Estimativa de Isotermas de Adsorção Gás-Líquido Usando a Abordagem de Problema Inverso

J. LUGON JUNIOR¹, A.J. SILVA NETO², Instituto Politécnico, Universidade do Estado do Rio de Janeiro, Cx.P. 97282, 28601-970 Nova Friburgo, RJ, Brasil.

C.C. SANTANA³, Faculdade de Engenharia Química, Universidade Estadual de Campinas-UNICAMP, Cx.P. 6066, 13081-970 Campinas, SP, Brazil.

Resumo. Neste trabalho é utilizado o método de Levenberg-Marquardt para estimar os coeficientes das isotermas de adsorção em interfaces gás-líquido em colunas de bolhas e espuma. São apresentados os resultados obtidos com o uso de dados simulados da concentração da albumina do soro bovino (BSA).

1. Introdução

Diversas indústrias produzem um volume significativo de efluentes líquidos ricos em material biológico. Estas indústrias podem ser classificadas basicamente em três grupos: (i) processamento de alimentos; (ii) fermentados e destilados; e (iii) indústrias farmacêuticas [1]. Estes produtos devem ser retirados das águas residuais e alguns podem ser aproveitados na preparação de ração animal. Porém, normalmente estes compostos estão diluídos ou dissolvidos em baixas concentrações, o que dificulta seu aproveitamento. Recentemente o mecanismo de adsorção de proteínas em interfaces gás-líquido tem sido objeto de pesquisa, tanto teórica quanto experimental, devido à potencial utilização do fracionamento em colunas de bolhas e espuma como uma alternativa economicamente viável para a recuperação de compostos com atividade superficial a partir de soluções diluídas [2].

O sistema de fracionamento em colunas de bolha e espuma funciona basicamente através da injeção de um gás na base de uma coluna contendo a solução. As bolhas de gás formadas no distribuidor sobem até o topo da coluna e durante este trajeto adsorvem o soluto, que está dissolvido no líquido. Na região de espuma, ou seção de enriquecimento, formada acima da coluna de bolhas, é feita então a extração do material de interesse [3].

Para o melhor entendimento dos processos envolvidos, bem como a passagem da escala de laboratório para a escala industrial, é necessária a determinação das isotermas de adsorção em interfaces gás-líquido empregadas nos modelos matemáticos e

¹lugon@iprj.uerj.br

 $^{^2}$ ajsneto@iprj.uerj.br

 $^{^3}$ santana@feq.unicamp.br

numéricos desenvolvidos para a análise do sistema. Neste trabalho é empregada a abordagem de solução de problema inverso com este objetivo.

A análise de problemas inversos possui inúmeras aplicações relevantes em engenharia e medicina, bem como em outros ramos da ciência. Como exemplos da aplicação de problemas inversos em transferência de calor, citamos a estimativa da intensidade de fontes térmicas com dependência funcional no espaço e ou no tempo, a partir da medida transiente de temperaturas [4-6], e a estimativa da condição inicial de problemas transientes em transferência de calor por condução [7].

Os problemas inversos têm a característica de serem mal-postos [8], e diversas técnicas de solução têm sido desenvolvidas e aplicadas [9-13]. Usando o método de Levenberg-Marquardt [14] e medidas simuladas para a albumina do soro bovino (BSA) são estimados os parâmetros da isoterma e apresentados os intervalos de confiança para os mesmos.

2. O Problema Direto

O problema direto relativo à adsorção de bio-moléculas em interfaces gás-líquido em colunas de bolhas consiste essencialmente no cálculo da depleção, ou seja da redução das concentrações do composto de interesse com o tempo, quando são conhecidas as propriedades físico-químicas e os parâmetros do processo.

2.1. Formulação Matemática do Problema Direto

Será apresentado um modelo para descrever tanto o processo de adsorção quanto a depleção de soluto para uma solução de proteína. A taxa de adsorção de proteínas é dada por

$$\dot{n} = \frac{6}{d_b} \left(v_g A \right) \, \Gamma, \tag{2.1}$$

onde d_b é o diâmetro das bolhas, A é a área da seção transversal da coluna, v_g é a velocidade superficial (vazão de gás dividida pela área da seção transversal da coluna A), e Γ é a concentração superficial em excesso.

