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Abstract. In this work we have proposed the definition of a regularising convex
potential to be used in numerical analysis involving a certain class of constitu-
tive elastoplastic-damage models. All the mathematical aspects discussed here are
based on convex analysis, aiming at a variational formulation of the regularising
elastopastic-damage potential and its conjugate potential. It is shown that the
constitutive relations for the considered class of damage models are derived from
those potentials by means of the respective sub-differentials sets. Furthermore, the
potentials are defined in such a way that the complementarity and consistency con-
ditions present in the local form of the damage model are satisfied. The optimality
conditions of the resulting minimisation problem represents, in particular, a linear
complementary problem. The numerical integration of the latter set of equations
is exact if the time step does not includes damage followed by unloading.

1. Introduction

If one considers an ideal elastoplastic-damage material, in agreement with the re-
sults found in [1] and [9], whose constitutive response is composed by an initial
linear elastoplastic regime followed by a linear softening domain, the associated po-
tential is non-convex, since it is formed by the addition of a convex part related
to the elastoplastic response plus a concave part corresponding to the linear softe-
ning regime. Such a characteristic implies difficulties because most of the numerical
strategies aiming to verify the constitutive models are based on the minimization of
the potential. In order to recover numerical efficiency of the optimization algorithms
and following [5], this work proposes a regularising convex potential, which allows
to verify the elastoplastic-damage constitutive relations in a step by step procedure.
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The variational formulation of the regularising potential and its conjugate is based
on Convex Analysis Concepts, in [4] and [10]. The use of this name is justified by
the fact that the potential is defined by the difference between a strictly convex
elastoplastic potential and a damage potential which is convex on the damage vari-
able. The optimality conditions for the potential minimization problem verifies the
conditions of the linear softening constitutive model. In section 2 the local form of
the constitutive relations for an ideal material is presented. Section 3 deals with
the rate variational formulation of the same model. In the section 4 the regularising
convex damage potential is presented and its properties are discussed. Section 5
shows the existence of the conjugate (dual) potential. In section 6 a more convenient
form of the potential is written in terms of finite increments of strains and damage
multiplier aiming the numerical treatment. Finally, in section 7 an extension of the
potential to include the non-associative case is suggested.

2. Constitutive Relations in Rates to Elastoplastic-
Damage Material

In what follows, it is assumed that the continuous body occupies a region B in
the Euclidean pointwise space (Hilbert Space with finite dimension), being Γu and
Γs its complementary boundaries where displacements and loads are prescribed
respectively. A regime of small strains is considered and the ideal constitutive
behaviour of the material presents a linear elastoplastic followed by a linear softening
domain. Locally, the damage induces reduction of rigidity and permanent strains do
not occurring. As a general upper bounded a quantity τ ≥ 0 of energy is assumed to
be dissipated in correspondence to the damage processes and the, in accordance to
[6], elastoplastic-damage rigidity E is a function of the fracture work or dissipated
energy τ . The proposed model is related to the pure elastoplastic-damage case. In
order to consider an evolution process, at any point x ∈ B the local form of the
constitutive relations may be expressed in rates, based in [2], [3], [8] and, mainly,
in [1] and [9], as follows:

σ̇ = E(τ)ε̇ + Ė(τ)ε = σ̇e + σ̇d; (2.1)
f(ε, τ) ≤ 0; (2.2)

τ − τ̄ ≤ 0 ⇐⇒ g(α, τ) = −α− (τ − τ̄) ≤ 0 , α ≥ 0; (2.3)
σ̇d = λ̇fε(ε, τ); (2.4)
τ̇ = λ̇r(ε, τ); (2.5)

f ≤ 0, λ̇ ≥ 0, f λ̇ = 0; (2.6)
if f = 0, then ḟ λ̇ = 0, ḟ ≤ 0 . (2.7)

