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Abstract. Electric newtork equations give rise to interesting mathematical models
that must be faced with efficient numerical optimization techniques. Here, the
classical power flow problem represented by a nonlinear system of equations is
solved by inexact Newton methods in which each step only approximately satisfies
the linear Newton equation. The problem of restoring solution from the prior
one comes when no real solution is possible. In this case, a constrained nonlinear
least squares problem emerges and Newton and Gauss Newton methods for this
formulation are employed.

1. Introduction

The development of methodologies for electric network equations has fundamental
importance in power system analysis, yieding interesting formulations in terms of
nonlinear optimization ([7],[3]).

The power flow problem consists in finding a solution for a system of nonlinear
equations. One of the most widely used methods for solving this problem is the
Newton’s method with some form of factorization of the resulting Jacobian matrices,
although the corresponding linear systems tend to be large and sparse ([5],[8]).
Iterative techniques to the linear systems allow us to obtain approximate solutions to
the Newton equations. This gives rise to the Inexact Newton methods for nonlinear
systems.

When power systems become heavily loaded, there are situations where the
power flow equations have no real solution. The associated problem here is restoring
the solutions of the prior problem. This involves a Constrained Nonlinear Least
Squares Problem (CNLSP) which is more complex than the load flow problem
because the the linear systems are larger than the prior and ill conditioned. In this
case, a combination of nonlinear least squares methods are needed ([4]).
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The objective of this work is to evaluate Newton type methods for electric net-
work equations in these two formulations. These methods involve different ways of
facing the Newton equations for both formulations.

In section 2, we present electric network equations, showing the equations,
variables and technical data. Afterwards, in section 3, we describe and compare
some preconditioning iterative methods for solving the nonsymmetric linear
systems that come from the newtonian linearization of the first problem. In section
4, we present some numerical results of the second problem, solving the system
derived from the CNLSP. Finally, in section 5 we give some concluding remarks.

2. Electric Network Equations

For each bus, say k, in an electric network there are four associated unknowns:
tension node magnitude (Vk), tension node fase angle (θk), active power liquid
injection (Pk) and reactive power liquid injection (Qk). The power flow equations
for nb bus systems (see [7]) are given by:

P cal
i = GiiV

2
i + Vi

∑

k∈Ωi

Vk[Gikcos(θi − θk) + Biksen(θi − θk)],

Qcal
i = −BiiV

2
i + Vi

∑

k∈Ωi

Vk[Giksen(θi − θk)−Bikcos(θi − θk)],

where i = 1, . . . , nb and Ωk are the neighbour buses set at bus k. The terms Gik

and Bik are the entries of the conductance and susceptance matrices respectively.
The Power Flow problem consists of finding the state (V, θ), such that

f(x) =
[

(P law − P cal(V, θ))
(Qlaw −Qcal(V, θ))

]
= 0,

where P law, Qlaw are the given lawsuits of the system. Therefore, one seeks the
solution for a nonlinear system of algebraic equations.

3. Inexact Newton Methods

An alternative to the Newton’s method for solving

f(x) = 0, f : Rn −→ Rn, (3.1)

is to compute an intermediate solution pk of the Newton equation,

J(xk)pk = −f(xk), (3.2)

where J(xk) is the Jacobian matrix at xk. Computing the exact solution of (3.2)
can be expensive if such matrix is large and sparse. Iterative linear algorithms give
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an approximate solution pk giving rise to the Inexact Newton methods [8]. The
iterate xk is updated by xk+1 = xk + pk.

For terminating the iterative solver, the residual vector

rk = J(xk)pk + f(xk)

must satisfy

‖rk‖ ≤ ηk‖f(xk)‖, 0 ≤ ηk < 1, (3.3)

where ηk is the forcing term. The convergence can be made as fast as that of a
sequence of the exact Newton iterations by taking ηk’s to be sufficiently small [8].

Powerful iterative methods can be used to the Inexact Newton methods, and a
good class of them are based on Krylov Subspaces.

3.1. Krylov Subspace Iterative Methods

Consider the linear system
Jp = b, J ∈ Rn×n, (3.4)

which must be seen the same as (3.2): J ≡ J(xk), p ≡ pk and b ≡ −f(xk).
The Krylov Subspace is the following subspace of Rn

Km(J, v) = span{v, Jv, J2v, . . . , Jm−1v}

for some vector v ∈ Rn. The Krylov Subspace methods look for an approximate
solution xm in Km(J, r0) ≡ Km., where r0 = b − Jx0. Different methods are asso-
ciated with the projection-type approaches to find a suitable approximation xm to
the solution p∗ of the system (3.4), which are:

(A) b− Jxm ⊥ Km;

(B) ‖b− Jxm‖ to be minimal over Km;

(C) b− Jxm is orthogonal to some suitable m− dimensional subspace;

(D) ‖x∗ − xm‖ to be minimal over JT Km(JT , r0).

