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Abstract. A sufficient criterion to determine sign definiteness regions for multi-
variable scalar functions is presented. This criterion is used as a constraint in the
formulation of an optimization problem to maximize the estimate of the domain
of attraction for asymptotically stable nonlinear systems using quadratic forms as
Lyapunov functions. Two examples whose estimates are as good as the ones ob-
tained from more complex methods reported in the literature illustrate the useful-
ness of the main results.
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1. Introduction

This work deals with the quantitative stability analysis of nonlinear autonomous
dynamical systems. Consider a smooth system described by (1.1)
dx(t)
dt

— i = f(x), (1.1)

where z € R"™ is the n-dimensional vector of the state variables and the origin is
the steady state solution of interest, f(0) = 0. It is well known in the control and
systems literature that the local asymptotic stability is not sufficient to guarantee
the stability of a real system [1]. Many times, the domain of attraction (DA) is so
small that it is no useful for practical purposes. Consequently, the attainment of
quantitative results about the size of this domain is very important for a practical
stability analysis. As the exact determination of DA for general nonlinear systems is
usually a hard task, simpler estimates of that region are commonly well accepted for
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quantitative analysis. The simplest estimates consider quadratic forms as Lyapunov
function candidates:
V(x) = 2T Pu. (1.2)
The determination of subsets of the DA for nonlinear systems using the Lya-
punov stability theory results with quadratic forms is an extensively studied subject
in the control literature [2, 3, 4]. The use of these forms simplifies the inequalities
to be solved, and furnishes, since P must be positive definite, according to (1.3),
conservative but useful ellipsoidal estimates for DA.

D(p) = {z: V(z) < p® and V(z) < 0}. (1.3)
The usual approach to estimate DA with quadratic Lyapunov functions consists
on a two steps procedure [4]:
(i) A Lyapunov matrix P(> 0) is chosen according to some criteria.
(ii) The optimal estimate for this form (pep¢) is computed by solving the following
optimization problem:

Popt = inf 2T Px . (1.4)
r e R"
subject to V(z) =0

This usual approach has two drawbacks:

1. The Lyapunov matrix P is chosen without regarding the size of DA.

2. As the optimization problem (1.4) is in general nonconvex, its solution may
lead to a local minimum and consequently to a fake DA;

One of the main reasons why it is not possible to choose a Lyapunov matrix P to
directly maximize the DA is the absence of sign definiteness criteria for multivariable
scalar functions. In this work, a sufficient criterion to determine subsets of the sign
definiteness region for multivariable scalar functions is presented. Based on this
criterion, a methodology to:

1. choose the matrix P > 0 to maximize the estimate of the sign definiteness
region of V(z) and

2. formulate a single step optimization problem to directly maximize the estimate
of the DA, considering the sufficient criterion for the negativeness of V'(x) as
an inequality constraint,

is proposed.

2. Main results

The problem of determining the asymptotic stability for system (1.1) with quadratic
Lyapunov functions can be viewed as the problem of finding a positive scalar func-
tion:

V(z) = 2T Pz >0, (2.1)
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which satisfies a strict inequality for its time derivative:

dV(x) _ aV(x)Z,E _ VvV (x)

7 o o flz) <0 (2.2)

in some neighborhood of the origin.

Although the famous Sylvester criteria provides simple necessary and sufficient
conditions to verify the global positivity of quadratic forms, there are no criteria to
check the sign definiteness of general nonlinear functions. Here, to obtain a criterion
that could be used to estimate the sign definiteness region of (2.2), it is presented
in Theorem 1 a recent result concerning the sign definiteness of multivariable scalar
functions [5], which requires the Definition 1 before.

Definition 1. The real local region, Q@ C R", of a multivariable function
y(z) : ™ — C™, is the set composed by the intersection of the subsets of ™ where
each element of x can assume values such that y(x) belongs to a subset U .C R" and
y # 0 unless x = 0.

Theorem 1. Let V(:L) be a scalar function of n real variables. If the quadratic form
representation of V(x) is yT (x)Pyy(x), where the components of y are functions of
x € Q and Py is a symmetric real matriz obtained directly from V(m), then a suf-
ficient condition for the local negativity of V(m) is that Py be a negative definite
matriz. Consequently, ) is the local region where V(x) 15 negative.