In relations above σ̇d is the relaxed stress rate tensor due to damage effects, the
scalar function f is a criteria for elastoplastic-damage evolution and represents an
upper bound limit for the dissipated energy. The tensor fε(ε, τ) ≥ 0 is considered
to be normal to the surface defined by the evolution criteria f and r(ε, τ) ≥ 0 is
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a scalar function which contains a record of the previous irreversible history. The
tensor fε may be assumed in the non-associative case as h(ε, τ), considered to be
normal to the surface of an elastoplastic-damage potential. The complementary
and consistency conditions (2.6) and (2.7) account for the irreversibility of the
process, respectively. Considering the relation (2.3), a scalar slack variable α ≥ 0 is
introduced meaning the quantity of energy which remains to be dissipated. Thus,
an additional complementary condition may be stated:

gα = 0 with g ≤ 0 and α ≥ 0; (2.8)
ġ = −α̇− τ̇ and ġ ≤ 0 then τ̇ ≤ α̇ ≤ 0. (2.9)

In particular, if ġ = 0 then α̇ = −τ̇ .
The “damage multiplier” follows from the consistency condition (2.7), by consi-

dering the relations (2.2) and (2.5):

ḟ = fε · ε̇ + fτ τ̇ = fε · ε̇− λ̇fτr(ε, τ) = 0. (2.10)

Thus,

λ̇ =
(fε · ε̇)

G
; (2.11)

where G = fτr(ε, τ) ≥ 0 is the elastoplastic-damage modulus, assumed to be pos-
itive. Furthermore, fε · ε̇ ≥ 0 indicates that damage evolution occurs when the
deformation rate appoints to the outside of the elastoplastic domain. By substitu-
tion of (2.11) in (2.4), the relation for σ̇d becomes:

σ̇d = − (fε ⊗ fε)
G

ε̇. (2.12)

In the general case σ̇d is non-symmetric. This fact can be recovered by substitu-
tion of h by f in the relation (2.12). By combining (2.1) and (2.12), the constitutive
relation can be expressed for the associative case as :

[E(τ)− (fε ⊗ fε)
G

]ε̇ if λ̇ ≥ 0. (2.13)

Using the relations (2.1) and (2.11), the fracture work evolution can be expressed
as:

τ̇ = [
(fε · ε̇)

G
]r(ε, τ). (2.14)

Considering (2.8), in particular, ġ = 0 if α̇ = −τ̇ .
Furthermore, it is possible to find a relation between α̇ and −τ̇ , expressed by

λ̇ = ψα̇ with ψ = r−1, (2.15)

where ψ = (fε⊗ε̇)Eτ

‖fε‖2 for the associative case.
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3. Rate Variational Formulation of the Constitu-
tive Model.

In what follows some hypothesis, based in [5], are assumed :

i) Let W∗ and W not empty dual vectorial subspaces in B, containing respec-
tively the rate of stresses and strains tensors. The space B and the subspaces W∗

and W are endowed with norms:

‖x‖B = (
∫

B

x · x dB)
1
2 ; ‖ε̇‖W = (

∫

B

ε̇ · ε̇ dB)
1
2 ; ‖σ̇‖W∗ = (

∫

B

σ̇ · σ̇ dB)
1
2 . (3.1)

Between such spaces a duality product is introduced and defined as:

〈σ̇,ε̇〉 = 〈σ̇,ε̇〉W∗×W =
∫
B

σ̇ · ε̇ dB, (3.2)

with x ∈ B, ε̇ ∈ W and σ̇ ∈ W∗.

ii) In the consistency and complementary relations (2.6) and (2.7), f and λ̇ are
imposed to be scalars. Then, the damage multiplier λ̇ and the damage criteria f
are defined in the dual spaces Λ, Λ∗ in B, respectively, with norms expressed by:

‖λ̇‖Λ =
∫
B
|λ̇| dB; ‖ f‖Λ∗ =

∫
B
|f | dB. (3.3)

Between the spaces Λ and Λ∗, a duality product is introduced and defined as:

〈f ,λ̇〉 = 〈f ,λ̇〉Λ∗×Λ =
∫
B

f λ̇ dB; (3.4)

The following sets are convenient to define:

Λ+
f = {λ̇ ≥ 0/ f λ̇ = 0, ∀x ∈ B}; (3.5)

Λf = {λ̇ ≥ 0, ∀x ∈ B}; (3.6)
Λg = {α̇ ≥ 0, ∀x ∈ B}. (3.7)

The definitions (3.3) until (3.6) could be stablished to include the general case where
f and λ̇ would be vectors.

