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Abstract. In this work the local equations governing the dynamics of fluidized
beds are written in terms of averaged variables and constitutive relations based on
physical arguments are proposed. The averaged equations are perturbed with small
disturbances from the homogeneous fluidization state, and linearized with respect
to the perturbations. A stability analysis is carried out and shows that the particle
pressure term has a stabilizing effect and that the particle viscosity acts as a short
wave filter. The behavior of the primary instabilities described by the proposed
model is in qualitative agreement with experimental observations.

1. Introduction

A fluidized bed is a two-phase flow system in which particles are suspended by an
imposed upward fluid flow. In principle, the fluid phase could be entirely described
by the Navier-Stokes equation whereas the particles could be individually described
by the Newton’s second law. Anderson & Jackson [1] proposed, however, a fluidized
bed modeled with particles and fluid being considered as two interpenetrating con-
tinua. The local variables describing the motion of the fluid and of the particles are
replaced by smoothed variables obtained by averaging over large regions compared
with the particle spacing, but small compared with the complete system. In typical
problems of fluidized beds involving large particles, the relative motion of the two
phases is an important part of the theory and requires the setting-up of separate
equations for the average motion of the two phases [1]. This approach is different
from suspensions mechanics theory that usually involves a single dynamical equation
for the bulk motion, in which the effects of the particles appears in the rheological
properties of the particulate system. Batchelor [2] presents a different approach for
low particle Reynolds number in order to explore the physics of fluidized beds based
on the hydrodynamics of particles interactions in sedimentation.

Different physical phenomena are involved in fluidization, specially at high par-
ticle Re. Anderson & Jackson [3] were the first to develop a linear stability analysis,
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who found that, in the absence of the particle pressure, fluidized beds are always
unstable to any harmonic disturbance imposed to the system. In real beds, distur-
bances can be found in the distributor and lead to the formation of bubbles of fluid.
Garg & Pritchett [4] introduced a particle pressure term and found that fluidized
beds can be stable in some conditions. There are few correlations for describing
effects of particle pressure and particle viscosity in fluidized beds (e.g. [5, 6]).

The approach of this article is to describe a fluidized bed on the phenomenolo-
gical rational mechanics basis, rather than using abstract theories and hypothesis
not well defined physically. Indeed, by making suitable approximations which re-
sult in tractable mathematics, our theoretical study of such particulate system has
made use of constitutive relationship of physically realizable fluidized beds. As
the particles interact in a fluidized bed, they exchange momentum, and this has
been described here by a particle pressure. We present the continuum equations in
terms of averaged properties and proceed with a linear stability analysis in order
to test our model through comparison with experimental observations of primary
instability, that remains one-dimensional in narrow pipes.

2. Averaged Equations

2.1. Averaging Process

The averaging process is based on a weight function defined as follows: g(r) → 0
as r → ∞, and

∫
V

g(r)dV = 1, where r is defined as the distance between the
analyzed point x and an arbitrary second point, y, r = |x − y|, and V represents
the entire volume of the system. It should be pointed out that the specific form
of g(r) does not need to be known, once g(r) respect the above properties. The
averaging process is strictly valid for a/` ¿ φ1/3, where ` is a typical length scale
of V , a is a typical particle radius and φ a typical particle volume fraction.

The weight function is used to define the particle volume fraction:

φ(x, t) =
∫

Vp(t)

g(r)dVy, (2.1)

where Vp(t) denotes the fraction of the total volume of the system occupied by
the particles at time t. Since g(r) is a strongly decreasing function of the relative
distance r, it will only consider the effects of the particles ‘close enough’ to the
analyzed point. A generalized local mean property for the particulate phase, say
Ψ̄(x, t), can be defined in terms of its local point value, Ψ(x, t), as follows:

φ(x, t)Ψ̄(x, t) =
∫

Vp(t)

Ψ(y, t)g(r)dVy. (2.2)

For a fluid phase property, this definition should be slightly modified: ε(x, t), called
the void fraction, and Vf (t) should appear instead of φ(x, t) and Vp(t). In order
to derive the averaged continuum equations, departing from the point variable con-
tinuum equations, it should be defined how to calculate derivatives of local mean
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variables. Expressions for the derivatives with respect to time and space can be
derived applying the corresponding differential operator to the adequate definition
of local mean property (2.2). A detailed calculation of these derivatives is available
in [7].