The approaches (A) and (B) lead to the well known Generalized Minimum Re-
sidual (GMRES), that is based on the Arnoldi algorithm ([1],[6]). If in (C) we
select the k− dimensional subspace as Km(JT , r0), we obtain the Quasi-Minimum
Residual (QMR) method, that is based on Lanczos Biorthogonalization algorithm
([2], [10]). Approach (D), which appeared more recently, gives rise to the transpose
free methods, as Conjugate Gradient Squared (CGS) BiConjugate Gradient Stabi-
lized (BiCG-Stab) methods ([10]). For more details see Saad [10], and a classical
reference is Arnoldi [1].

Preconditioning techniques accelerates convergence of iterative methods. The
motivation of preconditioning is to reduce the overall computational effort required
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to solve linear systems of equations by increasing the convergence rate of the under-
lying iterative algorithm. Assuming that the preconditioning matrix M is used in
the left of the original system, this involves solving the preconditioned linear system

M−1Jp = M−1b ⇔ J̃p = b̃.

The choice of the preconditioner is crucial for the convergence process. It should
be sparse, easy to invert and an apprroxiamtion as good as possible for J . In prac-
tice, M−1 is not computed directy, but only triangular systems involving the factors
of M . In the particular method incomplete factorization, a lower triagular matrix
L and an upper triangular matrix U are constructed that are good approximations
of the LU factors of J , are also sparse. In this case, M = LU .

3.2. Numerical Results

The tests were accomplished using MATLAB 6 [9] with a Pentium 600 MHz. For
solving the nonlinear system (3.1) we used the Newton Inexact method with stop
criterion ‖f(x)‖∞ < 10−3, for the nonlinear outer iterations.

The iterative solvers were accelerated by two Incomplete LU factorization (ILU)
preconditioners. ILU(0), with zero level of fill scheme means that no fill-in is allowed
out of the original data structure. In the ILU dropped scheme, the fill-in is discarded
ever that |Llm|, |Ulm| ≤ 0.01

∑n
k=1 |J̄km|, where J̄ is the partial factored form of J .

Two electrical systems with 118 and 340 buses were tested. The first, results in
a 201×201 sparse linear system and the other in a 626×626 system. In Figure 1 the
frame of the systems with nonzero elements (nz) are shown. The picture represents
the pattern of the original Jacobian matrix which becomes more complex as the
dimension of the system increases.
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Figure 1: Matrices frame for 118 and 340 buses systems respectively

Results of the iterative algorithms are shown in Table 1. Each entry represents
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the amount of iteration at each Newton outer step. The CPU time was normalized
for each bus system.

Table 1: Performs of the Methods

Iteration Number at
Method each Newton Step Time(sec)

118 buses 340 buses 118 buses 340 buses

GMRES 1; 10; 14; 14 2; 6; 10; 12; 13; 14 1.13 1.18
CGS 1; 10; 8 1; 4; 9; 9; 11 1 1
BiCG-Stab 1; 7; 12 1; 2; 6; 6; 9;10 1 1.14
QMR 0; 4; 11; 13 2; 4; 10; 14; 13; 15; 17 1 1.12

The difference between the sequence of iterations illustrates the different na-
ture of these methods. Some of them require more matrix-multiplication as well
as preconditioning steps yielding more expensive iterations. Despite that, linear
algorithm had similar behavior for both bus systems, specially for 118 buses. It can
be observed that the preconditioner plays an important role, because in general few
iterations were needed, specially in the beginning.

From the nonlinear point of view, the results correspond to ηk = 0.06 for 118
buses case and ηk = 0.01 for 340 buses case. These were the best choice for ηk and
it means that high values of ‖f(x)‖ dominated the criterion (3.7).

4. Nonlinear Least Square Solution

Sometimes, the nonlinear system (3.1) has no real solution due to the overload of
the electric network. In these cases the following Nonlinear Least Squares Problem
must be solved:

min F (x) = min
1
2
f(x)T f(x) = min

1
2
‖f(x)‖22,

In real problems, it is common that some buses must satisfy the lawsuit exigen-
cies and the problem becomes the Constrained Nonlinear Least Squares Problem
(CNLSP):

Min 1
2‖f(x)‖22

s.t. h(x) = 0 , (4.1)

where the vectorial function h(x) contains the unbalancing (∆P, ∆Q) for the buses
within residual.

