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Abstract. In this work, we consider a singular boundary value problem for a
nonlinear second-order differential equation of the form

g′′(u) = ug(u)q/q, (0.1)

where 0 < u < 1 and q is a known parameter, q < 0. We search for a positive
solution of (0.1) which satisfies the boundary conditions

g′(0) = 0, (0.2)

lim
u→1−

g(u) = lim
u→1−

(1− u)g′(u) = 0. (0.3)

We analyse the asymptotic properties of the solution of (0.1)-(0.3) near the sin-
gularity, depending on the value of q. We show the existence of a one-parameter
family of solutions of equation (0.1) which satisfy the boundary condition (0.3) and
obtain convergent or asymptotic expansions of these solutions.

1. Introduction

Let us consider the following nonlinear second-order ordinary differential equation:

g′′(u) = ug(u)q/q, (1.1)

where q < 0 is a known parameter. We shall search for a positive solution of (1.1)
which satisfies the boundary conditions:

g′(0) = 0, (1.2)

lim
u→1−

g(u) = lim
u→1−

(1− u)g′(u) = 0. (1.3)
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This problem arises in the study of boundary layer equations for the stationary
incompressible flow of a fluid over a semi-infinite flat plane . We assume that the
fluid satisfies a power law, that is a relation of the type:

τxy = k

(
∂u

∂y

)n

, (1.4)

where τxy is the shear stress, u is the velocity, x, y are the coordinates on the plane.
Particular cases of such fluids are the newtonian fluids (n = 1), the pseudoplastic
fluids (n < 1) and dilatant fluids (n > 1). Under certain conditions, the equation
of one of the components of the shear stress may be reduced to the form (1.1), with
q = −1/n (see [11] and [13] ).

The existence and uniqueness of solution of the problem (1.1)-(1.2) -(1.3) were
proved in [13]. Numerical methods for the approximation of the solution were
proposed in [11], [9] and [10]. However, a detailed analysis of the behavior of the
solutions near the singularity at u = 1 was not provided in those works. In [4] this
and other singular boundary value problems for Emden-Fowler type equations were
analysed. The main purpose of the present paper is to study the degeneracy of the
equation (1.1) when u → 1− as the solution satisfies the boundary condition (1.3),
for different values of q < 0.

By expanding the one-parametric set of solutions of the singular Cauchy prob-
lem (1.1),(1.3) in convergent or asymptotic series we have been able to solve the
boundary value problem (1.1)-(1.2) -(1.3) by the shooting method, that is, the pa-
rameter of the set of solutions was chosen from the condition that the solution must
satisfy (1.2) at u = 0.

In the second section we shall derive the asymptotic and convergent expansions
of the solutions near the singularity, using known results about the singular Cauchy
problems (see [5]), smooth manifolds and Lyapunov series (see [6]-[8],[12] and ref-
erences there).

In the third section we present some numerical results and discuss the properties
of the solutions. Finally, in section 4 we present the main conclusions of this work.

2. Convergent and Asymptotic Expansions
First of all, let us note the following remarkable fact (see [9] and [10]): when q = −5,
problem (1.1)-(1.2)-(1.3) has the exact solution

g(u) = 10−1/6(1− u3)1/3. (2.1)

As we shall see, the asymptotic behavior of the solutions of (1.1)-(1.2) -(1.3)
near the singularity depends on the value of q. Therefore, we shall consider two
cases: q < −1, q 6= −3 and −1 < q < 0. Moreover, we shall consider separately the
special cases q = −3 and q = −1.
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2.1. The Case q < −1

We shall look for a solution of the singular Cauchy problem (1.1),(1.3) in the neigh-
borhood of u = 1 in the form

g(u) = C(1− u)k[1 + o(1)]; g′(u) = −kC(1− u)k−1[1 + o(1)];

g′′(u) = k(k − 1)C(1− u)k−2[1 + o(1)], u → 1−.