O fluxo de soluto para a superfície das bolhas pode ser calculado como

$$\{Fluxo Intersticial \, de \, Soluto\} = k_l \left(C_b - C_s\right),\tag{2.2}$$

onde k_l é o coeficiente de transferência de massa, a é a área intersticial das bolhas, C_b é a concentração de soluto no líquido (bulk) e C_s é a concentração de soluto junto às bolhas.

Fazendo um simples balanço de massa no volume diferencial representado na Figura 1, obtém-se

$$\int_{0}^{\Gamma_{saida}} \frac{d\Gamma}{[C_b(t) - C_s(z,t)]} = \int_{0}^{H} \frac{(k_l a)d_b}{6v_g} dz .$$

$$(2.3)$$

Considerando que a velocidade e o diâmetro das bolhas são constantes ao longo da coluna, e que esta possui seção reta constante, obtém-se, das equações (2.1) e (2.3),

Figura 1: Coluna de fracionamento

$$\frac{\partial \Gamma\left(z,t\right)}{\partial z} = \frac{\left(k_{l}a\right) d_{b} \left[C_{b}\left(t\right) - C_{s}\left(z,t\right)\right]}{6v_{q}} \ . \tag{2.4}$$

O coeficiente de transferência de massa pode ser calculado pela correlação de Özturk et al. [15]

$$\left(\frac{(k_l a)d_b^2}{D_i}\right) = 0,62 \left(\frac{\mu_f}{\rho_l D_i}\right)^{0.5} \left(\frac{g\rho_l d_b^2}{\gamma}\right)^{0.33} \left(\frac{g\rho_l d_b^3}{\mu_l^2}\right)^{0.29} \left(\frac{v_g}{\sqrt{gd_b}}\right)^{0.68} \left(\frac{\rho_g}{\rho_l}\right)^{0.04}, \quad (2.5)$$

onde D_i é o coeficiente de difusão do tensoativo, μ_f é a viscosidade do líquido, ρ_l é a massa específica do líquido, γ é a tensão superficial, g é a aceleração da gravidade e ρ_g é a massa específica do gás.

 $\Gamma e C_s$ estão relacionados por uma isoterma de adsorção, cuja formulação depende do composto de interesse [1]. Um modelo que permite caracterizar com muita precisão a depleção de proteínas como BSA (Albumina Bovina), Lysozima e β -Caseína,

$$\Gamma_{t} = \Gamma_{1} + \Gamma_{2} = \frac{K_{1}(T) \exp(-\lambda \Gamma_{1}) C_{s} [1 + K_{2} (T) \hat{a} C_{s}]}{\hat{a} [1 + K_{1} \exp(-\lambda \Gamma_{1}) C_{s}]} , \qquad (2.6)$$

onde Γ_1 e Γ_2 são as concentrações superfíciais em excesso da primeira e da segunda camada respectivamente, e \hat{a} , λ , K_1 e K_2 são coeficientes da isoterma.

Esta curva corresponde à modelagem termodinâmica desenvolvida por Guzman et al. [16], representando 2 camadas de adsorção. A primeira camada é equivalente à isoterma de Langmuir, podendo saturar, enquanto a segunda camada não apresenta saturação. Na Tabela 1 são apresentados os valores dos coeficientes \hat{a} , K_1 , $K_2 \in \lambda$ para três proteínas.

Aplicando novamente um balanço de massa, obtém-se [1]

$$\frac{dC_b}{dt} = -k_l a (1 - \varepsilon_g) (C_b - C_s) , \qquad (2.7)$$

onde ε_g é a fração volumétrica de gás, que pode ser calculada com a correlação adimensional de Kumar [17],

$$\varepsilon_g = 0,728U - 0,485U^2 + 0,095U^3, \text{ onde } U = v_g \left[\frac{\rho_l^2}{\gamma(\rho_l - \rho_g)g}\right]^{\frac{1}{4}}.$$
 (2.8)

Proteína	\hat{a} [m ² /mg]	$K_1[wt\%]$	$K_2[mg/(m^2 wt\%)]$	λ [m ² /mg]	
β –Caseína	0,392	36.130	118,5	-0,674	
Lysozima	0,338	86.330	607,4	0,641	
BSA	0,322	109.400	103,6	1,117	

Tabela 1: Coeficientes das Isotermas para três proteínas

2.2. Solução do Problema Direto

Combinando as equações (2.4) e (2.8) e usando uma condição inicial e uma condição de contorno do tipo, $\Gamma = 0$ em z = 0 e $C_b = C_{b0}$ em t = 0, obtém-se a variação da concentração de soluto no líquido em função do tempo $C_b(t)$.

