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Abstract. In this contribution an iterative method for solving the nonlinear mi-
nimization problem with equality constraints is presented. The method is based
on the sequential minimization of the differentiable penalization function known
as augmented Lagrangian. Each unconstrained minimization subproblem is solved
by using a conjugate-gradient technique combined with a trust-region strategy of
globalization, which is especially efficient for large-scale problems. The update of
the multipliers and the penalty parameter is done by using standard schemes. The
theoretical properties and the behavior of the algorithm are discussed.
Details of the implementation are presented, the algorithm is tested with a set of
classic problems and with a minimax formulation to the problems which belong to
the well known family of Hard-Sphere Problems.

1. Introduction

Let us consider the nonlinear optimization problem with equality constraints

Minimize f(x) subject to c(x) = 0, (1.1)

where f : IRn → IR and c : IRn → IRm are functions at least twice differentiable and
m ≤ n.

We propose an algorithm for solving (1.1) based on a sequential penalization
method which involves the solution to unconstrained minimization subproblems of
the augmented Lagrangian function [1],

Lµ(x, λ) = f(x) + λT c(x) +
1
2µ
‖c(x)‖22,

where λ ∈ IRm is an estimate of the Lagrange multiplier vector and µ > 0 is the
penalty parameter.

The penalization methods based on the augmented Lagrangian function (mul-
tipliers methods) were introduced by M.R. Hestenes [6] and M.J.D. Powell [9] to
avoid numerical instabilities of the algorithms based on exterior and interior points
methods for solving mathematical programming problems.
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Several successful algorithms for solving problems of nonlinear programming
based on the augmented Lagrangian function have been reported in the last years.
Among them, the works of N. Gould [5], A. Conn, N. Gould and Ph. Toint [2],
J.P. Dussault [4] and N. Krejić et al. [8] should be mentioned.

In our approach, each unconstrained subproblem is solved by using a conjugate-
gradient technique especially efficient for large-scale problems and the trust-region
strategy is incorporated as strategy of globalization [12].

In order to show the efficiency of this combination of techniques the algorithm
is tested by using two family of problems: a set of test problems from the collection
proposed by W. Hock and K. Schittkowski [7] and K. Schittkowski [10] and a set of
problems belonging to the Hard-Spheres Problems family.

The paper is organized as follows: in §2 the algorithm is described and a complete
formulation of it is stated in §3. In §4 the properties of the algorithm are discussed
and §5 is devoted to numerical experiences. The final remarks and conclusions are
given in §6.

2. Description of the Algorithm

The algorithm has two main iterations, the outer iteration updates the Lagrange
multipliers and the penalty parameters, decides stopping criteria and the rules for
declaring convergence of the associate procedure and the inner iteration minimizes
the augmented Lagrangian function with a trust region strategy of globalization.
Now we describe each one of them. Assume that the problem (1.1) has at least a
local solution x?.

At each outer iteration, given xk and λk, a new estimate xk+1 of x? is found by
solving the unconstrained subproblem

min
x

Lµk
(x, λk). (2.1)

This subproblem is solved by constructing a quadratic model of Lµk
around xk,

where a trust-region constraint has been added. Then a step is obtained by solving
the following trust-region subproblem

min
‖δ‖≤δk

Qk(s, λk, µk),

where Qk is a quadratic model of Lµk
around xk and λk ∈ IRm is the multiplier vec-

tor estimate associated to xk in the previous iteration, µk is the penalty parameter
and δk is the trust-region radius.

This subproblem is solved using a conjugate-gradient method [12]. This may be
regarded as a generalized dogleg technique to approximate the solution to this sub-
problem. The advantage of this method is that it can handle quite well semidefinite
and indefinite Hessian matrices.

The step is evaluated and the trust-region radius is updated in the standard
ways for a method which is based on trust-region approach.

Clearly, the method used to solve the unconstrained trust-region subproblem
(2.1) define an inner iteration inside each outer iteration of the penalization algo-
rithm.

Each inner iteration terminates at (x?)k+1 and declares it as an approximate
solution to (2.1) if

‖∇Lµk
((x?)k+1, λk)‖ ≤ tol,
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for some tolerance tol > 0.
At this point we must remark that the choice of the penalty parameter is a

crucial key in the algorithm. A decreasing sequence {µk} must be generated to
guarantee global convergence.