(2.2)

From (1.1) and (1.3) it follows that

lim
u→1−

[
g′′(u)g−q(u)

]
= 1/q < 0. (2.3)

By substituting (2.2) into (2.3) we obtain

lim
u→1−

k(k − 1)C1−q(1− u)k−2−kq = 1/q < 0, (2.4)

and therefore

k = 2
1−q > 0, k − 1 = 1+q

1−q < 0, k(k − 1) = 2(1+q)
(1−q)2 < 0,

C =
[

(1−q)2

2q(1+q)

]1/(1−q)

> 0.
(2.5)

Let us perform in (1.1) the following change of variable:

g(u) = C(1− u)k [1 + y(u)] , (2.6)

where k and C are defined in (2.5). In the new variable, the singular Cauchy
problem (1.1),(1.3) may be written as

(1− u)2y′′ − 41−u
1−q y′− 2(1+q)

(1−q)2 ((1 + y)q − 1−y−(1− u)(1+ y)q) = 0, 0<u<1, (2.7)

limu→1− y(u) = limu→1−(1− u)y′(u) = 0. (2.8)

For (2.7), u = 1 is a regular singular point. For solutions that satisfy the conditions
(2.8), the leading linear homogeneous terms in (2.7) are

(1− u)2y′′ − 4(1− u)y′/(1− q) +
2(1 + q)
1− q

y = 0, u ≈ 1−. (2.9)

The characteristic exponents of this equation at u = 1 have opposite signs:

λ1 = −1, λ2 = −2
1 + q

1− q
> 0. (2.10)

Note that 0 < λ2 < 1 when −1 > q > −3 and 1 < λ2 < 2 when q < −3. Note also
that in the special case q = −3 , we have λ2 = 1 and λ2 − λ1 = 2 is an integer.
In each of these cases, problem (2.7)-(2.8) has a one-parameter family of solutions.
Let us find these families.
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Let us first consider the case q 6= −3. First, let us note that problem (2.7)-(2.8)
has a particular solution ypar(u) which is holomorphic at u = 1:

ypar(u) =
∞∑

k=1

yk(1− u)k, |1− u| ≤ δ, δ > 0, (2.11)

where the coefficients yk can be determined by formal substitution of (2.11) into
(2.7); in particular

y1 = − 1 + q

(1− q)(3 + q)
. (2.12)

The one-parameter family of solutions to (2.7) that yields ypar(u) when a = 0 may
be represented in the form

y(u, a) = y1(1− u) + O
(
(1− u)2

)
+ a(1− u)λ2 [1 + o(1)], u → 1−, (2.13)

where a is a parameter, λ2 and y1 are defined by (2.10) and (2.12),respectively. As
a result, we have a convergent series written in its general form as

y(u, a) = ypar(u) + a(1− u)λ2 [1 + a1(1− u) + a2(1− u)2 + . . .]+
a2(1− u)2λ2 [b0 + b1(1− u) + b2(1− u)2 + . . .] + . . . , |1− u| ≤ ∆(a). (2.14)

Here ∆(a) is a certain positive number. In summary, we have the following propo-
sition.

Proposition 1. For any fixed q, such that q < −1 and q 6= −3, the singular
Cauchy problem (1.1),(1.3) has a one-parameter family of solutions g(u, a) that can
be represented as

g(u, a) =
[

(1−q)2

2q(1+q)

] 1
(1−q)

(1− u)
2

(1−q)

×
{

1− (1+q)
(1−q)(3+q) (1− u) + a(1− u)

−2(1+q)
(1−q) + O

(
(1− u)1+µ

)}
, u → 1−,

(2.15)

where a is a parameter and µ = min(1, −2(1+q)
(1−q) ). For solutions of this family, g′(u, a)

and g′′(u, a) are not bounded as u → 1−. The general form of the expansion (whose
convergence radius is ∆(a) > 0), is given by (2.14) ,(2.6) and (2.5).

To solve boundary value problem (1.1)-(1.2)-(1.3), one must adjust the parame-
ter a in (2.15), so as to satisfy condition (1.3) at the left endpoint. It is technically
more convenient to solve problem (2.7)- (2.8) by adjusting a as imposed by the
condition

y′(0)− 2
1− q

(1 + y(0)) = 0, (2.16)

which is obtained by substituting (2.6) into (1.2). Then we use (2.6) to compute
g(u), with C and k defined by (2.5). One should change to the independent variable
v = (1− u)1/(1−q) to transform (2.7)-(2.8) into the problem

v2ÿ +(4+ q)vẏ− 2(1+ q)
[
(1 + y)2 − 1− y − v1−q(1 + y)q

]
= 0, 0 < v < 1, (2.17)



Approximation of a Nonlinear Boundary-Value Problem 145

lim
v→0+

y(v) = lim
v→0+

vẏ(v) = 0, (2.18)

ẏ(1) + 2(1 + y(1)) = 0, (2.19)

where ẏ = dy
dv . Then, to obtain a system of two first-order ODEs, one should

introduce z1 = y(v) and z2 = vy(v).
It is easy to verify that the exact solution to (1.1) given by (2.1) for q =

−5 is identical to gpar(u) = (9/10)1/6(1 − u)1/3 (1 + ypar(u)) , where ypar(u) =(
u2+u+1

3

)1/3

− 1. The series expansion of this function is given by (2.15) with
a = 0.

