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Abstract. The objective of this work is to present and discuss a dynamical opti-
mization procedure based on the algorithm of self-consistent parametric inference,
where the movement of one feasible solution to another is implemented in conti-
nuous mode. The approach is based on a generic parametrization of search space
and uses the definition of a model independent metric, which guides progress of
the procedure. One of the principal contributions of the proposed method is, if a
solution is found it is optimal for the parametrization considered. This feature is
guaranteed and proven by self consistency.

1. Introduction

Usually, solving procedures in non-trivial nonlinear optimization problems, such
as resource allocation, scheduling and storage among others, are classified as NP-
hard problems. In order to render those challenges more tractable, from the last
decade onwards, approaches based on linear and integer programming have been
successively replaced by contemporary heuristics techniques as for instance simu-
lated annealing, genetic algorithms and tabu search [1, 2]. Typically the structure
of those problems show complex and highly non-linear interrelations between its
descriptors so that a traditional analytic approach is limited by always necessary
approximations involved and by restrictions to non-stochastic quantities.

The scope of the present work is to discuss a heuristic technique, that permits an
analytic description which may have stochastic character and additionally is reason-
ably free of inherent model assumptions, i.e. has got a generic character, except for
the necessary parametrization. As will be shown in section 4., the parametrization
is strongly related to the model variables and in this sense belongs to the consis-
tent system description rather than to the employed optimization procedure. The
obtained functional representation permits a global analysis in continuous space
search as lined out in detail in [3]. This type of approach gains importance once
a rigorous proof for the optimal or close to optimal solution is of need, which is
especially of interest in cases where heuristic knowledge or experience is vague, and
decisions may be based on hypothesis testing only. Note, that the present method
breaks with a widely accepted view, that analyticity and stochastic features are
hardly to be implemented in one unique procedure [4].
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2. The master equation

Without restrictions, a variational or differential problem may always be cast into
integral form especially once constraints or boundary conditions are present [5],
which defines the starting point for the proposed self consistency treatment. Let
{Ti} be a set of decision variables and t an independent variable. The variable
interrelation is then defined by a set of differential equations

∂Ti

∂t
=

∑
α

∏

i

ciαTαi
i , (2.1)

where ciα are coefficients to be determined by optimization and α ∈ IRN a multi-
index. To justify this conjecture, it is a well established experience in dynamical
programming that in general problem solvers are more likely to be defined via
self consistent equations [6, 7], that is, the solution itself affects its local behavior.
Equation (2.1) defines a network like structure with weight factors ciα at each vertex.
Upon integration and summing all equations involved yields the master equation

Ti = T
(ini)
i +

∫ τ

τ0

f({Ti}|t) dt . (2.2)

The above equation is manifestly exact. However, in probably almost all cases
of interest there is lack of an analytical solution for Ti, which is the main issue
of the present work. The integral plays the role of an “objective function” with
the decision variables setup in a self consistent fashion. We then want to obtain
estimates of the unknown parameters ciα, hence our question about the correlation
between the trial function and the true function is put in terms of the model – well
established as parametric inference, with {ciα} to be determined by measuring self
consistency of the underlying parameter approach.

3. The self consistency approach

Our reasoning for establishing the self consistency approach is as follows: On substi-
tution of Ti by the parametrization Ti({ciα}|t), the integral kernel (i.e. formalized
heuristics) f({Ti}|t)) may be interpreted as a “functional sample” of infinite size
(τ − τ0)/dt, with a distribution of {ciα}s, whose function to be determined to a
reasonable approximation is Ti({ciα}|τ), as defined above. To be more specific, the
kernel f composes the solution (left hand side of (2.2)) as a continuous sequence
of f(Ti)s at each coordinate point t ∈ [τ0, τ ], with the set of {ciα} to be adjusted
at each t to establish point-wise equality of the equation. In order to apply para-
metric inference techniques, a deviation measure for the “functional sample” must
be defined, i.e. the self consistency measure S. Since the real solution is substituted
by a known trial function a self consistency measure may be constructed, in close
analogy to the Likelihood function [8]. Because of the functional sample being of
infinite size, this function is defined as the limit of a regularized product, which may
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be recognized as the consistency for observing the continuous sequence Ti({ciα}|t)
with t ∈ [τ0, τ ].

S({ciα}|τ) = lim
n→∞

{
n∏

λ=1

D(Ti({ciα}|tλ)

}∆t

= exp
{∫ τ

τ0

lnD dt

}
,

where tλ = (1− λ
n )τ0+ λ

nτ , and ∆t = (τ−τ0)/n, and D a self consistency generator to
measure the inverse of the deviation of the true solution Ti from the parametrization
Ti({ciα}|t) with the following properties:

1. In the limit Ti({ciα}|t) → Ti ∀t ∈ [τ0, τ ], D →∞.

2. If Ti({ciα}|t) 6= Ti ∧ t ∈ [τ0, τ ], D > 0.

In order to obtain an acceptable solution to the problem the function S has to
show a maximum self consistency for the trial function Ti({ciα}|τ), i.e. the set of
parameters must be such that S is a maximum. Assume now that in the range of
interest, S be a well behaved function, i.e. regular, then the above condition is true
if the set of equations {

∂ lnS
∂ciα

= 0
}

(3.1)

has a solution. Equation (3.1) yields then the maximum self consistency estimators
denominated the maximum self consistency parameter set {c̃iα}.

