applying operator (2.5)
with £ =1 to equation (2.1) we obtain

3 [Ni+1/2 +Ni_1/2 — 2]\71'] (po—B) ¢ , VB ﬁ :
- Ni _N I m m7,7 2 1
s A it T Z 0

where we have defined the second order moment of the neutron density

- ez (31206 —1,)]7 1
N,:§/ S12E=t) ] LUy,
s S,y 2 s 2
i—1/2

N 30 i+1/2 5 _
Ny = _/ (t—t:) N(t)dt - SN (2.11)

g3

or equivalently

ti—1/2
Operator (2.5) applied to equation (2.2) with £ =1 implies
3[Cmit1/2+ Cmic1/2— 2Cmi]l B o A

s == TNZ - )\mcm’i, m=1: 6, (212)
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where we have defined

2
& ti—1/2 S s ti—1/2

~ i+1/2 _ £ i+1/2
Crm,i = §/ MCm(t)dt _ 0 (t — ;) Cp (t)dt.

For m = 1: 6, equations (2.8), (2.9), (2.10) and (2.12) form a system of fourteen
algebraic linear equations in twenty-two unknowns, namely N; 1,2, Ni, N, Ny,
Chnyit1)2s C’mﬂv and CA'm,,-, m = 1:6. Moreover, we use the linear expansions

2 ~
N(t) = N;+ - (t —t;) N;, (2.13)
S
and 5
Cn(t) 2 Crpi+ = (t —1;) Crpiy m=1:6, (2.14)
S

where we consider ¢ = t; /7 and hence obtain the auxiliary equations

Nis1jz = Ni+ N;, (2.15)
and - .
Crmjit1/2 = Cmjiv1/2 + Cmig1/2, m=1:6. (2.16)

By substituting the auxiliary equations (2.15) and (2.16) into the discretized
balance equations (2.8), (2.9), (2.10) and (2.12), we obtain

[1—M}Ni+{1—”—ﬁs] —SZ)\ Crnyi=Ni_1/2 (2.17)

A 3A
[ﬁx ]N—{—[l—}—)\ms]C’m,—i—C’ 'myi = Cm,i—1/2, m=1:6, (2.18)
svf3 s(po — B) 21/58
{3+A} {31\ N+sz>\ Crnii + = x Vi =3Nio1y (2.19)
SBm | ~ .
- |:T:| Nz - 3Cm,7,' + [3 + )\ms] Cm,i = _3Cm,i71/2-, m=1:6. (220)

For each time step, equations (2.17-2.20) form a system of fourteen algebraic
linear equations in fifteen unknowns, namely Nl,N NZ,C’mZ and Cm i- We are
still left with the second-order moment N; in equation (2.19), which we need to
approximate, and thus obtain a quasi-conservative numerical scheme. In this paper,
we consider five different schemes that we list in Table 1.

We modify the coefficients in equation (2.19) by considering each one of the
approximations listed in Table 1 and we advance in time by solving the system
of equations (2.17-2.20) and then using the auxiliary equations (2.15) and (2.16).
To solve system (2.17-2.20) we use Gaussian elimination with scaled pivoting and
backward substitution [1].
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Table 1: Numerical approximations for the second order moment N;.

Numerical Schemes | Numerical approximations for N;

1 We simply neglect the second order moment N; in the bal-
ance equation (2.19).
2 We approximate N; by —%Ni, i.e., we neglect the integral

term in equation (2.11).

3 We approximate N; by the average, N; = w

4 We consider the numerical explicit approximation,
Ni = Ni_12.

5 We approximate N; by the first-order moment, N;=N;.

3. Numerical Results

At this point we consider two model problems with the purpose of testing the
accuracy of the approximations in the present LD method for numerically solving
the system of seven coupled ordinary differential equations of the point reactor
kinetics model given in equations(2.1-2.2).

3.1. Test problem No. 1

In this test problem the reactor power level is supposed to increase very rapidly.
The reactor nuclear data are listed in Table 2. The reactivity insertion is given by
equation (2.3) and 0 < T < 10 seconds. The rate of reactivity insertion is 0.02
dollar/second ($/sec.) and the initial value of inserted reactivity po is 0.4615 $.
Moreover the initial conditions are N(0) = 1 and equation (2.4). Table 3 displays
the fourth order Runge Kutta [1] reference results, generated on a fine time grid
(time step = 0.1 second).