2.2. The Case q = −3

Consider the case q = −3. Here, k = 1/2 and problem (2.7)-(2.8) is written as

(1−u)2y′′− (1− u)y′+
(
(1 + y)−3−1−y−(1− u)(1+y)−3

)
/4= 0, 0 <u<1, (2.20)

limu→1− y(u) = limu→1−(1− u)y′(u) = 0. (2.21)

Since, in this case, we have λ1 = −1, λ2 = 1 (see (2.10)), we search for a one-
parameter family of solutions to this problem in the form

y(u, a) = a(1− u) (1 + b1(1− u) + . . .) + (1− u) ln(1− u) (c0 + c1(1− u) + . . .)
+(1− u)2 ln2(1− u) (d0 + d1(1− u) + . . .) + . . . (2.22)

where a is a parameter and the coefficients bj ,cj ,dj ,. . . generally depend on a. These
coefficients may be computed by formally substituting (2.22) into (2.20). From (2.6)
and (2.22) we then obtain the following result (see [12], [4]-[8] and references there).

Proposition 2. When q = −3, the singular Cauchy problem (1.1),(1.3) has a
one-parameter family of solutions g(u, a) and the following asymptotic expansion is
valid

g(u, a) =
(

4
3

) 1
4
√

1− u
{

1− 1
8 (1− u) ln(1− u) + a(1− u)− (1−u)2 ln2(1−u)

128

−(1− u)2 ln(1− u)(a
8 + 1

96 ) + (1− u)2( 11
576 − a

12 − a2

2 ) + o
(
(1− u)2

)}
, u → 1−,

(2.23)
where a is a parameter. The general form of the expansion is given by (2.22), (2.6)
and (2.5).

When shooting in the parameter a, one should again solve problem (2.17)-(2.18)-
(2.19), with q = −3.

2.3. The Case −1 < q < 0

In the neighborhood of u = 1, the solution to problem (1.1)-(1.2)-(1.3) is sought in
the form

g(u) = C1(1− u) + C2(1− u)k (1 + o(1)) ,
g′(u) = −C1 − kC2(1− u)k−1 (1 + o(1)) ,
g′′(u) = k(k − 1)C2(1− u)k−2 (1 + o(1)) ,

(2.24)
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where C1 > 0 and k > 1. Combining (2.24) with (2.3), we obtain

limu→1− k(k − 1)C2C
−q
1 (1− u)k−2−q

(
1 + C2

C1
(1− u)k−2

)−q

= q−1 < 0, (2.25)

which implies

k = 2 + q > 1, C2C
−q
1 = (q(1 + q)(2 + q))−1

< 0. (2.26)

With C2 = a < 0, the last inequality yields

C1 = (aq(1 + q)(2 + q))1/q
> 0. (2.27)

Next, we define a function y(u) by

g(u) = C1(1− u) + a(1− u)k (1 + y(u)) , (2.28)

where a < 0 is a parameter, k and C1 are defined in (2.26) and (2.27). Then y(u)
satisfies the following singular Cauchy problem

(1− u)2y′′ − 2(2 + q)(1− u)y′ + (2 + q)(1 + q)y
= (2 + q)(1 + q)

[(
1 + a[aq(2 + q)(1 + q)]−1/q(1− u)1+q(1 + y)

)q − 1

− (1− u)
(
1 + a[aq(2 + q)(1 + q)]−1/q(1− u)1+q(1 + y)

)q
]
, 0 < u < 1,

(2.29)

lim
u→1−0

y(u) = lim
u→1−0

(1− u)y′(u) = 0. (2.30)

