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Abstract. Two different artificial neural networks (NN) are used for estimating a
time dependent boundary condition (x = 0) in a slab: multilayer perceptron (MP)
and radial base function (RBF). The input for the NN is the temperature time-series
obtained from a probe next to boundary of interest. Our numerical experiments
follow the work of Krejsa et al. [4]. The NNs were trainned considering 5 per cent
of noise in the experimental data. The training was performed considering 500
similar test-functions and 500 different test-functions. Inversions with trained NNs
with different test-functions were better. The RBF-NN presented a slightly better
results than MP-NN.

1. Introduction

The solution of a direct (forward) problem consists of finding effects from a complete
description of their causes. However, the solution of an inverse problem, unknown
causes are determined from observed or desired effects. Different kinds of inverse
problems can be found in the literature, based on nature of estimated property [5]:
estimation of initial/boundary conditions, properties of the system/material, sources
or sink terms, shape, and governing equations. Many texts are available describing
(traditional) techniques for solving inverse problems in heat consduction, see [1, 10]
for example.

The present work is focused on the first type of inverse problem mentioned above.
In recent works [6, 7] initial conditions are estimated by classical inverse techniques,
such as Tikhonov regularization, maximum entropy principle, and truncated singu-
lar value decomposition. Reference [4] deals (see also [13]) with reconstruction of
boundary condition using neural networks: multilayer perpectron (MP), radial base
function (RBF), cascade-correlation (CC) and cascade-correlation with genetic al-
gorithm (CCGA). The main conclusion is that NNs are effective tools as alternative
techniques for solving inverse problems and they deserve investigation.

The estimation of boundary conditions in inverse heat conduction problem by
neural networks is the topic of this paper. However, two new features are studied
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here: different training data sets for learning step, considering similar and non-
similar data sets; also, several learning strategies for RBF-NN are studied. These
purposes distinguish our research from previous ones [4, 13].

Sections 2 and 3 the forward problem and inverse modeling are presented,
respectively. Section 4 numerical examples are shown, and in Section 5 final re-
marks are addressed.

2. Formulation for Forward Problem

The forward problem is the linear one-dimensional unsteady heat conduction pro-
cess. The mathematical formulation is given by

∂T (x, t)
∂t

= α
∂2T (x, t)

∂x2
, x ∈ (0, L) and t > 0, (2.1)

k
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∂x
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= q(t), (2.2)

T (x, 0) = f(x), (2.3)

where T (x, t) is the temperature, x and t denote space and time variables, and
f(x) is the initial condition. The numerical solution is obtained using a finite
difference approach, central differences for space, and explicit Euler method for
time integration [3, 8, 9].

3. Inverse Problem Solution by Neural Networks

An inverse solution can be understood as an attempt to find out the inverse operator
P−1 (or an approximation Q for it):

P [q(t)] = T (x, t) ⇒ q(t) = P−1[T (x, t)] . (3.1)

A typical approach to compute the unknown q(t) is to formulate the inverse problem
as a non-linear optimization problem:

min J(q) where : J(q) =
∥∥TExp − TMod(q)

∥∥2

2
+ αΩ[q(t)], (3.2)

being TExp measured quantities, TMod are computed quantities from a mathemat-
ical model, and Ω is a regularization operator [6, 12]. The approach based on the
artificial neural networks is to design a non-linear mapping to obtain an approxi-
mated inverse solution: q(t) = QNN [T (x, t)], where QNN ∼ P−1.

Artificial NNs have two stages in their application, which are the learning and
activation steps. During the learning step, the weights and bias corresponding to
each connection are adjusted to some reference examples. For activation, the output
is obtained based on the weights and bias computed in the learning phase. There
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Figure 1: (a) Similar functions, (b) Non-similar functions.

are many possible arrangements and learning strategies. For the present inverse
problem, two neural networks are implemented: multilayer perceptron, with back-
propagation algorithm, and radial base function. See references [2, 11, 13] for a full
description of these NN architectures. A supervised learning was used in both NNs.

The MP-NN has one input layer, one or more hidden layers, and one output
layer. It is a feed-forward network and employs a back-propagation algorithm for the
learning process. The RBF-NN is composed by only one hidden layer. Differently
from the most NNs, there are no weights in the connections between the input layer
and the hidden layers, but Gaussian functions.

For both NNs, the training sets are constituted by synthetic data obtained from
the forward model, i.e., time-series for a measure point close to the boundary. Two
different data sets were used. The first data set is the time-series obtained from 500
similar functions (see examples in Figure 1 (a)). The second one is that obtained
with 500 non-similar functions (Figure 1 (b)). Similar functions are those belonging
to the same class (linear function class, trigonometric function class, such as sine
functions with different amplitude and/or phase, and so on). Non-similar functions
are those completely different, in which each one belonging to a distinct class.