Santana e Carbonell [3] obtiveram uma solução analítica para o problema direto no caso de uma isoterma linear e os resultados obtidos apresentaram boa concordância com dados experimentais. Rosa [2] utilizou um procedimento numérico para obter uma solução adequada a isoterma de Langmuir e Lugon [18] adaptou este procedimento para atender às isotermas linear, de Langmuir e de 2 camadas. Primeiro modifica-se a equação (2.4) obtendo-se uma forma mais conveniente

$$\int_{0}^{\Gamma_{saida}} \frac{d\Gamma}{[C_b(t) - C_s(z,t)]} = \int_{0}^{H} \frac{(k_l a)d_b}{6v_g} dz, \qquad (2.9)$$

onde H é a altura da coluna de bolhas.

Fazendo um balanço global de massa na coluna de líquido levando em consideração as transferências que ocorrem na interface entre a coluna de bolhas e a coluna de espuma formada acima desta, obtém-se [2]

$$\frac{dC_b}{dt} = f(t, C_b) = -\frac{6v_g}{(1 - \varepsilon_g) H d_b} \Gamma_{sa\acute{i}da} .$$
(2.10)

A equação (2.10) pode ser aproximada por diferenças finitas usando o método de Runge Kutta de segunda ordem, conhecido como método do ponto médio

$$C_{b}^{n+1} = C_{b}^{n} + \Delta t f\left(t_{i} + \frac{\Delta t}{2}, C_{b}^{n} + \frac{\Delta t}{2} f\left(t_{i}, C_{b}^{n}\right)\right), \qquad (2.11)$$

com $C_b^0 = C_b (t = 0) = C_{b0}$, onde Δt é o passo no tempo, e *n* indica o instante *t* e n + 1 o instante $t + \Delta t$.

3. O Problema Inverso

Silva Neto e Moura Neto [19] classificaram os problemas inversos levando em consideração a dimensão do modelo matemático e a dimensão dos objetos a serem estimados. Esta classificação está apresentada na Tabela 2.

O problema inverso aqui considerado consiste na estimativa dos coeficientes da isoterma de adsorção a partir de medidas experimentais das concentrações do soluto

Modelo Matemático	Estimativa		
	Dimensão finita (constante)	Dimensão infinita (função)	
Dimensão finita ¹	Tipo I	Não se aplica	
Dimensão infinita ²	Tipo II	Tipo III	

Tabela 2: Classificação dos problemas inversos

¹ por exemplo: sistema de equações algébricas

² por exemplo: equação diferencial parcial ou equação integro-diferencial

dissolvido no líquido em função do tempo. Tem-se, portanto um problema inverso do Tipo II, ou seja, o modelo matemático é de dimensão infinita e a estimativa de dimensão finita.

3.1. Formulação do Problema Inverso

Para o processo de transferência de massa através da adsorção de tensoativos na interface gás-líquido em colunas de bolhas, segundo a formulação apresentada na Seção 2.1, tem-se o interesse em estimar simultaneamente, ou não, os coeficientes da isoterma $(\hat{a}, \lambda, K_1 \in K_2)$.

Como a quantidade de medidas experimentais é superior ao número de incógnitas a serem estimadas, o problema inverso é resolvido como um problema de otimização de dimensão finita onde busca-se minimizar o funcional de resíduos quadrados

$$S = \sum_{i=1}^{N} \left(\frac{C_{bi}(\vec{P}) - Y_i}{\sigma_i} \right)^2 = \vec{F}^T W \vec{F},$$
(3.1)

onde Y_i é a concentração de soluto medida no líquido, C_{bi} é a concentração calculada, Mé o número de medidas experimentais, \vec{P} é o vetor de incógnitas, σ_i é o desvio padrão dos erros das medidas de concentração, Wé a matriz de peso contendo o inverso das variâncias na diagonal e $F_i = C_{bi} - Y_i$, i = 1, 2, ..., M.