The iterate (x?)k+1 and its associate multiplier is declared close to a Karush-
Kuhn-Tucker (KKT) pair (x?, λ?) of problem (1.1) if

‖∇l((x?)k+1, λk)‖ ≤ ε1, ‖c((x?)k+1)‖ ≤ ε2,

where l(x, λ) = f(x)+λT c(x) is the Lagrangian function associated to the problem
(1.1) and ε1, ε2 are positive tolerances.

If some of these conditions fail, the Lagrange multipliers vector and the penalty
parameter are updated.

The multiplier vector is updated by using the Hestenes and Powell’s formula [6],

λk = λk−1 +
1
µk

c(xk). (2.2)

Since our proofs of convergence depend strongly on the boundness of λk, formula
(2.2) must be modified to avoid the possibility that it does not happen.

3. Description of the Main Model Algorithm

In this section the iterations that define our algorithm are established. First we
describe the algorithmic parameters for this specific implementation. In the scheme
for the outer iteration, a lower bound µmin > 0 for the penalty parameter is used,
a positive constant M will be defined as upper bound for the Lagrange multiplier
estimates. In the inner iteration a lower bound δmin > 0 is used for the trust-
region radius at the beginning of each iteration. Then, the j-th iteration begins
with δj ≥ δmin. The constants 0 < η1 < η2 < 1 are stated for the acceptance step.
Positive constants ε1, ε2 and γ are tolerances.

Given xk ∈ IRn, the current estimate of the solution to problem (1.1), λk ∈ IRm,
the estimate of the Lagrange multiplier vector, the following algorithm defines how
to obtain the next iterate xk+1 and the next estimate of the Lagrange multiplier
vector λk+1.

Algorithm 1. (Framework for the outer iteration) Assume xk ∈ IRn the
current iterate, λk ∈ IRm, ‖λk‖ ≤ M and µk the penalty parameter such that
0 < µmin ≤ µk. If xk is not a stationary point of problem (1.1), the steps for
obtaining the next iterate and its associate multiplier are the following.

STEP I. (Inner iteration)
Find (x?)k+1 an approximate solution to the unconstrained minimization sub-
problem

min
x

Lµk
(x, λk)

by using algorithm 2.

STEP II. (Convergence test)

• If ‖∇l((x?)k+1, λk)‖ ≤ ε1 and ‖c((x?)k+1)‖ ≤ ε2 then TERMINATE,
(x?)k+1 = x? is declared as solution to the subproblem,
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• otherwise, update the penalty parameter so that 0 < µk+1 < µk.

– If µk+1 ≥ µmin update the multiplier estimate and go to STEP I,
– otherwise TERMINATE with the approximation (x?)k+1

∼= x?.

The following scheme describes the inner iteration algorithm of the STEP I of
Algorithm 1.

Algorithm 2. (Framework for the inner iteration)
Given δk ≥ δmin > 0, xk ∈ IRn, λk ∈ IRm, µk ≥ µmin > 0, a quadratic model Qk

of the augmented Lagrangian function around xk is defined.

STEP 1. (Compute a trial step)
Find sk an approximate solution to the trust-region subproblem

min
‖s‖≤δk

Qk(s, λk, µk)

by using conjugate gradient and trust-region method (T. Steihaug, 1983).

STEP 2. (Evaluate the trial step)
Compute the quantities

Aredk(sk, λk, µk) = Lµk
(xk, λk)− Lµk

(xk + sk, λk),

P redk(sk, λk, µk) = −Qk(sk, λk, µk)

and

ρk(sk, λk, µk) =
Aredk(sk, λk, µk)
Predk(sk, λk, µk)

.

STEP 3. (Update the trust-region radius and state the new iterate)

• If ρk > η2 then xk+1 = xk + sk, increase the trust-region radius and go
to STEP 4.

• If η1 ≤ ρk ≤ η2 then xk+1 = xk + sk, keep the trust-region radius and
go to STEP 4.

• If ρk < η1, reduce the trust-region radius and go to STEP 1.