2.2. Continuum Averaged Equations

The averaged continuum equations are derived departing from the local point vari-
ables continuum equations for each phase. Since our interest is to describe isother-
mal fluidized beds of spherical particles, only the continuity and the linear momen-
tum equations are going to be considered. Setting u and v as the fluid and the
particulate local point velocities, continuity equations, considering incompressible
phases, can be written as ∇ · u(y, t) = 0 and ∇ · v(y, t) = 0.

Now, setting ρf , Tf , ρp and Tp to denote the density and the stress tensors for
the fluid and for the particulate phases, respectively, the local Cauchy’s equations
are written as follows:

∂ [ρfu(y, t)]
∂t

+∇ ·
[
ρfu(y, t)u(y, t)

]
= ρfg +∇ ·Tf (y, t), (2.3)

∂ [ρpv(y, t)]
∂t

+∇ ·
[
ρpv(y, t)v(y, t)

]
= ρpg +∇ ·Tp(y, t). (2.4)

The equations (2.3) and (2.4) are valid for all y in the analyzed phase. Multi-
plying these equations by the weight function g(r), integrating in the volume
occupied by the corresponding phase, and using the Reynolds’ Transport Theo-
rem in the way of our previous work [7], the average balance equations are obtained
in terms of local mean properties. The continuity equations for the fluid and the
particulate phases, are found to be respectively

∂ε

∂t
+∇ ·

(
εū

)
= 0 and

∂φ

∂t
+∇ ·

(
φv̄

)
= 0, (2.5)

and the Cauchy’s equation for the particulate phase is:

∂

∂t
(φρpv̄)+∇·

(
φρp v̄ v̄

)
= φρpg+∇· (φT̄p)+

∑

N

∫

sp

g(x−y)Tp ·np dSy. (2.6)

Here g denotes the gravitational acceleration and N the total number of particles
in the bed. The corresponding fluid equation keeps the same form as above but ε,
ρf , ū, Tf and nf should appear instead of φ, ρp, v̄, Tp and np . Tp · np in the
summation term of (2.6) is the traction acting on the particle-fluid interfaces. The
summation over all the particles denotes the local mean force per unit of volume,
ffp, exerted by the fluid on the particles. In the absence of superficial stress, the
Newton’s 3rd law simply implies that ffp = −fpf = f .

A constitutive equation for the fluid-particle interaction force is needed. We
consider here the effect of a linear drag due to the relative velocity between the
phases and the effect of a transient drag (i.e. virtual mass effect) related to the
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transient acceleration of the fluid surrounding the particles. This model brings most
of the physics present in a fluidized bed for arbitrary density ratios, χ = ρf/ρp and
for particle Reynolds numbers Re = ρfau0/µf = O(1), with µf being the fluid
viscosity and u0 the upward mean velocity (i.e. volume flow rate of fluid, divided
by the cross sectional area of the container). The parameter χ defines the type of
fluidization: gas-solid (typically, χ ∼ 0, 01) or liquid-solid (typically χ ∼ 1 ). For
convenience of notation, the over-bars representing the averaged properties will be
dropped. Therefore,

f = α(φ)
µf

a2
(u− v) + β(φ)ρf (u̇− v̇), (2.7)

where α(φ) is defined from the Richardson & Zaki [8] correlation function for a
sedimenting sphere in a dilute dispersion and β(φ) is taken from the Zuber coefficient
for virtual mass of a particle in an homogeneous dispersion in irrotational fluid [2].
These drag coefficients are calculated as follows:

α(φ) =
9
2

φ

(1− φ)n
, β(φ) =

1 + 2φ

2(1− φ)
,

where n is a parameter which varies between 3 and 5 for fluidized beds [8]. The
relative acceleration term u̇−v̇ is defined as: u̇−v̇ =

(
∂u
∂t − ∂v

∂t

)
+(u · ∇u− v · ∇v).

Compressible-Newtonian like stress tensors for both phases are proposed in
terms of the local mean velocities and pressures. Namely

εTf = −pI + µf

[∇u +∇T u− 2
3
(∇ · u)I

]
,

φTp = −ppI + µp

[∇v +∇T v − 2
3
(∇ · v)I

]
.