iii) f = f(ε, τ) is a regular (non-strictly) convex scalar function of the field ε ∈ W
and the scalar τ ∈ <+; fε = fε(ε, τ) is a linear operator of W × <+ in W∗ × <+,
assumed as: iii.1) lower and upper bounded in Λf , i.e., there are constants h0 > 0
and h1 > 0 such that

h0‖λ̇‖Λ ≥ ‖λ̇fε‖W∗ ≥ h1‖λ̇‖Λ, ∀λ ∈ Λf . (3.8)

This property implies ‖σ̇d‖ = ‖λ̇fε‖W∗ 6= 0 and finite. Moreover, the upper bound
also implies that there is only one λ ∈ Λf such that fελ̇ is equal to a prescribed σ̇d.

iii.2) λ̇fε is continuously dependent on ε̇ ∈ W , i.e., for h2 > 0,

| 〈ε̇,λ̇fε〉 |≤ h2‖ε̇‖W‖λ̇‖Λ; ∀λ̇ ∈ Λ, ∀ε̇ ∈ W. (3.9)
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The property (3.9) ensures that the rate of dissipated energy | 〈ε̇,λ̇fε〉 | is finite.
Then the damage is suposed to be a continuous and bounded process.

iv) The elastoplastic modulus tensor E is symmetric and positive definite. Then,
for h3 ≥ 0 and h4 ≥ ‖E‖∞ , the following condition is valid:

h3‖ε̇‖2W ≤ 〈Eε̇,ε̇〉 ≤ h4‖ε̇‖2W; ∀ε̇ ∈ W. (3.10)

v) The elastoplastic-damage modulus G, defined in (2.11), is a non-negative
number, in such a way, for h5 ≥ 0 and h6 ≥ G ,

h5‖λ̇‖2Λ ≤ 〈Gλ̇,λ̇〉 ≤ h6‖λ̇‖2Λ; ∀λ̇ ∈ Λf . (3.11)

For the general elastoplastic-damage model, G would be a semi-positive definite
operator.

vi) For λ ∈ Λ+
f , the complementary and consistency conditions (2.6) and (2.7),

respectively, may be expressed in an equivalent way as:

〈ḟ ,λ̇∗ − λ̇〉 = 〈fε · ε̇− λ̇fτr(ε, τ),λ̇∗ − λ̇〉 ≤ 0; ∀λ̇∗ ∈ Λ+
f . (3.12)

4. A Regularising Convex Potential for the Elasto-
plastic-Damage Model.

Initially, let a potential Φ : W ×Λ+ −→ < be defined as :

Φ(ε̇, λ̇) = 1
2 〈Eε̇,ε̇〉+ 〈−λ̇fε,ε̇〉+ 1

2 〈Gλ̇,λ̇〉. (4.1)

For this potential, the following properties are valid :

Property 4.1 Φ is convex in the variables ε̇ ∈ W and λ̇ ∈ Λ+
f .

Justification: this fact is ensured directly from (3.10) and (3.11), as the operator E
is symmetric, positive definite and the damage modulus G is non-negative.

Property 4.2 Φ is continuum in the variables ε̇ ∈ W and λ̇ ∈ Λ+
f .

Justification: due to (3.8), (3.9), (3.10) and (3.11), Φ is continuously dependent on
the variables ε̇ ∈ W and λ̇ ∈ Λ+

f , then, Φ is continuum on the variables ε̇ ∈ W and
λ̇ ∈ Λ+

f .

Property 4.3 Φ is coercive in the variables ε̇ ∈ W and λ̇ ∈ Λ+
f .

Justification: using the properties found in (3.9), (3.10) and (3.11), it is shown that:

lim
‖ε̇‖−→+∞

Φ(ε̇, λ̇) = +∞ and lim
|λ̇|−→+∞

Φ(ε̇, λ̇) = +∞. (4.2)

Hence, Φ is coercive on the variables ε̇ ∈ W and λ̇ ∈ Λ+
f .
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Proposition 4.1 The potential Φ defined in (4.1) reaches its infimum in W and
Λ+

f , i.e., there is a solution for the following infimum problem,

inf
λ̇∈Λ+

f

inf
ε̇∈W

Φ(ε̇, λ̇) = inf
ε̇∈W

inf
λ̇∈Λ+

f

Φ(ε̇, λ̇). (4.3)