STEP 4. (Convergence test)

• If ‖∇Lµk
(xk+1, λk)‖ ≤ γµk then TERMINATE, set xk+1 = (x?)k+1 and

go to STEP II of algorithm 1.

• otherwise, define a new quadratic model and go to STEP 1.

4. Properties of the Algorithm

In this section two theoretical results concerning to the convergence of the algorithm
are stated.

Theorem 1. Consider the problem (1.1). Let f : IRn → IR and c : IRn → IRm

be at least twice continuously differentiable and let the sequences of matrices
{‖∇2Lµk

(xk, λk)‖} be uniformly bounded. Then Algorithm 1 is well defined.
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Proof. Clearly the well definition of the algorithm results from the way that Al-
gorithm 1 and Algorithm 2 for the inner iteration have been defined. On the other
hand, in order to select the trial step, algorithm 2 starts with the direction of the
negative gradient of the augmented Lagrangian at the initial point. More details
can be found in [12] and [11].

Theorem 2. Under the assumptions of Theorem 1, and

i) the sequence {(x?)k} generated by the Algorithm 1 is contained in a compact
set X ⊂ IRn,

ii) x? is an accumulation point of the sequence such that the matrix ∇c(x?) has
full rank,

iii) the sequence of penalty parameters {µk} goes to zero when k goes to infinity,

iv) the sequence {(λ?)k}, is uniformly bounded,

then x? is a stationary point of (1.1) and the sequence {(λ?)k} converges to the
Lagrange multiplier λ? associated to x?.

Proof. Let us consider those indices k ∈ K such that there exists a subsequence
{(x?)k} that converges to x?. Let the gradient be

∇Lµk−1((x?)k, λk−1) = ∇f((x?)k) +∇c((x?)k)(λ?)k−1

+
1

µk−1
∇c((x?)k)c((x?)k), (4.1)

where ∇c(x) ∈ IRn×m is the Jacobian matrix of c(x).
The convergence test in the inner iteration demands

‖∇Lµk−1((x?)k, λk−1)‖2 = ‖∇f((x?)k) +∇c((x?)k)(λ?)k−1

+
1

µk−1
∇c((x?)k)c((x?)k)‖2 ≤ γµk−1. (4.2)

Now, by using the Hestenes and Powell update for the multiplier, (4.2) becomes

‖∇Lµk−1((x?)k, λk−1, µk−1)‖2 = ‖∇f((x?)k) +∇c((x?)k)(λ?)k‖2 ≤ γµk−1. (4.3)

From the continuity of ∇c(x) and rank(∇c(x?)) = m, for k large enough the pseu-
doinverse matrix of ∇c(x?), denoted by ∇c((x?)k)+, exists, is bounded and con-
verges to ∇c(x?)+ = (∇c(x?)T∇c(x?))−1∇c(x?)T .

Multiplying (4.1) by ∇c((x?)k)+, from the `2-norm property of consistency and
inequalities (4.2) and (4.3) we have

‖∇c((x?)k)+∇f((x?)k) +∇c((x?)k)+∇c((x?)k)(λ?)k‖2

= ‖∇c((x?)k)+∇f((x?)k) + (λ?)k‖2
≤ γµk−1‖∇C((x?)k)+‖2. (4.4)

From the first order optimality conditions for the problem (1.1) it is possible to
define

λ? = −∇c(x?)+∇f(x?).
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Now, let us consider the difference

(λ?)k − λ? = (λ?)k +∇c((x?)k)+∇f((x?)k) + ∇c(x?)+∇f(x?)
− ∇c((x?)k)+∇f((x?)k),

and using (4.4) we obtain the following inequality

‖(λ?)k − λ?‖2 ≤ γµk−1‖∇c((x?)k)+‖2
+ ‖∇c(x?)+∇f(x?)−∇c((x?)k)+∇f((x?)k)‖2. (4.5)

Since ∇f(x) and ∇c(x) are continuous functions allowing k →
k∈K

∞ in (4.5),

results that the sequence (λ?)k converges to λ?.
Therefore when k →

k∈K
∞ in (4.3) we get

∇f(x?) +∇c(x?)λ? = 0.