µp is the particulate phase viscosity, p is the pressure of the fluidphase, pp is the
particle pressure and T denotes the transpose tensor. In this stage, pp and µp are
considered monotone increasing function of φ only. Actually, dimensional analysis
suggests that pp and µp may also depend on a particle temperature, defined as
θ = 1

3v
′2, where v′ denotes the particles mea velocity fluctuation [2]. The expres-

sions adopted here are chosen to match an ad-hoc form for pp used successfully by
Hernandez & Jimenez [6], and the asymptotic expression for µp of Frankel & Acrivos
[9] derived for a statistically homogeneous suspensions in the limit of φ → φc. Both
expressions have at least some theoretical basis instead of those approximate ex-
pressions that are largely empirical: pp = σG(φ) and µp = Mh(φ), with

G(φ) = φ3exp
(

rφ

φc − φ

)
, h(φ) =

φ

1− (φ/φc)
1
3

.

M , r, σ are material parameters and φc is the maximum close-packing particle
concentration for random suspensions. The governing equations are made non-
dimensional by using the scaling u0 for velocity, a for length, µf for viscosity and
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ρfu2
0 for stress. The equation for the particulate phase is written as follows:

φ

(
∂v
∂t

+ v · ∇v
)

= −χσ∇G(φ) +
χMh(φ)

Re

[
∇2v +

1
3
∇(∇ · v)

]

−φFre3 +
α(φ)χ

Re
(u− v) + χβ(φ)(u̇− v̇). (2.8)

The corresponding fluid phase equation has a similar form as (2.8) and can be found
in [7]. The important physical parameters of the system Fr = ag/u2

0, χ = ρf/ρp

and Re = ρfau0/µf are the particle Froude number, the specific mass ratio and
the particle Reynolds number, respectively. Non-dimensional continuity equations
keep the same form of (2.5).

3. Linear Stability Analysis

The aim is now to explore by means of a normal mode analysis the dynamical
behavior of a uniform fluidized bed subjected to small amplitude disturbances like
a plane wave, say Ω = Ω0e

ξtei(ωt−kz). Such disturbances, usually arise close to
the distributor region of real fluidized beds, are the origin of bubbles and clusters
that appear in the upper region of the bed, changing completely the dynamics of
the system [10, 11]. The stable condition for this analysis is the uniform state of
fluidization, one of the simplest solutions of the governing equations, [2, 3, 4]: u =
u0e3, v = 0, φ = φ0 and p = p0(z), where p0(z) is the hydrostatic pressure. Small
disturbances are imposed to the system in terms of non-dimensional quantities:
u = e3 + u1(z, t), v = v1(z, t), φ = φ0 + φ1(z, t) and p = p0(z) + p1(z, t).

By imposing the perturbed solution and retaining linear terms in perturbations
only, the linearized governing equations of motion in terms of pare determined.
The resulting system may be written as A ·Ω = 0, where A is a differential matrix
operator (i.e. the modal matrix) and Ω is the vector of the amplitude of the per-
turbations, defined as Ω = [u1 v1 φ1 p1]T . Supposing plane wave perturbations
of the form Ω = Ω0e

st−ikz, where s = ξ + iω is the complex frequency and k is the
wave number of the disturbance, the resulting linearized system in the s− k space
is found to be: Ã · Ω0 = 0, where Ã is the differential operators matrix written in
the s− k space. The form of Ã is obtained after extensive algebraic manipulations:

Ã=




−(1− φ0)ik 0 s + ik 0

0 −ik −s 0

(1− φ0)(−s− ik) + 4k2

3Re+ −α(φ0)
Re + β(φ0)s −Fr + α′(φ0)

Re −ik

+α(φ0)
Re − β(φ0)(s + ik)

−χα(φ0)
Re + χβ(φ0)(s + ik) −φ0s + 4χMh(φ0)k

2

3Re + −χσG′(φ0)ik+ 0
+χα(φ0)

Re − χβ(φ0)s +Fr − χα′(φ0)
Re



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The necessary condition for non-trivial solution of the resulting system is
det(Ã) = 0. This leads to an algebraic quadratic equation in eigenvalues s:

Q1s
2 + (Q2 + iQ4)s + Q3 + iQ5 = 0,

where

Q1 =
−φ0 (1− φ0)− χβ(φ0)

φ0 (1− φ0)
, Q2 =

4
3

χMh(φ0)
φ0Re

k2 +
χα(φ0)

Re φ0 (1− φ0)
,

Q3 = − (1− φ0) χσG′(φ0)− χβ(φ0)
1− φ0

k2, Q4 =
−2χβ(φ0)

1− φ0
k,

Q5 = −FrRe (1− φ0)− χα(φ0)− χα′(φ0) (1− φ0)
(1− φ0)Re

k.