Problem (4.1) can be solved by obtaining Newton equations similar to (3.2).
The basic idea is to iteratively solve several symmetric n× n linear systems

∇2L(xk, λk)pk = −∇L(xk, λk), (4.2)
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where L(x, λ) = 1
2f(x)T f(x)− λT h(x). Then

∇2L(x, λ) =
[

J(x)T J(x) + D(x, λ) HT (x)
H(x) 0

]
,

where D(x, λ) =
∑m

i=1 fi(x)∇2fi(x) +
∑k

i=1 λi∇2hi(x), J and H are the Jacobian
matrices of f and h respectively. For each step pk, we find the next approximated
solution by setting xk+1 = xk + αkpk, where αk is the line search parameter, com-
puted by solving

αk = min
α

z(xk + αpk). (4.3)

The function z : Rn −→ R is called the merit function. An alternative to the
Newton method is the Gauss-Newton Method in which the second order information
is dropped, which means D(x, λ) ≡ 0.

4.1. Numerical Results

System (4.2) is also sparse but iterative linear techniques are not quite satisfactory
due to the ill conditioning of the system (see Table 2). Therefore, we use the
ordinary Newton method making use of sparse symmetric factorization.

Table 2: Condition Number of both systems

Condition Number*
Iter 118 Buses (221× 221) 340 buses (832×832)

1 5.0058×106 2.6208×1010

2 1.7007×107 2.7096×1010

3 2.8755×106 2.6300×1010

4 1.0622×107 2.0251×1010

5 1.2733×107 2.7374×1010

6 1.1765×107 2.7796×1010

7 1.2337×107 2.7927×1010

8 1.2384×107

*Approximate condition number ≈ k2(A) = ‖A‖2‖A−1‖2

In nonlinear optimization, line search strategies can be used to improve the
convergence of local methods. Here, we use one based on the augmented Lagrangian
merit function,

z(x, λ) =
1
2
‖f(x)‖22 + λT h(x) +

1
2µ
‖h(x)‖22, (4.4)

where λ is the Lagrange multiplier vector and µ is the penalization parameter (see
[8] for more details).

The best combination is shown in Table 3. Some initial Gauss Newton iterations
with line search at the beginning followed by Newton iterations were the best results.
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Newton’s method, even with line search did not converge, for example, for 340 bus
system. The penalization parameter µ was initilized with one for the merit function
and updated iteratively by: µj+1 ← 0.5µj in (4.4) to obtain enough decrease in (4.3).
About two (j = 1, 2) searches were necessary for each Gauss-Newton iteration and
no search was necessary for Newton’s method. The behavior of the Lagrangian
gradients are shown in Table 3. We can note the linear behavior of the Lagrangian
gradient norm in the sequence of iterations. In theory, this occurs with singular
systems, and Table 2 confirms the ill conditioning of the system.

Table 3: Lagrangian Gradient behavior

118 buses 340 buses
Iter ‖∇L‖∞ Iter. Type* ‖∇L‖∞ Iter. Type*

1 2.4263×102 GN 1.5231×104 GN
2 7.5553×101 GN 2.1948×103 GN
3 2.4974 N 1.2519×102 GN
4 1.8953 N 4.6269 N
5 4.4772×10−1 N 3.2312×10−1 N
6 6.6687×10−2 N 2.2665×10−2 N
7 3.3115×10−3 N 1.3766×10−4 N
8 5.2351×10−6 N

* GN: Gauss Newton; N: Newton

5. Conclusions

Electric network equations can be efficiently solved by Newton-type Methods. The
fundamental contribution of this work was to show that well conditioned power
flow systems can be solved by Inexact Newton methods. When no real solution is
available, the systems are ill conditioned and nonlinear least squares constrained
methodologies can be employed adequately.

For the power flow problem, the systems required good approximation consi-
dering the criterion (3.3), and the preconditioner plays an important role. Despite
the different number of iterations of the iterative methods, results were similar and
good solutions were obtained. The problem of restoring the power flow solution
is more complex and was satisfactorily solved by a combination of Gauss-Newton
and Newton’s method. The linear convergence rate of Newton’s method confirms
the ill conditioning of the systems. In high dimension, both problems become more
complex and more numerical investigations are needed. Iterative algorithms are
adequate for parallel matrix computation and ill conditioned systems must be faced
with special methodologies.

Resumo. As equações da rede elétrica resultam em modelos matemáticos inte-
ressantes que devem ser abordados por técnicas eficientes de otimização numérica.
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Neste trabalho, o problema clássico de fluxo de potência, representado por um sis-
tema de equações não lineares, é resolvido utilizando métodos de Newton inexatos,
os quais em cada passo satisfaz o sistema newtoniano apenas aproximadamente. O
problema de restauração das equações da rede elétrica surge quando as equações de
fluxo não apresentam solução real. Neste caso, um problema de quadrados mı́nimos
com restrição aparece e usamos uma combinação dos métodos de Newton e Gauss
Newton para esta formulação.
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