4. Results and Conclusions

In order to analyze the performance of the MP-NN and RBF-NN in the identification
of the boundary condition in heat conduction, two experiments were performed. In
the first one noiseless data sets were used. For the second experiment 5% of white
Gaussian noise was added to the synthetic data, simulating the real experimental
data.

Both NNs were trained with only one hidden layer. The MP-NN and RBF-NN
having 20 and 30 neurons, respectively. Table 1 presents the results of training of
both NNs, for similar and non-similar noiseless data. The training is carried out
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until a the minimum value for the error is reached or a maximum number of epoch
(epoch denotes the iteration step in the learning phase). The error is computed by
the following equation

ε(n) =
1

2N

N∑
n=1

Nx∑

j=1

[
TExp

j (n)− TNN
j (n)

]2

, (4.1)

being j the grid point and n an index for training function.

Table 1: Result for training of MP-NN and RBF-NN with similar and non-similar
functions – noiseless data.

Neural network Data set Num. of epoch Error
MP Non-similar 10000 0.0371
MP Similar 10000 0.0147
RBF Non-similar 10000 0.0278
RBF Similar 5348 0.0115

For RBF-NN there are several strategies to find the center or means of the
associated Gaussian activation function. Three strategies were tested here: fixed
centers randomly selected, self-organized selection of centers, and supervised selec-
tion of centers. The best results were obtained with the first strategy. Here after,
all results are related with this strategy of training.

During the training phase Table 1 shows that the error obtained to RBF-NN is
smaller than MP-NN, for both training sets. For both NNs the error using similar
functions was smaller than that obtained with non-similar functions.
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Figure 2: (a) Inversion with MP, (b) Inversion with RBF. Solid line represents the
exact output, solid line with circles represents similar functions and solid line with
stars represents non-similar functions.



Estimation of Boundary Conditions 193

Table 2: Results of training of MP-NN and RBF-NN with similar and non-similar
functions – 5% of noise.

Neural network Data set Num. of epoch Error
MP Non-similar 10000 0.0538
MP Similar 10000 0.0205
RBF Non-similar 10000 0.0386
RBF Similar 10000 0.0139

Reconstructions of boundary conditions with noiseless data are presented below.
In the jargon of the neural network field, this phase is denominated activation.
Figure 2 (a) shows the results related to MP-NN estimation, for similar and non-
similar functions. Figure 2 (b) shows the same experiment, but using RBF-NN. For
both experiments the activation is done with functions that do not belong to the
training data set. The error for MP-NN was 0.00932 and 0.01333 respectively for
network trained with similar and non-similar functions. The RBF-NN has 0.00798
and 0.00842 errors for the same sets, respectively.

The previous experiments were re-run adding 5% of noise in the training data
sets. Results are shown in Table 2 and Figures 3 (a) - 3 (b).

Again, the RBF-NN error obtained during the training phase is smaller than the
error for MP-NN. The error is smaller using similar functions than using non-similar
functions for MP-NN and RBF-NN. The same boundary conditions estimated in
Figure 2 are done here, but with 5% of noise in the data. The inversion is plotted
in Figures 3 (a) - 3(b). The error for reconstruction with RBF-NN is smaller than
MP-NN estimation.
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Figure 3: (a) Inversion with MP, (b) Inversion with RBF. Solid line represents the
exact output, solid line with circles represents similar functions and solid line with
stars represents non-similar functions.
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Good estimations for boundary conditions are obtained even with 5% of noise
in the data. The MP-NN presented errors 0.01273 and 0.01331 for similar and non-
similar functions, respectively. The RBF-NN presented error respectively 0.01013
and 0.01166 for the same set.

The paper presents a solution of the inverse problem in heat conduction by
artificial neural network. The boundary condition is retrieved by two neural net-
works, even with 5% of noise in the observational data. The reconstruction of the
boundary conditions are comparable with those obtained with regularization meth-
ods [6], even for data containing noise. However, the NN do not remove the inherent
ill-posedness of the inverse problem. The performance of two neural networks are
studied using two different data set in the training – similar and non-similar func-
tions. In the activation phase, it is observed that better results are obtained when
non-similar data were used for training in both the NNs.

As mentioned previously, processing with NNs is a two step process: training and
activation. After the training phase, the inversion with NNs is much faster than the
regularization methods, and the NNs do not need a mathematical model to simulate
the forward model. In addition, NNs is an intrinsicly parallel algorithm. Finally,
NNs can be implemented in hardware devices, the neurocomputers, becoming the
inversion processing faster than NNs emulated by software.
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