For each constant a < 0, this problem has a particular solution ypar(u, a) that can
be represented as a convergent series

ypar(u, a) = (1− u)1+q
∞∑

l=0

yl(1− u)l, 0 ≤ 1− u ≤ δ(a), δ(a) > 0, (2.31)

where y0(a) =
a(2 + q) (aq(2 + q)(1 + q))−1/q

2(3 + 2q)
. (2.32)

Let us write the leading linear homogeneous terms in (2.29) for solutions that satisfy
(2.30):

(1− u)2y′′ − 2(2 + q)(1− u)y′ + (2 + q)(1 + q)y = 0, u ≈ 1−. (2.33)

The characteristic exponents of this equation at u = 1 are λ1 = 1 − k = −1 − q <
0, λ2 = −k = −2− q < 0. Then we conclude (e.g. following [5] ) that for each fixed
a < 0 the singular Cauchy problem (2.29)-(2.30) does not have any solution other
than ypar(u, a). In summary, we have the following proposition.

Proposition 3. For any constant q such that −1 < q < 0, the singular Cauchy
problem (1.1), (1.3) has a one-parameter family of solutions that can be represented
as

g(u, a) = (aq(2 + q)(1 + q))1/q (1− u)

+a(1− u)2+q
(
1 + y0(a)(1− u)1+q + O(

(
1− u)2+q

))
, u → 1−,

(2.34)

where a < 0 is a parameter and y0(a) is defined by (2.32). The general form of the
convergent for 0 ≤ 1 − u ≤ δ(a) expansion is defined by (2.31)-(2.32), (2.28) and
(2.26)-(2.27).
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2.4. The Case q = −1

We seek a solution to problem (1.1)-(1.2)-(1.3) in the form

g(u) = C(1− u)
√
− ln(1− u)(1 + o(1)), u → 1−. (2.35)

Combining (2.35) with (2.3), we obtain C =
√

2. (The fact that the solution to prob-
lem (1.1),(1.3) with q = −1 at u → 1− behaves as g(u) =

√
2(1 − u)

√
− ln(1− u)

was stated, for example, in [1],p.171).
Next, we define a new unknown function y(u) by the formula

g(u) =
√

2(1− u)
√
− ln(1− u)(1 + y(u)), u → 1−. (2.36)

From (1.1) and (1.3), we derive the singular Cauchy problem for y(u)

(1−u)2y′′−2(1− u)[1 + 1/(2 ln(1−u))]y′+1/(2 ln(1− u))[1−1/(2 ln(1−u))]y
= 1/(4 ln2(1− u)) + [1/(2 ln(1− u))][(1 + y)−1 − 1− (1− u)(1 + y)−1],(2.37)

limu→1−0 y(u) = limu→1−0(1− u)y′(u) = 0. (2.38)

The difficulty of this problem lies on the fact that the singular point u = 1
of (2.37),(2.38) is not regular and it is difficult to determine a linear ODE that
governs the essential behavior of solutions to problem (2.37)-(2.38). To deal with
this situation, we define a new independent variable

τ =
√
− ln (1− u). (2.39)

Denoting y(u(τ)) again by y(τ), for 0 < τ < ∞, we can rewrite (2.37) as

τ2ÿ+τ ẏ(1−2τ2)−(1+4τ2)y = 1−2τ2[(1+y)−1−1+y−exp(−τ2)(1+y)−1], (2.40)

lim
τ→∞

y(τ) = lim
τ→∞

ẏ(τ)/τ = 0. (2.41)

A particular solution ypar(τ) to problem (2.40),(2.41) is sought ( by neglecting the
term with exp(−τ2)) in the form

ypar(τ) =
b1

τ4
+

b2

τ6
+ . . . + ln τ

( c1

τ2
+

c2

τ4
+ . . .

)
+ ln2 τ(

d1

τ4
+

d2

τ6
+ . . .) + . . . (2.42)

Problem (2.40),(2.41) may be analysed in detail using techniques described in [2],
[3] and [14] . As a result, we find that problem (2.40)-(2.41) has a one-parameter
family of solutions that can be represented as

y(τ, a) = ypar(τ) + a/τ2 + o(1/τ2), τ →∞, (2.43)

where a is a parameter and ypar(τ) has the form (2.42). Seeking an expansion of
this family similar to (2.42) and changing back to the original variable u, we finally
have the following proposition.
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Proposition 4. When q = −1, the singular Cauchy problem (1.1), (1.3) has a
one-parameter family of solutions and the following asymptotic representation is
valid:

g(u, a) =
√

2(1− u)
√
−ln(1− u)

{
1 + ln(−ln(1−u))/4−a

ln(1−u)

− ln2(−ln(1−u))/32+(1/8+a/4)ln(−ln(1−u))−(3/8+a/2+a2/2)
ln2(1−u) + . . .