We ran model problem No. 1 with time steps of 1 and 2 seconds for the five
numerical schemes of quasi-conservative LD finite element method, viz Table 1.
In Tables 4 and 5 we show the relative deviations of neutron density and precur-
sor concentrations with respect to the reference solution (viz Table 3) for the five
schemes.

As we see in Tables 4 and 5, for wide time steps, we obtain very good agreement
with respect to the fine grid reference results listed in Table 3. That is, the relative
deviations are all less than 1 %, except for numerical scheme number 2 (Table 1)
that generated the least accurate results.



A Quasi-Conservative Discontinuous Finite Element Method 47

Table 2: Nuclear data for test problems No. 1.

| Group m \ Am | Bm ’
1 0.0124 | 0.000215
0.0305 | 0.001424
0.1110 | 0.001274
0.3010 | 0.002568
1.1400 | 0.0007488
3.0100 | 0.000273
A 8= 1Fn
0.001 | 0.0065

| O = W N

Table 3: Neutron density and precursor concentrations at 10 seconds, for test prob-
lem No. 1 (Time step equal to 0.1 second in the fourth order Runge Kutta method).

Density N 1 Cy C3 Cy Cs Cs
Ref. Results | 26.328 | 32.044 | 139.782 | 80.815 | 107.711 | 13.253 | 2.135

Table 4: Relative deviations (%) with respect to the reference results listed in Table
3 (Time step s = 1 second).

Schemes | AN/N | Aj A3 Aj A% Al A}
1 0.08 -0.02 | 0.03 | 0.03 | 0.02 | 0.01 | 0.02
0.26 -0.21 | -0.30 | -0.40 | -0.44 | -0.41 | -0.29
0.01 0.11 | 0.16 | 0.20 | 0.21 | 0.18 | 0.14
0.02 0.10 | 0.14 | 0.18 | 0.18 | 0.16 | 0.12
0.06 0.04 | 0.05 | 0.06 | 0.06 | 0.04 | 0.04

Y = W DN

MA; = AC;/C;

Table 5: Relative deviations (%) with respect to the reference results listed in Table
3 (Time step s = 2 second).

Schemes | AN/N | AT | A} | Ay | A} | AL | A
1 0.54 | 0.19 | 0.26 | 0.28 | 0.23 | 0.19 | 0.27
0.61 | -0.73 | -1.06 | -1.39 | -1.50 | -1.23 | -0.65
0.51 | 056 | 0.80 | 0.96 | 0.93 | 0.77 | 0.64
0.54 | 0.44 | 0.63 | 0.76 | 0.72 | 0.59 | 0.53
0.51 | 0.31 | 0.44 | 0.51 | 0.47 | 0.38 | 0.39

Y | W N

OA; = AC/C;
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3.2. Test problem No. 2

At this point we compare the present quasi-conservative LD finite element method
with numerical methods offered in references [3, 4] for nuclear reactor point kinetics
model. Here the nuclear data are listed in Table 6, and we consider zig-zag shape
reactivity insertion, that is, in T < 5 sec. and T > 15 sec. the rate of reactivity
insertion is 0.1 $/sec., and in 5 sec. < T < 15 sec. the rate of reactivity insertion
is -0.1 $/sec., and the initial value of inserted reactivity po is 0 $. Moreover, the
remaining initial conditions are N(0) = 1 and equation (2.4).

Table 6: Nuclear data for test problem No. 2.

| Group m ‘ Am | Bm |
1 0.0127 | 0.000266
2 0.0317 | 0.001491
3 0.1150 | 0.001316
4 0.3110 | 0.002849
5 1.4000 | 0.000896
6 3.8700 | 0.000182
A [B=%6m
0.00002 | 0.007

In Table 7 we show the neutron density results and relative deviations with
respect to the reference solution given in Ref. [4] for different methods. From this
table we conclude that the relative deviations calculated with the offered method
with the same time step with respect to the reference solution are much smaller
in comparison with the other methods considered. Moreover, the present Quasi-
Conservative Linear Discontinuous Finite Element method models the same test
problem using a larger time step with similar accuracy. This characteristic indicates
that the offered method has good efficiency in wide time step calculations.
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Table 7: Neutron density results and relative deviations (%), for the three methods.

Timef N* [ NP [6(%)° [ NT [6(%)° | N'LD | 6(%)5 [ N® S(%)!