Proof:
Sufficiency - If V(x) can be written as a quadratic form, y7 () Pyy(z), where y(z)
are nonlinear functions of z and Py is a real symmetric matrix, it is a well known
result from linear algebra [6] that it also can be written in new coordinates z = ULy
as

V(@) = 2(y(@) T Ax(y(@)) = 27 (2)Ax(2), (2.3)

where U is an orthonormal matrix whose columns, u;, are the eigenvectors of Py,
and A is a diagonal matrix having the same eigenvalues as Py. Then, V(z) can be
rewritten as:

V(x) = M\22 4+ Xaz2 + o+ M2, (2.4)

with
zi = (uiy1 () + wpy2 () + ... + uinyn(z)), for i=1ton. (2.5)

This orthonormal coordinate transformation maintains the norm and the in-
ner product of Py and, consequently, conclusions about the sign of V(ac) are also
maintained.

Because all the eigenvalues of a real symmetric matrix belong to the real field,
if all the eigenvalues of Py are negative (i.e., the matrix is negative definite) V()
is negative definite if, for any nonzero x:

(i) z7(x) > 0 (for j = 1 to n), and
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(ii) z7(x) > 0 for at least one j.

Now, it must be noted that the conditions (i)-(ii) are only satisfied in the real
local region of y, that is the region where the sign of V(x) is negative. Then, the
negativity of Py implies V(z) is negative definite inside that region.

Not necessity - Consider a positive function having a quadratic form representation,
yT (z) Pyy(z), with Py negative definite. As the quadratic form representation is
arbitrary, there is no restriction to add a new nonzero element to vector y. There
is no loss of generality if this new element has no influence on the original negative
function because the components of y are not necessarily independent. If this occurs,
despite the fact the function is negative, the new eigenvalue corresponding to this
new element will be null. So, the negativeness of V(a:) does not imply that Py is
negative definite and theorem 1 is only a sufficient condition. This also proves that
the negative semi-definiteness of Py does not imply in V(z) < 0.

Now, with the help of theorem 1, it is possible to choose the matrix P to maxi-
mize the size of the sufficient negative region of V(z) while maintaining P > 0 and
Py < 0.

Optimiz. problem 1 - Substitute the quadratic form V(z) = x¥ Pz in V(z) =
% f(x). Write this last equation as a quadratic form representation:

V(z) =y (z) Pry(z), (2.6)

where P and Py are symmetric real matrices obtained directly from the coefficients
of V(z) and V(z), respectively. Let a; be the parameters of y(z) which define the
negativity region of V(x). Choose the parameters of V(z), i.e. the matriz P, and
y(z), i.e. the parameters a;, in a way to mazimize the sufficient negativeness region
of V(z) subject to the constraints P > 0 and Py < 0.

Although this optimization problem can provide an appealing approach to choose
P, it needs a second step to find the DA given by (1.4) - determining the maximum
of V(z) inside the estimated negativity region of V(z). As this second step still is
in general a nonconvex one, it can lead to local minima and consequently to a false
estimate of DA. Moreover, it is necessary to derive a non-trivial analytical equation
describing the negativity region of V(z) with P and «; as variables. Note that the
parameters «; give additional degree of freedom to the optimization problem to
maximize the negativity region of V(z).

So, alternatively, it is more interesting to formulate an optimization problem to
directly maximize the size of the ellipsoidal domain of attraction using the same
quadratic Lyapunov function. Basically, this problem is the same optimization
problem 1 but, instead of maximizing the negativeness region of V(ac), the objective
is to maximize the ellipsoid region defined by V(z) = 27 Pz = 1. As the volume of
such ellipsoid region is proportional to the inverse of the products of the eigenvalues
of P, the objective of the problem can be posed as the minimization of the product
of the eigenvalues of P (or equivalently, the determinant of P). This modified
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problem also needs an additional constraint informing that the ellipsoid V(z) = 1
is located on the border of the sufficient negativity region. This equality constraint
must link the matrix P to the parameters «;. If an appropriate choice of y(x) is
done, this can result in a simple problem to be solved.