Justification: Due to the convexity, continuity and coerciveness of Φ, justified in
Properties 4.1, 4.2 and 4.3, in the variables ε̇ ∈ W and λ̇ ∈ Λ+

f , with W and
Λ+

f non-empties closed sets, then, according to results found in [4] and [10], Φ is
weakly lower semicontinuous and presents the growth property. As a consequence,
Φ is bounded in the variables ε̇ ∈ W and λ̇ ∈ Λ+

f . Thus there is infimum to Φ in
the sets W and Λ+

f , thus, Φ reaches its infimum in those sets, i. e., there is solution
for the infimum problem (4.3).

Observation: The infimum form that appears by side right in the expression
(4.3), where the ε̇ follows from a given λ̇ , is not usual to analyse the engineering
structural problem.

Proposition 4.2 If Φ admit infimum in W and Λ+
f , then Φ is lower semicontin-

uous (l.s.c) in W and Λ+
f .

Justification: Due to Proposition 4.1, there are ε̇∗ ∈ W and λ̇∗ ∈ Λ+
f be, assumed

as infimum for Φ. Then, Φ is l.s.c. in ε̇∗ ∈ W and in λ̇∗ ∈ Λ+
f so, to n −→ +∞:

lim
ε̇n−→ε̇∗

[ inf
ε̇n∈W

inf
λ̇∈Λ+

f

Φ(ε̇n, λ̇)] ≥ Φ(ε̇∗, λ̇∗)

and
lim

λ̇n−→λ̇∗
[ inf
λ̇n∈Λ+

f

inf
ε̇∈W

Φ(ε̇, λ̇n)] ≥ Φ(ε̇∗, λ̇∗).

Thus, Φ is l.s.c in W and Λ+
f .

Proposition 4.3 The potential Φ is proper in the variables ε̇ ∈ W and λ̇ ∈ Λ+
f .

Justification: Φ is proper in the variable ε̇ ∈ W and in λ̇ ∈ Λ+
f so, assuming

ε̇∗ ∈ W and λ̇∗ ∈ Λ+
f as infimums, respectively, in W and Λ+

f , due to (3.9) and the
Proposition 4.1:

Φ(ε̇, λ̇) ≥ Φ(ε̇∗, λ̇∗) =
1
2
〈Eε̇,ε̇〉+ 〈−λ̇fε,ε̇〉+

1
2
〈Gλ̇,λ̇〉 ≥ −∞.

Thus, Φ is proper in the variable ε̇ ∈ W and in λ̇ ∈ Λ+
f .

Proposition 4.4 The potential Φ is differentiable in the variables ε̇ ∈ W and
λ̇ ∈ Λ+

f .
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Justification: by using the total differential absolute value with relation to the
variables ε̇ ∈ W and λ̇ ∈ Λ+

f and considering ε̇∗ ∈ W and λ̇∗ ∈ Λ+
f such that

ε̇∗ −→ ε̇ and λ̇∗ −→ λ̇, then, due to (3.9), (3.10) and (3.11):

|Φ(ε̇∗, λ̇∗)−Φ(ε̇, λ̇)−〈Eε̇,ε̇∗ − ε̇〉− 〈−λ̇fε,ε̇∗ − ε̇〉− 〈−(λ̇∗ − λ̇)fε,ε̇〉− 〈Gλ̇,λ̇∗ − λ̇〉|

≤ 1
2
h3‖ε̇ ∗ −ε̇‖2B + h2‖ε̇∗ − ε̇‖B‖λ̇∗ − λ̇‖B +

1
2
h6‖λ̇∗ − λ̇‖2B.

The latter condition implies that Φ is differentiable for ε̇∗ −→ ε̇ and λ̇∗ −→ λ̇.
Thus, Φ is differentiable in the variables ε̇ ∈ W and λ̇ ∈ Λ+

f .

Proposition 4.5 If the potential Φ is convex, l.s.c., proper and differentiable in the
variable λ̇ ∈ Λ+

f , then the consistency conditions of the elastoplastic-damage model,
included in (3.12) are satisfied.