(sec)| ref. | Ref. Ref. s=0.1 | LD LD LD
sol. | [4] [3] s=01]s=1]s=1
2 1.338| 1.339| -0.067 | 1.343| -0.379 | 1.338 0.003 1.334 | 0.336
4 2.228| 2.231| -0.132 | 2.248] -0.905 | 2.228 0.003 2.213 | 0.702
6 3.239| 3.232| 0.190 | 3.254| -0.482 | 3.239 -0.007 | 3.239 | -0.014
8 2.656| 2.654| 0.085 | 2.656| 0.024 | 2.656 -0.002 2.650 | 0.218

10 2.021| 2.021| -0.006 | 2.016| 0.233 | 2.021 -0.002 | 2.016 | 0.220
12 1.502| 1.503| -0.047 | 1.497| 0.337 | 1.502 -0.002 1.499 | 0.190
14 1.112| 1.113| -0.069 | 1.108| 0.387 | 1.112 -0.001 1.111 | 0.157
16 0.962| 0.962| -0.106 | 0.959| 0.250 | 0.962 -0.002 | 0.962 | -0.014
18 1.042| 1.043| -0.132 | 1.041| 0.070 | 1.042 -0.003 1.041 | 0.040
20 1.247| 1.249| -0.164 | 1.248| -0.129 | 1.247 -0.002 1.245 | 0.137

(@)neutron density results given as reference solution in Ref. [4].

(P)neutron density results generated by the method described in Ref. [4], with
s = 0.1 second.

(©relative deviations of the neutron density results generated by the method
described in Ref. [4], with respect to the reference results.

(Dneutron density results generated by the method described in Ref. [3], with
s = 0.1 second.

(©)relative deviations of the neutron density results generated by the method
described in Ref.[3], with respect to the reference results.

(Dneutron density results generated by the LD method, with s = 0.1 second,
(scheme 1 cf. Table 1).

(®)relative deviations of the neutron density results generated by the LD method,
with respect to the reference results, with s = 0.1 second.

(Mpeutron density results generated by the LD method, with s = 1 second,
(scheme 1 cf. Table 1).

(Mrelative deviations of the neutron density results generated by the LD method,
with respect to the reference results, with s = 1 second.

4. Concluding Remarks

e In this paper we have described a new quasi-conservative LD finite element
method for nuclear reactor point kinetics model. We remark that the extension
to higher order expansions, as in [5] and [1], is straightforward.

e For the case of prescribed reactivity change as a linear function of time, we
obtain the second-order moment in the first-order discretized balanced equa-
tion, and thus obtain a quasi-conservative numerical method, as we need to



50

Garcia et al.

approximate it; we consider five different schemes of approximation. Model
problems No. 1 illustrate that schemes 1, 3, 4 and 5 generate very accurate
results for wide time step calculations.

The quasi-conservative LD finite element method generates very accurate re-
sults in wide time step calculations as compared with recent numerical me-
thods published in the literature, without losing significant computational

efficiency.

Resumo. O modelo da cinética pontual do reator nuclear é um problema de valor
inicial caracterizado por um sistema de equagles diferenciais ordinarias que de-
screve a dependéncia da populagdo do néutrons no nicleo de um reator nuclear.
Neste trabalho nds descrevemos um método de elemento finito descontinuo linear
quase-conservativo para resolver numericamente as equagoes da cinética pontual
com seis grupos de precursores dos néutrons atrasados. O método baseia-se na
expansao da solucdo em polindmios do Legendre em cada passo de tempo. Como
nés truncamos a expansao em polindmios de Legendre do primeiro grau, nds o
denominamos método descontinuo linear (LD). Nesta dedugdo das equagdes dis-
cretizadas LD nés obtivemos equagoes de balanco discretizadas para momentos de
ordem ¢, £ = 0,1. Para o caso de trocas de reatividade como uma fungdo linear
do tempo, na equagdo do momento de primeira ordem, nds precisamos aproximar
o momento de segunda ordem, desta forma nés obtivemos um esquema numérico
quase-conservativo. Além disto, consideramos a expansao linear da solugao em cada
passo de tempo e obtivemos as equagbes auxiliares, que junto com as equagdes de
balango formam um sistema de quatorze equagdes lineares com quatorze incégnitas
para cada passo de tempo. Mostramos os resultados numéricos de dois problemas
modelos tipicos para ilustrar a precisao do método LD.
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