The interest is to evaluate the behavior of the real part of s, called the growth
rate of disturbances, ξ, against k. The imaginary part of s denotes the frequency of
the disturbances ω. The velocity propagation V = dz/dt of a disturbance is defined
from the phase equation, ωt − kz = constant. Differentiating this relation gives,
V = ω(k)/k. The dispersion relation s = s(k) resulting from our calculation gives

ξ(k) = −
−Q2 ±

√
Γ+R

2

2Q1
, and ω(k) = −

−Q4 ± Θ
Γ+R

√
Γ+R

2

2Q1
, (3.1)

where R =
√

Γ2 + Θ2, Γ = Q2
2 −Q2

4 − 4Q1Q3, and Θ = −4Q1Q5 + Q2Q4.
Locally stable state for a specific wave number k′ disturbance will be achieved

when ξ(k′) < 0. When ξ(k) < 0, ∀k, we say that the fluidized bed is linearly stable.
On the other hand, if ξ(k′) > 0 for a specific k′, the bed is locally unstable and if
ξ(k) > 0 for any k, the bed is said to be unstable.

The neutral line with respect to any physical parameter involved in the problem
is obtained when we determine the wave numbers kn for which ξ(kn) = 0. Since
our interest here is to evaluate the effect of the particle pressure, a neutral line with
respect to the particle pressure coefficient should be plotted. An expression σ = σ(k)
for the neutral can be derived from (3.1). After a long algebraic manipulation, we
have for σ:

σ =
−8Q1Q5(1− φ0)(Q2Q4 + 2Q1Q5) + Q2

2[3Q
2
4(1− φ0) + 16Q1k

2χβ(φ0)]
16 (1− φ0)Q2

2Q1k2χG′(φ0)
.

A similar expression can be determined for M from (3.1) as well.

4. Results

The results show that both gas-fluidized beds and liquid-fluidized beds suffer the
same primary one-dimensional instabilities of an uniform fluidized bed. Figure 1
(a) and Figure 1 (b) show that the growth rate of disturbances in a gas-fluidized
bed (i.e. small χ) is faster, than in a liquid-fluidized bed (higher values of χ).
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Figure 1: Growth rate of disturbances for a fluidized bed with Re = 4; Fr = 10;
n = 3, 65; φ0 = 0, 57; r = 0, 3; M = 50 and φc = 0, 65. In (a), χ = 0, 01. The
curves are identified by 1→ σ = 0, 1; 2→ σ = 0, 9; 3 → σ = 5 and 4 → σ = 15. In
(b), χ = 0, 5. The curves are identified by 1 → σ = 0, 1; 2 → σ = 0, 3; 3 → σ = 0, 7
and 4 → σ = 0, 9 .

0

0.005

0.01

0.015

0.02

0.025

0 0.1 0.2 0.3 0.4 0.5 0.6

2

2.005

2.01

2.015

2.02

2.025

0.28 0.2805 0.281 0.2815 0.282 0.2825

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.1 0.2 0.3 0.4 0.5

1

3

2

4

(a)

1

2

3
4

V ξ (b)

k k

Figure 2: Results obtained for a liquid-fluidized bed with χ = 0, 5; Re = 4; Fr = 10;
n = 3, 65; φ0 = 0, 57; r = 0, 3; M = 50 and φc = 0, 65. In (a), the velocity of
propagation of disturbances is plotted. In the insert, 1→ σ = 0, 9; 2→ σ = 0, 7; 3
→ σ = 0, 3 and 4 → σ = 0, 1 . In (b), the effect of the particle viscosity. The curves
are identified by 1→ M = 50 , 2→ M = 100, 3 → M = 150, and 4→ M = 200.
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Figure 3: Neutral lines for σ obtained for Re = 4; Fr = 10; n = 3, 65; φ0 = 0, 57;
r = 0, 3; M = 50 and φc = 0, 65. In (a), χ = 0, 01 and in (b), χ = 0, 5.