3.2. Solução do Problema Inverso

Para a solução do problema inverso de transferência de massa descrito na seção anterior foi usado o método de Levenberg-Marquardt [14]. Este método tem sido usado com sucesso na solução de problemas inversos do Tipo II [5,21].

Buscando minimizar a norma S é primeiramente escrita a equação do ponto crítico

$$\frac{dS}{d\vec{P}} = \frac{d}{d\vec{P}} \left(\vec{F}^T W \vec{F} \right) = 0 \qquad \Longrightarrow \qquad J^T W \vec{F} = 0, \tag{3.2}$$

onde J é a matriz Jacobiana, com os elementos $J_{ps} = \frac{\partial C_{bp}}{\partial P_s}$ sendo p = 1, 2, ...M e s = 1, 2, ...N, e N é o número total de incógnitas.

Aplica-se então uma expansão em série de Taylor a $\vec{F}(\vec{P})$, mantendo apenas os termos até a primeira ordem,

$$\vec{F}(\vec{P} + \Delta \vec{P}) = \vec{F}(\vec{P}) + J\Delta \vec{P}.$$
(3.3)

Utilizando a expansão acima na Eq. (13) obtém-se

$$J^T W J \Delta \vec{P} = -J^T W \vec{F}(\vec{P}). \tag{3.4}$$

No método de Levenberg-Marquardt é somado à diagonal da matriz $J^T J$ um valor β para auxílio na convergência do método, sendo este valor reduzido durante o procedimento iterativo que é executado até que se satisfaça um critério de convergência estabelecido a priori.

Para a utilização no procedimento iterativo, a equação (3.4) é escrita de uma forma mais conveniente,

$$J^T W J \Delta \vec{P} = -J^T W \vec{F}(\vec{P}). \tag{3.5}$$

O procedimento iterativo é iniciado com uma estimativa para os parâmetros, \vec{P}^0 , sendo novas estimativas obtidas com $\vec{P}^n = \vec{P}^{n-1} + \Delta \vec{P}^n$, calculando-se as correções $\Delta \vec{P}^n$ com a equação (3.5), até que o critério de convergência

$$\Delta \vec{P}^n = -\left[\left(J^n\right)^T W J^n + I\beta \right]^{-1} \left(J^n\right)^T W \vec{F} \left(\vec{P}^n\right)$$
(3.6)

seja satisfeito, onde ε é um número pequeno, e.g. $10^{-5},\,I$ é a matriz identidade en é o contador de iterações

Os elementos da matriz Jacobiana, bem como o termo do lado direito da equação (3.6), são calculados a cada iteração usando a solução do problema direto empregando as estimativas para as incógnitas obtidas na iteração anterior.

Deve ser observado que o problema dado pela equação (3.6) é diferente do problema original dado pela equação (3.5). Ao longo do procedimento iterativo busca-se, portanto, reduzir o valor do fator de amortecimento, β , para que ao se atingir a convergência tenha-se a solução do problema original.

3.3. Intervalos de Confiança

Os intervalos de confiança para as estimativas \vec{P}^n são calculados usando o procedimento desenvolvido por Gallant [20]. Empregando a notação utilizada por Huang e Özisik [21],

$$\left. \frac{\Delta P_n^k}{P_n^k} \right| < \varepsilon, \qquad n = 1, \ 2, \dots, \ N, \tag{3.7}$$

onde \vec{C}_b é o vetor contendo os elementos $\{C_{b_i}\}$ e σ é o desvio padrão dos erros experimentais.

Assumindo uma distribuição normal para os erros experimentais, e 99 % de confiabilidade, os limites de intervalos de confiança para as estimativas P_s , s = 1, 2, ..., N, são calculados por Flach e Özisik [22]

$$\sigma_{\vec{P}} = \sigma \left\{ \operatorname{diag} \left[\frac{\partial \vec{C}_b^T}{\partial \vec{P}} \frac{\partial \vec{C}_b}{\partial \vec{P}^T} \right]^{-1} \right\}^{1/2}.$$
(3.8)

166

4. Projeto de Experimentos

O uso de experimentos bem projetados deve resultar em estimativas mais precisas e confiáveis. Duas ferramentas disponíveis para este projeto envolvem a análise dos coeficientes de sensibilidade e do determinante da matriz $X^T X$.