It remains to determine the quality of the ansatz for the self consistency
problem. To this end one has to determine the variance of the consistency parameter
set distribution, which may be done using the proper self consistency function. Re-
calling, that S represents the consistency for reproducing the continuous sequence
Ti({ciα}|τ), one may use S to calculate the distribution for {ciα} and its variance

σ2({ciα}) =
∫

(c̃iα − ciα)2S(Ti({ciα}|τ)) [dt] , (3.2)

with c̃iα the best estimator and [dt] a regularized integral measure [5], which is
understood as a result of the infinite “sample size” (τ − τ0)/dt. Since this result
is hardly obtainable even using numerical methods one may instead calculate the
inverse of second-order partial derivative matrix

Jij = − ∂2 lnS
∂ciα∂cjα

, (3.3)

where the diagonal elements are related to σ2 via

σ2
i ({c̃iα}) ≈

(J−1
)
ii

, (3.4)

a relation proved by Cramér and Rao [9]. So far only the formal procedure of how
to solve for the unknown parameters was discussed, the next section is dedicated
to the task of transforming the master equation into the generator D according to
definition (4.2).
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4. The self consistency generator

It is now in order to generate an explicit self consistency measure from eq. (2.2).
Recalling that the self consistency function must be well behaved, D must be positive
definite and for almost all cases will be finite. An obvious construction, nevertheless
not the only alternative, is making use of the 2n-th moment M2n, where n ≥ 1 is
to be determined by convenience. For instance, in some cases it may be useful to
take the limit n → ∞ to obtain a critical boundary constraint on the parameter
domain

M2n =
∫ τ

τ0

(
∂Ti({ciα}|t)

∂t
− f(Ti({ciα}|t))

)2n

dt . (4.1)

Note that, for n = 1 and ciα → c̃iα, M2n is equal to the total variance σ2. We
define the distribution as a Gaussian expression, using the second moment and the
variance,

D({ciα}|τ) =
1

n
√

2πσ
exp

{
− M2n

2nσ2n

}
, (4.2)

which complies with the characteristics of the desired self consistency measure.
So far we elaborated the principal part of the procedure containing all necessary
information to apply the method to an optimization problem. However, for an
explicit application to already understood problems of operational research, we
refer to a subsequent work (in preparation). In the following section we sketch out
the algorithm structure which embeds the process of parameter estimation shown
in previous sections and the logistics that will lead to a progressive improvement of
the solution.

5. The algorithm

Having elaborated the formal prerequisites it is now in order to design the algorithm,
which is to assign specific values to the variables and solve the (in general) non-linear
eigenvalue problem for the eigenvector (objective function) Ti with corresponding
eigenvalue 1 in the parameter hyperspace. The solving procedure then reduces the
initial manifold of dimension (n+1) to a trajectory, where n denotes the dimension of
the parameter space and “1” is due to the trajectory variable, respectively. The use
of a manifold rather than approaches adopted in algorithms of the linear and non-
linear type, discrete dynamical optimization, graph-theory or game theory based
methods, combinatorial algorithms and hybrid methods is justified by the objective
of developing a continuous space approximation method instead of a discrete one
as the ones cited above (see for example [10, 11, 12, 13, 14, 15, 16, 17]).

Let g({ciα}|t) be a constraint with existing integrable differential form

dg({ciα}|t) = 0, ∀t ∈ [τ0, τ ] ,

then g({ciα}|t) is called a holonomic constraint. Any system which is subject to one
or more holonomic constraints is called a holonomic system, otherwise it is called a
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non-holonomic system. Holonomic constraints by virtue may be included into the
integral equation (2.2) making use of the Lagrange multiplier method [19]. Note,
that non-holonomic constraints of the problem are typically present as inequalities.

It is the task of the solving procedure to decode the local information with the
objective to derive global properties of a system under consideration. Lets suppose
that a problem is setup by an integral equation of the type (2.2) with given kernel
f and an initial boundary condition. Then there may or may not exist a solution
to the specified problem, which will turn out as a result of the self consistency test
eq. (3.1). The respective flow chart diagram of the procedure is shown in figure
1. Given an initial condition, if there exists a formal solution to the problem then,
according to the theorem of Picard and Lindelöf [18], there exists a unique solution
to the problem. Since in a bounded domain every compact solution which is not
constant has a finite number of extremal points, it is guaranteed that the global
optimum may be found. Whenever there appears the case of a degeneracy, i.e. the
existence of more than one solution with equivalent optima, then the problem is
to be considered as not correctly defined (for instance, because of an insufficient
definition of constraints).