Justification: Since that Φ is convex, l.s.c., proper and differentiable in the variable
λ̇∗ ∈ Λ+

f , then there is λ̇∗ ∈ Λ+
f , assumed as infimum to Φ in Λ+

f , satisfying the
optimality conditions:

〈∇Φ(ε̇, λ̇∗),λ̇∗ − λ̇〉 ≥ 0; ∀λ̇∗ ∈ Λ+
f

⇐⇒ 〈fε · ε̇− λ̇∗fτr(ε, τ),λ̇∗ − λ̇〉 ≤ 0; ∀λ̇∗ ∈ Λ+
f ; (4.4)

which is equivalent to consistency conditions (3.12) for the elastoplastic-damage
model.

5. Existence of the Conjugate Potential Φ∗

Since Φ, written in the variable ε̇ ∈ W, for some λ̇ ∈ Λ+
f , is a convex potential,

l.s.c., proper, defined in a non-empty set W , there is a conjugated potential Φ∗ :
W∗ ×Λ+

f −→ <, verifying the following condition:

Φ∗(σ̇, λ̇∗) = sup
ε̇∈W

{〈σ̇,ε̇〉 − Φ(ε̇, λ̇∗)}; ∀σ̇ ∈ W∗. (5.1)

This is in agreement with the results found in [4] and [10] , in the hypothesis of
W∗ to be non-empty set.

For Φ∗(σ̇, λ̇∗) < ∞, there are sub-differential sets ∂εΦ(ε̇, λ̇∗) and ∂σΦ∗(σ̇, λ̇∗),
which are closed and non-empty, such that the following relations of duality may
be established:

σ̇ ∈ ∂εΦ(ε̇, λ̇∗) ⇐⇒ ε̇ ∈ ∂σΦ∗(σ̇, λ̇∗), (5.2)

where, to λ̇∗ ∈ Λ+
f :

∂εΦ(ε̇, λ̇∗) = {γ∗ ∈ W∗: Φ(ε̇∗, λ̇∗)−Φ(ε̇, λ̇∗) ≥ 〈ε̇∗ − ε̇,γ∗〉, ∀ε̇∗ ∈ W}. (5.3)
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Analogously, it is defined the sub-differential ∂σΦ∗(σ̇, λ̇∗).
Since Φ is differentiable in ε̇∗ ∈ W, then σ̇ is uniquely determined by ∂εΦ(ε̇, λ̇∗).
Hence,

σ̇ = ∇εΦ(ε̇, λ̇∗) = Eε̇− λ̇∗fε = σ̇e + σ̇d. (5.4)

Thus, the following duality relation is valid:

σ̇ = ∇εΦ(ε̇, λ̇∗) ⇐⇒ ε̇ ∈ ∂σΦ∗(σ̇, λ̇∗). (5.5)

The relation ε̇ = ∇σΦ∗(σ̇, λ̇∗) is not verified ∀λ̇ ∈ Λ+
f . In fact, it may exist ε̇1

and ε̇2 belonging to ∂σΦ∗(σ̇, λ̇∗) and correlated to one unique σ̇ ∈ W∗.
Hence, Φ∗ is not always differentiable in σ̇ ∈ W∗. Making use of (5.5) and of

the result found in [4] and [10], the following relation is true for the potentials Φ∗

and Φ:

Φ∗(σ̇, λ̇∗) + Φ(ε̇, λ̇∗) = 〈σ̇,ε̇〉 ⇔ σ̇ ∈ ∂εΦ(ε̇, λ̇∗) and ε̇ ∈ ∂σΦ∗(σ̇, λ̇∗).

In what follows, the incremental variational form of the model is presented,
leading to a numerical treatment to the elastoplastic-damage model.

6. Incremental Variational Form.

The restrictive condition λ̇ ∈ Λ+
f can be relaxed if one considers an indicator func-

tion IΛ+
f

defined as :

IΛ+
f

=
{

0 if λ̇ ∈ Λ+
f

+∞ if λ̇ ∈ Λf −Λ+
f .