4.1. Coeficientes de Sensibilidade

As derivadas parciais das variáveis de estado, em nosso caso a concentração de tensoativos, em relação aos parâmetros que se deseja estimar, por exemplo os parâmetros da isoterma ou o diâmetro das bolhas, são chamadas de coeficientes de sensibilidade. Através da análise destes coeficientes pode-se concluir se o propósito de estimar certos parâmetros tem chance de ser bem sucedido. De fato estes permitem o projeto de experimentos otimizados onde buscam-se medidas experimentais que sejam influenciadas significativamente pelas grandezas que se deseja determinar.

Dowding et al. [23], analisaram o cálculo e o uso de coeficientes de sensibilidade em problemas de condução de calor, demonstrando como estes fornecem informações fundamentais sobre os efeitos dos parâmetros nas respostas dos modelos.

Para a obtenção de boas estimativas, é fundamental que os coeficientes de sensibilidade tenham valores relativamente elevados, fazendo com que as respostas do modelo reflitam pequenas mudanças nas grandezas a serem estimadas.

Quando são estimadas várias grandezas diferentes simultaneamente, são utilizados os coeficientes escalonados ou modificados.

Quando estimam-se diversos parâmetros de um modelo, os efeitos de cada um deles nas concentrações devem ser diferentes, ou seja independentes. Se os coeficientes de sensibilidade de dois parâmetros têm a mesma forma, significa que eles afetam as concentrações da mesma maneira e então é difícil distinguir suas influências e portanto estimá-los.

Na Figura 2 são apresentados os Coeficientes de Sensibilidade para um experimento com BSA, concentração inicial $C_{b0} = 316g/m^3$, altura da coluna de líquido H = 0,60 m, diâmetro das bolhas $d_b = 1,0 mm$ e velocidade superficial $v_q = 0,14 cm/s$.

No caso representado na Figura 2, trata-se de um experimento não ótimo, observa-se a dificuldade de estimar os coeficientes $\lambda \in K_1$ devido a sua pequena sensibilidade e os coeficientes $\hat{a} \in K_2$ simultaneamente pela semelhança nas formas de suas sensibilidades.

4.2. Determinante da Matriz $X^T X$

Quando se pretende estimar dois ou mais parâmetros simultaneamente, existem diversos critérios de otimização possíveis, todos dados em termos de $X^T X$, podemos citar: (i) maximização do determinante de $X^T X$; (ii) maximização do menor autovalor de $X^T X$; (iii) maximização do traço de $X^T X$ [10].

Figura 2: Coeficientes de Sensibilidade para BSA

Em nosso estudo foi utilizado o primeiro, ou seja, a maximização do determinante da matriz $X^T X$. Na Figura 3, estão representados os valores deste determinante, para estimativa simultânea de $\hat{a} \in K_2$, variando-se condições de operação dos experimentos.

Figura 3: Determinante da matriz $X^T X$

5. Resultados e Conclusões

Com objetivo de comparar o resultado das estimativas com uso de um experimento ótimo e com um outro não otimizado, efetuou-se a estimativa de $\hat{a} \in K_2$ com uma série de experimentos gerados numericamente, através da adição de erros randômicos. Os resultados destas estimativas estão representados na Figura 4. Pode-se observar que os intervalos de confiança para ambos os parâmetros são menores para o experimento otimizado e as estimativas são mais próximas ao valor original.

Os resultados obtidos até o momento para as estimativas das isotermas de adsorção são extremamente satisfatórios. Foram também considerados outros tensoativos tais como brometo de hexadeciltrimetil amônio (CTAB) e cytochrome C.