Since

(λ?)k = (λ?)k−1 +
1

µk−1
c((x?)k) (4.6)

results
‖µk−1((λ?)k − (λ?)k−1)‖2 = ‖c((x?)k)‖2,

and using the assumption that the sequence of multipliers is bounded, when
k →

k∈K
∞ we have

c(x?) = 0.

Therefore, x? satisfies the first order necessary conditions for the problem (1.1)
and the subsequence {(λ?)k} converges to the Lagrange multiplier λ? associated to
the solution.

5. Numerical Experiments

In this section a specific implementation of the algorithm is described. A MATLAB
code was written corresponding to this implementation. It is worth pointing out
that the preliminary numerical implementation produced reliable results in a large
number of test problems. Parameters and specific procedures used are as follows:

(i) the constants γ = 10−3, η1 = 10−4, η2 = 10−1,

(ii) the trust-region radius at each iteration is at least δmin = 10−4,

(iii) the sequences of penalty parameters has been generated following the scheme
µk+1 = 0.1µk and the lower bound µmin = 10−10,

(iv) the tolerances for the convergence tests were fixed as ε1 = ε2 = 10−6.

The behavior of the algorithm has been analyzed by solving two different sets
of problems. The first set was taken from the books of Hock and Schittkowski [7]
and Schittkowski [10]. A total of 38 equality constrained optimization problems
were selected. The results obtained with this first set of test problems are shown



An Augmented Penalization Algorithm 177

in table I. The starting guess x0 is the one indicated in [7], [10] for each problem.
The following abbreviations are used:
HS-number stands for the number of problem from Hock and Schittkowski [7]
S-number stands for the number of problem from Schittkowski [10]
m: number of constraints
n: number of variables
NOI: number of outer iterations
NII: number of inner iterations
µ?: indicates the value of the penalty parameter at which convergence has been
declared.

We report the number of outer and inner iterations required for two different
choices of Lagrange multiplier formula. Besides the theoretical results obtained by
using the Hestenes and Powell (λHP ) update formula, we also show the numerical
results by using the least-squares approximation formula (λLS), which is expressed
as

λk = −[∇c(xk)T∇c(xk)]−1∇c(xk)T∇f(xk).

Table I: Numerical results

Problems λ = λHP λ = λLS

Prob # n m NOI NII µ? NOI NII µ?

HS-40 4 3 5 46 5 ×10−5 5 46 5 ×10−5

HS-46 5 2 6 113 5 ×10−6 6 117 5 ×10−6

HS-47 5 3 4 27 5 ×10−4 5 28 5 ×10−5

HS-51 5 3 1 2 5 ×10−1 1 2 5 ×10−1

HS-52 5 3 6 42 5 ×10−6 6 42 5 ×10−6

HS-56 7 4 6 137 5 ×10−6 5 104 5×10−5

HS-77 5 2 5 25 5 ×10−5 4 25 5×10−4

HS-78 5 3 5 46 5 ×10−5 5 46 5 ×10−5

HS-79 5 3 5 19 5 ×10−5 4 18 5 ×10−4

S-219 4 2 6 32 5 ×10−6 6 32 5 ×10−6

S-394 20 1 5 76 5 ×10−5 5 76 5 ×10−5

S-395 50 1 5 84 5 ×10−5 5 84 5 ×10−5

5.1. The Hard-Spheres Problem as an Optimization Problem

The Hard-Spheres problem belongs to a family of well-known mathematical prob-
lems dated from the century XVII. Some of them were solved but many still remain
as open problems. They are related to practical problems in chemistry, biology and
physics. For more details see [3].

The problem consists in maximizing the minimum distance among p points on a
sphere in IRn. This problem can be formulated as a nonlinear optimization problem
with a large number of KKT points which are not optimal. A whole family of
problems can be obtained that can be used as test problems if the parameters n
and p are allowed to vary.

On the other hand, the Hard-Spheres Problem is associated to other well-known
problem called the Kissing Number Problem. It consists in determining the maxi-
mum number of spheres of given radius such that, without overlapping, can touch
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simultaneously a centered sphere with the same radius. Given n and p, if the dis-
tance obtained, when the Hard-Spheres Problem is solved, is greater than or equal to
the radius of the sphere where the points are located, we conclude that the Kissing
number is Kn ≥ p.