The one-step optimization problem, despite being a very general approach to
maximize an ellipsoidal DA with a quadratic Lyapunov function, sometimes, can
be very complex, and even a intractable problem. In that cases, a judicious choice
for the quadratic form representation of V() can be very important to simplify the
problem to be solved. In fact, the heart of the method is the representation of V(m),
and different choices for (2.6) can be exploited to improve the estimate of the DA.
It also must be noted that this one step optimization problem, different from (1.2),
does not have the troublesome of finding false DA because the positivity of V(z)
and the negativity of V(m) are included as constraints in the problem formulation.
Consequently, these sign definiteness conditions are assured to be satisfied if the
problem has a feasible solution. As a final remark, the maximization of DA is still
a nonconvex problem. If a global optimization algorithm is not used, a good choice
for the starting solution P, is fundamental to improve the estimated DA. Davison
and Kurak [2] used an approach that try to diminish the eccentricity of P but
other approaches, like the branch and bound algorithms [7], can be explored to find
the global maximum of the DA. The examples presented in the next section will
illustrate the use of the two optimization problem. Both examples were solved by
utilizing a multishoot approach coupled with a deterministic optimization algorithm.

3. Examples

The objective of this section is to show how the results presented in section 2
can be used. We consider two mathematical dynamical systems. The first one
aims to illustrate the application of the developed methodology to a classical and,
consequently, well studied example. The next one was developed by the authors to
illustrate a situation where the maximization of the negativity region of V(x) may
result in unpractical estimates for the DA. In those situations, it is necessary to
consider the direct DA maximization, as suggested in the previous section.

3.1. Example 1 - Van der Pol oscillator
Consider the classical Van der Pol system (3.1)

v ( i ) = ( (1 s > (3-1)

and the quadratic form
V(z) = 2T Pz = ax? + bxyzy + ca? (3.2)
as the Lyapunov candidate function. Its time derivative is given by

V(x) = brdry + 2ca223 + ba? + (—2a — b+ 2¢)x1m9 + (—b — 2¢)z2. (3.3)



76 Longhi and Secchi

If (3.3) is rewritten as the quadratic form representation

T
x1 x1
Vi(z) = T2 Py, T2 , o (3.4)
Yay — bryxs — 2caiay Yay — bryxg — 2caiay

b+ o c—a—"5b/2 0
where Py, = | c—a—0/2 —b—2c 0 |,
0 0 —1
then, according to Theorem 1, a sufficient region where V(a:) has negative sign is
given by: oy — brixo — QCI% > 0.

Then, it is possible to solve the Optimization Problem 1 to find the matrix P
that maximizes this sign definiteness region, while maintaining the positivity of P
and the negativity of Py, as inequality constraints. After that, the second step must
be to find the minimum of V(z) lying on oy — bx1wa — 2cx3 = 0. The obtained
negativity region and DA solving this two steps approach are shown in (3.5) and
(3.6), respectively. Figure 1 shows these curves and the limit cycle which delimits
the true DA for the Van der Pol system (3.1).

1.053x3 — 1.0008z 125 < 1. (3.5)

V(z) = 2.4227 — 2.372 29 + 1.2523 < 1. (3.6)

Now, it is possible to improve this DA by reformulating the Optimization Prob-
lem 1 to directly maximize the DA. To simplify this task, it will be considered the
following quadratic form representation:

T I
T2 T2
Viz)= 7 Py, a7 ; (3.7)
22 2
Yoy —V(x)rr Yag — V(x)rr
b+kay c—a—0b/2 0 0 0
c—a—>b/2 —b—2c 0 0 0
where Py, = 0 0 —ka  E(1-k) 0
0 0 b1—-k) c2—k) O
0 0 0 0 —k
Then, the solution of the one-step optimization problem
b2
[a,b,¢,k,a1] = min [ac - —} (3.8)
a,b, ek, aq 4

s.t. P>0,Py, <0,07 =1
furnishes the DA given by (3.9).
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V(z) = 2.41527 — 24152125 + 1.20823 < 1 (3.9)

and k = 2.4139. The maximized DA of (3.9) is also shown in Figure 1. Note that
the improvement over (3.6) is very small.