Figura 4: Resultados das estimativas de $\hat{a} \in K_2$ para diferentes corridas

Referências

- C.C. Santana, Adsorptive bubble separation process as a means of reducing surface-active contaminants in industrial wastewaters, 1994, *Revista Brasileira* de Engenharia - Química Especial, 5 (1994).
- [2] P.T.V. Rosa, "Fracionamento de Proteínas e Outros Tensoativos em Colunas de Bolhas e de Espuma", Tese de Doutoramento, Faculdade de Engenharia Química, Universidade Estadual de Campinas, 1996.
- [3] C.C. Santana e R.G. Carbonell, Adsorptive bubble separation as a means of reducing surface-active contaminants in industrial wastewaters, em "Proceedings of the Inter. Symp. on Heat and Mass Transfer", Mexico, pp. 1-11, 1993.
- [4] J. Su e A.J. Silva Neto, Two-dimensional inverse heat conduction problem of source strength estimation in cylindrical rods, *Applied Mathematical Modelling*, 25 (2001), 861-872.
- [5] A.J. Silva Neto e M.N. Özisik, The estimation of space and time dependent strength of a volumetric heat source in a one-dimensional plate, *Int. J. Heat* and Mass Transfer, 37, No. 6 (1994), 909-915.
- [6] A.J. Silva Neto e J. Su, The estimation of heat source strength in plate-type fuel elements with cladding, em "Proc. 3rd International Conference on Inverse Problems in Engineering: Theory and Practice", Port Ludlow, USA, 1999.
- [7] A.J. Silva Neto e M.N. Özisik, An inverse heat conduction problem of unknown initial condition, em "Proc. 10th International Heat Transfer Conference", Vol. 6, pp. 421-426, Brighton, Inglaterra, 1994.
- [8] A.N. Tikhonov e V.Y. Arsenin, "Solutions of Ill-Posed Problems", Winston, Washington D.C., 1977
- [9] O.M. Alifanov, E.A. Artyukhin e S.V. Rumiantsev, "Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems", Springer Verlag, 1995

- [10] J.V. Beck e K.J. Arnold, "Parameter Estimation in Engineering and Science", Wisley, New York, 1977.
- [11] E. Hensel, "Inverse Theory and Applications for Engineers", Prentice Hall, Englewood Cliffs, New Jersey, 1991.
- [12] D.A. Murio, "The Mollification Method and the Numerical Solution of Ill-Posed Problems", John Wiley & Sons, New York, 1993.
- [13] A.J. Silva Neto e N.C. Roberty, A abordagem fonte-detetor na solução de problemas inversos em meios participantes, em "Anais do V Congresso de Engenharia Mecânica Norte-Nordeste", Vol. III, pp. 340-347, 1998.
- [14] D.W. Marquardt, 1963, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Industr. Appl. Math., 11 (1963), 431-441.
- [15] S.S. Ozturk, A. Schumpe e W.D. Deckwer, Organic liquids in a bubble column: holdups and mass transfer coefficients, *AIChE Journal*, **33** (1987), 1473-1480.
- [16] R. Guzman, R.G. Carbonell e P.K. Kilpatrick, The adsorption of proteins to gas-liquid interfaces, *Journal of Colloid and Interface Science*, **114**, No. 2 (1986), 536-547.
- [17] A. Kumar, T.T. Dagaleesan, G.S. Ladha e H.E. Hoelscher, Bubble swarm characteristics in bubble columns, *Canadian Journal of Chemical Engineering*, 54 (1976), 503-510.
- [18] J. Lugon Jr., "Um Problema Inverso de Transferência de Massa no Processo de Separação por Adsorção Gás-Líquido em Colunas de Bolhas e Espuma", Tese de Mestrado, Instituto Politécnico, Univ. do Estado do Rio de Janeiro, 2000.
- [19] A.J. Silva Neto e F.D. Moura Neto, Escolha de Modelos-Problemas Inversos em Engenharia, Notas de Aula do Minicurso Técnico MC05 no "XXII Congresso Nacional de Matemática Aplicada e Computacional", Santos, São Paulo, 1999.
- [20] A.R. Gallant, "Nonlinear Statistical Models", Wiley, New York, 1987.
- [21] C.H. Huang, e M.N. Ozisik, A direct integration approach for simultaneously estimating spatially varying thermal conductivity and heat capacity, *Int. J. Heat and Fluid Flow*, **11** (1990), 262-268.
- [22] G.P. Flach e M.N. Özisik, Inverse heat conduction problem of simultaneously estimating spatially varying thermal conductivity and heat capacity per unit volume, *Numer. Heat Transfer*, **16** (1989), 249-266.
- [23] K.J. Dowding, B.F. Blackwell e R.J. Cochan, Applications of sensitivity coefficients for heat conduction problems, *Numerical Heat Transfer, Part B*, 36 (1999), 33-55.