The formulation of the Hard-Spheres problem leads to a problem known as “min-
max”where 2r is the radius of the sphere centered in the origin. On this sphere one
can locate the p points. That is

max mini 6=j ‖yi − yj‖2
s.t ‖yk‖2 = 2r, k = 1, . . . , p.

(5.1)

The vectors yk ∈ IRn. Since the answer to the problem is invariant under the
choice of r, it can be chosen as r = 1

2 .
The problem is equivalent to

min maxi 6=j

〈
yi, yj

〉
s.t ‖yk‖2 = 1, k = 1, . . . , p,

(5.2)

where
〈
,
〉

is the inner product defined in IRn. Furthermore, by using a standard
transformation, the “min-max”problem (5.2) can be stated as a constrained mini-
mization problem,

min z
s.t z ≥ 〈

yi, yj
〉
, ∀i 6= j

‖yk‖2 = 1, k = 1, . . . , p.
(5.3)

Adding a squared slack variable to each inequality constraint of (5.3), it becomes
a nonlinear programming problem with equality constraints:

min z
s.t z − 〈

yi, yj
〉−s2

ij = 0, ∀i 6= j
‖yk‖22 = 1, k = 1, . . . , p.

In order to put the problem under the assumptions of differentiability, observe that
the set of equality constraints of (5.3) are squared.

5.2. Numerical Results

We have solved a small set of problems of the Hard-Spheres Problem. Each problem
was solved 50 times with starting points chosen at random so that each variable
belongs to the interval [−1, 1]. The Lagrange multiplier estimate was updated by
using the Hestenes and Powell formula. The table II shows the sizes of the problems,
the minimum, the maximum and the average amount of the optimal distances found,
the outer iterations, the functions evaluations and the CPU-time in seconds required
to obtain the solution.
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Table II: Numerical Results of the Hard-Spheres Problem

Size of the Prob. Min. distance NOI Func. CPU-time

n, p V, C

2, 4 15, 10 1.414213,1.414213,1.414213 3,7,3.3 74,201,112.4 0.16,055,0.24

2, 6 28, 21 0.891448,1.000000,0.995432 4,8,4.9 123,408,231.2 1.34,7.21,3.08

3, 10 76, 55 1.046976,1.154700,1.096688 4,9,6.2 312,627,289.7 9.34, 92.6, 31.0

3, 12 103, 78 0.946381,1.051462,1.027298 4,17,11.05 301,729,345.1 12.35,89.03,21.39

6. Final Remarks

An algorithm based on penalization combined with the conjugate-gradient method
and the trust-region technique has been proposed. It was proved that the method
is well defined and convergent under suitable conditions on the problem.

It has been tested with two group of problems. A qualitative analysis of the
numerical results shows that the behavior of the algorithm is acceptable.

The algorithm is numerically stable. The values of the penalty parameter for
which convergence has been obtained show that they belong to a range of acceptable
values in the sense that they do not cause ill-conditioning troubles, in particular
when the Hessian matrix of the augmented Lagrangian function is evaluated to
construct the quadratic model formulation.

The choice of the Lagrange multiplier estimate shows a little better performance
when the least squares approximation formula is used instead of the Hestenes and
Powell formula. However this difference is not representative to justify the compu-
tational cost of using it.

Among the possible lines for continuation of this work, a more general result,
similar to Theorem 2, without specifying the formula of the Lagrange multiplier
estimate, but with the assumption that the sequence of {λk} be uniformly bounded
should be investigated.

Resumo. Neste trabalho é apresentado um método iterativo do tipo Lagrangeano
aumentado para resolver o problema de minimização com restrições de igualdade.
Para resolver cada subproblema de minimização irrestrita é usado o método de
gradientes conjugados combinado com uma estratégia de região de confiança. Esta
estratégia de globalização é muito eficiente para resolver problemas de grande porte.
Propriedades téoricas do algoritmo e detalhes da implementação são discutidos. O
algoritmo é testado usando um conjunto de problemas-teste clássicos e com uma
formulação min-max dos problemas conhecidos como “Hard-Spheres Problems”.
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