A mathematical model implemented as an integral equation (2.2) is said to be
correctly defined if the model complies with the following characteristics:

1. There exists a unique solution.

2. Small variations of the boundary conditions lead to small variations of the
solution.

3. The solution Ti exists for all τ0 ≤ t ≤ τ and tends to a maximum for t → τ .

Note, that item 2 is necessary in order to justify that the obtained approximate
solution is close to the real one and does not behave chaotically. However, any
specific case has to show what is to be understood as “small variation”. In addition
to the correctness hypotheses, in the present approach it is essential that the validity
region V := {({ciα}|t)|∀ciα“allowed”∧t ∈ [τ0, t]} ⊂ H is a true subset of the domain
H where the correctness definition of the problem holds. The optimum Ti({ciα}|τ)
is supposed to truly lie in the domain and not on the boundary, whereas fragments of
the evolution trajectory may cross “forbidden regions” by non-holonomic constraints
(i.e. inequalities), which indicates the necessity of a temporary parameter constraint
relaxation in order to obtain the desired solution (optimum). Note, that non-
holonomic constraints may be useful to restrict the parameter domain right from
the beginning, in more complex cases, however, it may be more convenient or even
manageable at all to restrict the parameter space in a posterior analysis only (see
Figure 1).

6. Conclusions

A self-consistency approach for simulating an abstract dynamical optimization sce-
nario has been discussed based on a parametric inference techniques. The model
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has been setup, using pseudo-analytic and local relations which result in a set of
first order differential equations. We indicated how to construct the self-consistency
function and determine the best estimate parameter set for the problem cast into
integral form. Instead of using inference techniques in its original sense, i.e. op-
timizing trial functions to experimental data, the latter are substituted by a self-
consistent equation – the master equation – for the objective function (eq. 2.2). As
a main achievement of the present approach we consider the continuous extension of
the method to functional samples, which opens up the possibility to apply this kind
of approach as a learning procedure for dynamical optimization scenarios, where
the relations of parameters, types of local variable dependencies with optimization
policies may be explored.

The Self-consistent Parametric Inference algorithm (SPI) is guaranteed to find
the solution, if there exists one, and otherwise yields the proof that the problem
is insolvable while either based on the proposed parametrization or on the imple-
mented constraints and random number limits. Even after solving the procedure
only once, the underlying parametrization may be analyzed for its significance, pa-
rameters with almost no influence are indicated as such and may be eliminated in
a subsequent post-analysis, which is learning from the previous solution. From the
self-consistency measure it is evident, that there is no need for a systematic search
through the entire parameter space in order to find the extremal solution, as is usu-
ally the case for search algorithms, once the proof of optimality is needed. However,
those may be able to find a solution quickly if there are many possible solutions,
but according to our experience things get more difficult if there are few solutions,
and additionally leave the question open whether a problem has a solution at all
or whether the solution is optimal. The present method does not lack from these
features, i.e. a genuine proof for the optimum is obtained. For simulation purposes
the present procedure has proven to be a valid tool in order to explore models,
which may further be classified according to their usefulness or even applicability.
We believe, but leave this for a future investigation, that visualizing the parameter
hyperspace may especially help modelling scenarios where changes in the original
problem have to be taken into account, due to a necessity of problem redefinition.

Although the SPI method has been tested against Tabu Search implementations
in some practical applications, more simulation experience, especially in competition
with different algorithms, have to be performed in order to prepare the method as
an automated and reliable tool, which may be used not only in simulations but
in a variety of practical applications as well. A further topic to be investigated in
more detail is the implication of the analyticity of the approach, which by the same
formalism permits classical deterministic as well as stochastic descriptions, while
performing the neighborhood search. Thus, this feature breaks with the commonly
accepted paradigm that analytical and stochastic approaches in one and the same
procedure are not compatible.

Resumo. O objetivo deste trabalho é apresentar e discutir um procedimento
dinâmico de otimização, baseado no algoritmo de inferência paramétrica autoconsis-
tente, em que os movimentos de uma solução viável para outra são implementados
no modo cont́ınuo. Esta abordagem é baseada em uma parametrização genérica do
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Figure 1: The flow chart diagram of the Selfconsistent Parametric Inference algo-
rithm (SPI).
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espaço de pesquisa e utiliza a definição de uma métrica independente de qualquer
modelo que guiará o desenvolvimento deste procedimento. Uma das principais con-
tribuições do método aqui proposto é que, encontrada uma solução, esta é ótima
dada a parametrização do modelo considerada. Isto é garantido e provado pela
autoconsistência.
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Combinatórias de Agrupamentos”, Ph.D Thesis, pp. 16-34, Instituto Nacional
de Pesquisas Espaciais, São José dos Campos, SP, Brazil, 1998.
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