3

x1

Figure 1: The sufficient negativity region of V() (solid line), the estimate of the
DA with a quadratic form for this sufficient negativeness region (dotted line), the
maximized DA with the one-step optimization problem (dashed line), and the limit
cycle delimiting the true DA (dash-dotted line).

3.2. Example 2 - A non hyperbolic one
Consider the dynamical system (3.10) [8]

R A T W A i e R
()= (). o0

This system is non hyperbolic and, consequently, it is not possible to know a
priori if the origin is asymptotically stable using the Lyapunov linearization method.
However, by using the center manifold theory [9] it can be shown its local stability.
To simplify the DA estimation, lets consider the Lyapunov function (3.11).

V(z) = ax? + ba3, (3.11)
whose time derivative is given by

V(z) = —2ax? + (2a + 2b)x3xy — 2ba (3.12)
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which can be rewritten as the quadratic form description (3.13)

X T T
V(x) = 3 Py, 3 : (3.13)
Va1 — xaxy Va1 — xa1y
o1(2a4+2b) —2a 0 0
where Py, = 0 —2b 0 , where the sufficient nega-
0 0 —(2a+2b)

tivity region is clearly given by: a1 — xs > 0.

Maximizing the negativity region of V (z) subject to a,b > 0 and Py, < 0 results
in the following solution: a > 0, b — 04, and a3 — 1. This solution furnishes a DA
given by the line segment: w = {x € R2 : 7y = 0and — 1 < x5 < 1}. Obviously,
this DA has no practical value. So, if, instead of maximizing that negativity region,
it is formulated an optimization problem to directly maximize the DA.:

[a,b,a1] = min [ab] (3.14)
a, b, (651
s.t. a,b,a1 >0, Py, <0
bai —1=0
the following solution can be found: a = 5.33, b = 1.778 and a7 = 0.75.

As the negativity region of V(a:) decreased, this example shows that there is no
direct relation between the size of the negativity region of V(:c) and its correspond-
ing generated DA. Figure 2 shows the estimated DA, the sufficient negativity region
of V(x), and the true DA. This last curve is delimited by the stable manifolds of the
saddle-points (—1,1) and (1,1) [10]. As a final remark, if the optimization prob-
lem (3.14) is rewritten and solved considering the quadratic form representation of
(3.15), where the equality constraint is given by «; = 1, its solution furnishes the
same DA from the former optimization problem (3.14),

Z1 Z1
T1L2 T2T2
V(z) = x3 x3 , (3.15)
3 x%
Yoy —V(z)ry - V(z)x;
kag —2a a+b 0 0 0
a+b —kb 0 0 0
where Py, = 0 0 —ka O 0
0 0 0 —-2b O
0 0 0 0 —k

4. Conclusions

This paper presented a simple sufficient criterion to determine the sign definite-
ness region of multivariable scalar functions. This criterion was explored to choose
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0.5’ ! / \ \ ]
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Figure 2: The sufficient negativity region of V(z) (solid line), the estimate of the

DA with (3.11) as the Lapunov function (dashed line), the true DA (dotted line),
and the stationary points (*).

quadratic Lyapunov functions for nonlinear autonomous systems. This choice was
done by maximizing the sufficient negativity region of V (z) or, preferably, by di-
rectly maximizing the DA. Two illustrative examples were presented to show the
simplicity of the methodology. The main disadvantage of the method is that the
rules for a suitable choice of the quadratic form representation of V(z) were not
developed yet. Despite this last feature, this work could stimulate further inte-
resting results on this subject. Nowadays, our research interest is focused on the
convexification of the optimization problems, or some part of them ([11]), and on
the attainment of systematic rules for chosing the quadratic forms representation
for specific classes of nonlinear systems.

Resumo. Um critério suficiente para determinar regides de sinal definido de
fungbes escalares multivaridveis é apresentado. Este critério é utilizado como uma
retri¢do na formulacido de um problema de otimizag¢ao para maximizar o dominio de
atracao de sistemas ndo-lineares assintoticamente estdveis usando formas quadrati-
cas como fungoes de Lyapunov. Dois exemplos cujas estimativas sdo tao boas quanto
as reportadas na literatura usando métodos mais complexos ilustram a utilidade do
principais resultados.
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