This difference is in general agreement with experimental observations of fluidized
beds in narrow pipes [11]. It may occur because in a gas-fluidized bed the distur-
bances increase until a full bubble develops, whereas there is no intensification of
the disturbances in a liquid-fluidized bed and then, no bubbles appear. Actually,
the slower growth rate of this primary instability in liquid fluidized beds is a direct
consequence of the lower fluidization velocity required. The linear theory is, how-
ever, unable to predict the mechanism of secondary instability originated by the
gravitational overturning caused by a dense heavy region of the bed finding itself a
light region. This is experimentally observed in wider containers [11]. The particle
pressure effect has a stabilizing effect, since it reduces the region of instability for the
beds, as it can be seen in Figure 1. It happens because the particles within the bed
are in active motion, frequently bouncing off one another. As the particles collide,
there is an exchange of momentum and this is described by the particle pressure
term. A region of enhanced concentration would then be at a higher pressure and
this would drive a flow to even out the disturbance. Gas-fluidized beds require a
stronger particle pressure effect in order to achieve stability. On the other hand,
small variations of the parameter σ in a liquid fluidized bed caused a significant
decreasing of the unstable region.

The velocity of propagation of the disturbances is plotted in Figure 2 (a) for
a typical liquid-fluidized bed. The dispersive nature of the disturbances becomes
clear, as it seen that different modes propagate with different velocities. This plot
also shows that the changes in the velocity of the disturbances is slightly susceptible
to variation of the parameter σ. The insert in Figure 2 (a) clarify this point,
indicating that for σ ranging from 0.1 to 0.9 the variations in velocity is about 1%.

The particle viscosity tends to dissipate large wave number waves and their
velocities tend to equalize and decay to zero as k grows. In Figure 2 (b), the dissi-
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Figure 4: Neutral lines for M obtained for Re = 4; Fr = 10; n = 3, 65; φ0 = 0, 57;
r = 0, 3; M = 50 and φc = 0, 65. In (a), χ = 0, 01 and in (b), χ = 0, 5.

pative effect of the particle viscosity parameter is shown. Increasing the coefficient
M and keeping constant the other parameters, the value for critical k in which a
neutral growth is reached decreases. This indicates a short wave cut-off of the par-
ticle viscosity. It means that higher values of viscosity are able to dissipate modes
of larger wave length. It should also be noticed that the maximum amplification
rate decreases as M increases, and the value of k at which this happens is changed.
The neutral lines in Figure 3 determine two specific regions. Stability is achieved
for a specific disturbance of wave number k when the particle pressure coefficient is
higher than that belonging to the neutral line. It is important to note in Figure 3
(a) that the scale for σ in gas-fluidized bed is about two orders of magnitude higher
than for a liquid-fluidized bed, Figure 3 (b). The stability region dominates these
plots for high values of σ, despite the wave number of the disturbances. On the
other hand, particle viscosity effects lead to a stable dominant region as k → ∞.
Figure 4 shows that for disturbances of large wave length the region of instability
dominates in both kinds of fluidization. This indicates that particle viscosity does
not stabilize the fluidized bed, since there is no value of M for which stability is
achieved for any k. Thus, particle viscosity filters the modes of smallest wave length.

5. Conclusion

In this work, a continuum model that recovers the dynamical behavior of uniform
gas and liquid fluidized beds undergoing plane wave disturbances has been proposed.
The results have confirmed that liquid-fluidized beds are more stable than gas-
fluidized beds. The growth rates of disturbances were much smaller for the case
of liquid beds and much lower values of particle pressure were required to reach
stability. It was also shown that particle viscosity acts as a short wave cut-off. The
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linear stability analysis developed has predicted new analytical expressions for the
growth rate, for the propagation velocity of the disturbances, and for the neutral
lines of the physical parameters governing the fluidization process. The proposed
model has captured the mechanism of primary instabilities of a fluidized bed, in
qualitative agreement with experimental observations in narrow pipes. This primary
instability has a mechanism that intensifies the growth rate of the disturbances
associated with density ratio of the bed and it is seen to have a strong dispersive
property. We plan to address the problem of stability of fluidized beds through a
hierarchy of wave interaction analysis (KdV equations) in our future work.
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