}
,

(2.44)

where a is a parameter.
It should be noted that the derivation of the representation (2.44) required the

manipulation of very long and complicated algebraic expressions, which was possible
thanks to the help of a program in the well-known language Mathematica [15].

3. Numerical Results
In problem(1.1)-(1.2)-(1.3) the quantity g(0) is an important physical characteristic,
proportional to the drag induced by the plate edge. Table 1 shows the values of a
and g(0) in problem (1.1)- (1.2)-(1.3) with −1 ≤ q < 0 , where a is the parameter
of expansion (2.34), when −1 < q < 0, and (2.44), if q = −1. These expansions
were computed at u = 1− δ where δ = 0.001. In Figure 1, the graphics of g(0) and
a are displayed, as functions of −q.

Note that since expansions (2.15),(2.34) and (2.44) are complicated functions
of the parameter a, a reasonable value of δ should be chosen in such a way that a
change in a will affect g(0). The values displayed in the tables were obtained with
δ = 0.001. Analysing the numerical results obtained with different δ, the optimal
δ for most of the considered values of q seems to be in the range [0.001, 0.01]. If δ
is too small, then the calculation of a may be unstable. This is illustrated by the
following example. For q = −5, when the exact solution is known and corresponds
to a = 0, the following results were obtained:

δ 0.1 0.01 0.001 0.0001
a 0.00048 −0.00012 −0.0026 −0.0536

However, our calculations have shown that this unstability does not affect the
numerical approximation of the solution (small errors arising in the expansions at
u = 1− δ do not grow any further as the Cauchy problem is solved leftwards).

In all the cases where the values of q considered in this study were also considered
in [9], the corresponding values of g(0) are also consistent within four or five digits,
even though the present computational method is simpler as compared with the
previously known ones (see comparisons of different methods in [9],[10]). However,
this is achieved by deriving expansions (2.15),(2.34) and (2.44), which are not so
simple.

All the results presented in this section were obtained in a PC with a Pentium
processor, with the help of programs in Mathematica. These programs used some
standard functions of this language, such as NDSolve, which solves numerically a
given non-singular Cauchy problem.
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Figure 1: The value of g(0) (on the left) and a (on the right) as functions of −q.

−q a g(0)
0.1 −4.96377 1.63171
0.2 −2.78562 0.899837
0.3 −2.14788 0.67857
0.4 −1.88818 0.579558
0.5 −1.78695 0.527754
0.6 −1.78245 0.498813
0.7 −1.87045 0.482512
0.8 −2.1142 0.473849
0.9 −2.86952 0.470073
1.0 −0.267 0.46960

Table 1. Numerical results in the case −1 ≤ q < 0.

4. Concluding Remarks
The purpose of this paper was to obtain additional analytical results for a well-
known problem in fluid mechanics. This problem illustrates the diversity of situ-
ations and complexity of solution behavior characteristic of singular problems for
second-order nonlinear ODEs, like (1.1). These results were also used in the numer-
ical solution of the problem and in graphic illustrations of the propositions stated
here. In the present study we did not intend to optimize the algorithms for the
calculation of the solution to problem. Actually, we have discussed this problem
as an example of the correct formulation of singular problems for ODEs and the
construction of analytical-numerical methods for their investigation.
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Resumo. Neste trabalho, consideramos um problema de valores de fronteira singu-
lar para uma equação diferencial não-linear de segunda ordem da forma (1.1), onde
0 < u < 1 e q é um parâmetro conhecido, q < 0. Procuramos uma solução positiva
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de (1.1) que satisfaça as condições de fronteira (1.2) e (1.3). Analisamos as pro-
priedades assintóticas da solução de (1.1)-(1.3), consoante o valor de q. Provamos
a existência de uma famı́lia uniparamétrica de soluções da equação (1.1) que sa-
tisfazem a condição (1.2) e obtemos desenvolvimentos convergentes ou assintóticos
dessas soluções.
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