(6.1)

The indicator may be introduced into the model by means of the following
asymptotic approximation :

IΛ+
f

= 〈(−1
δ

)f ,λ̇〉
Λ∗×Λ

= 〈(−1
δ

)f ,λ̇〉 = (
−1
δ

)
∫

B

f · λ̇dB with δ −→ 0+. (6.2)

Thus, by subtraction of IΛ+
f

defined in (6.1) in the equation (4.1) and considering

the approximation (6.2), for λ̇ ∈ Λf , the potential defined becomes:

Φδ(ε̇, λ̇) =
1
2
〈Eε̇,ε̇〉+ 〈−λ̇fε,ε̇〉+

1
2
〈Gλ̇,λ̇〉 − 〈(−1

δ
)f ,λ̇〉 (6.3)

for all λ̇ ∈ Λf and δ −→ 0+. As δ −→ 0+ then σ̇ ∈ Φδ(ε̇, λ̇) converges to σ̇ ∈ Φ(ε̇, λ̇).
Finally, by substitution of λ̇ = ψα̇ defined in (2.15), one arrives to the equivalent

potential:

Φδ(ε̇, α̇) =
1
2
〈Eε̇,ε̇〉 − 〈ψα̇fε,ε̇〉+

1
2
〈Gψα̇,ψα̇〉+ 〈(1

δ
)f ,ψα̇〉 (6.4)
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for all α̇ ∈ Λg, with δ −→ 0+, and noting that λ̇ ∈ Λf implies α̇ ∈ Λg. An
incremental variational form results from a time discretization, which is expressed
as

4σ = σ̇4t; 4ε = ε̇4t; 4α = α̇4t. (6.5)

By substitution of (6.5) into (6.4), with4α ∈ Λg , the following potential results
as a function of incremental variables:

Φδ(4ε,4α)

= 1
2 〈E4ε,4ε〉 − 〈ψ4αfε,4ε〉+ 1

2 〈Gψ4α,ψ4α〉+ 〈4t( f
δ ),ψ4α〉. (6.6)

In particular, taking δ = 4t, an extended potential results:

Φf (4ε,4α) =
1
2
〈E4ε,4ε〉 − 〈ψ4αfε,4ε〉+

1
2
〈Gψ4α,ψ4α〉+ 〈f ,ψ4α〉. (6.7)

Locally , with4λ ∈ Λf or4α ∈ Λg, considering the potential Φf in the relation
(4.3), the optimality conditions, for that infimum problem, are equivalent to:

[f + fε · 4ε−G4λ] = [f + fε · 4ε−Gψ4α] ≤ 0; (6.8)
[f + fε · 4ε−G4λ] · 4λ = [f + fε · 4ε−Gψ4α] · ψ4α = 0. (6.9)

This fact happens due to local relations (6.8) and (6.9) to be equivalent to
the linear complementarity problem (3.11), which can be solved by mathematical
programming methods. In particular, if f is piecewise linear, an algorithm able to
solve (6.8) gives exact increments 4λ or 4α, which verify f = 0 at a step t +4t .
As a consequence, the constitutive relation is represented in an exact way for any
4t which does not implies damage followed by unloading.

7. Extension to the Non-Associative Case.

The potentials Φ, Φδ and Φf defined in (4.3), (6.3) and (6.7), respectively, may be
defined in order to include the non-associative case. This is done by substitution of
the gradient function fε by tensor h, which is normal to a damage potential surface,
such that σ̇d is redefinite by σ̇d = −λ̇h = ψα̇h.

8. Conclusion

A regularising convex damage potential has been defined. Applying convexity con-
cepts and assuming some properties, the existence of a convex conjugate potential
was proved. Also, it was shown that from the respective sub-differential sets of that
potential it is possible to derive the constitutive relations in rates, including the
complementarity and consistency relations. The incremental form of the relations
were then obtained aiming the numerical treatment of the elastoplastic-damage
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model and outlined a possibility for an exact numerical integration if linear softe-
ning is assumed and the displacement increment does not violate the limit for the
total dissipated energy. The local relations are equivalent to a linear complementa-
rity problem, which can be solved by mathematical programming methods. Besides,
the proposed formulation is efficient to establish kinematical, equilibrium and mixed
principles in the solid mechanics.
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in ”Computational Mechanics, New trends and Applications”, in CD, CIMNE,
1998.

[10] R. T. Rockafellar, “ Convex Analisys”, Princeton University Press, Princeton,
1970.


