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Abstract The Karhunen-Loève expansion (KLE), also known in the literature as
the proper orthogonal decomposition, is a powerful tool for the model reduction
of structural systems. Although the method has been used for quite some time
in turbulence studies to uncover spatial coherent structures in flow fields, only
recently has it been applied to structural dynamics problems. The KL method is a
primarily statistical one where the system dynamics is assumed to be a second-order
stochastic process. It consists in obtaining a set of orthogonal eigenfunctions where
the dynamics is to be projected. Practically, one constructs a spatial autocorrelation
tensor and then performs its spectral decomposition. The resulting eigenfunctions
will provide the required proper orthogonal modes (POMs) or empirical eigenmodes
and the correspondent empirical eigenvalues (or proper orthogonal values, POVs)
represent the mean energy contained in that projection. Finally, one uses a number
of the computed modes in Galerkin’s method in order to obtain a reduced dimension
system (this is sometimes called the KLG method). Although this method can also
be applied to linear systems, its main application stems from nonlinear ones. In this
present work, such a system is studied, namely a linear clamped beam impacting
a flexible barrier. The KLE will be used to look into the dynamics of the system
and to generate a reduced-order model (ROM).

1. Introduction

Although there are some engineering systems where impacts are part of the project
[3], most of the time this phenomenon is related to wear, fatigue and noise as, for
example, in the case of gear boxes. The interest in vibroimpact systems arises due
to their intrinsic nonlinear characteristic which prevents their study through more
traditional methods such as modal analysis. Actually, systems of this kind have an
extremely complex dynamic behaviour, sometimes even chaotic [3, 4, 6]. Therefore,
they are normally studied with bifurcation diagrams and Poincaré maps. However,
most of the vibroimpact systems investigated so far consists of simple ones with a
single degree of freedom [3]. It is expected that the flexibility of a structure will
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play an important role in its impact response, specially through the excitations of
many of its degrees of freedom. This is another motivation for the application of
the KL expansion to this problem. Moreover, the fact that the considered system
is piecewise linear will allow a direct comparison between the POMs obtained with
the KL expansion and the associated linear system mode shapes.

The main objective of this paper will be the construction of a reduced-order
model via Galerkin projection, using the POMs obtained with the KL expansion as
trial functions. This new model will be compared to the original one that used the
first ten mode shapes of a cantilever beam as trial functions.

2. The Karhunen-Loève Decomposition

Let a dynamical system be governed by equations whose solutions give a flow, i.e.,
a function of time and space that describes the evolution of a particular state,
denoted by u(x, t) and defined on position x ∈ D, where D is a Hilbert space, and
time t ∈ [0,∞).

2.1. Main Hypothesis

In order to define the autocorrelation tensor for the flow, it is modeled as a second-
order stochastic process. However, it is desirable to avoid the mathematical de-
scription of the sample space, σ-algebra and probability measure associated with
the flow. A great advantage of the KLE is that this description is unnecessary,
though two aditional assumptions are needed: the flow is supposed to be strict-
sense time-stationary and ergodic [7]. Let v(x, t) define the deviation from the
mean flow, i.e.,

v(x, t) = u(x, t)− E [u(x, t)] . (2.1)

Hence, v(x, t) is a stochastic process with zero mean and consequently its auto-
correlation tensor equals its autocovariance tensor [8]. If v(x, t) is real, then the
two-point spatial autocorrelation function is defined by the dyadic product

R(x,x′) = E [v(x, t)⊗ v(x′, t)] . (2.2)

A final assumption regarding the flows u(x, t) and v(x, t) is that they are con-
tinuous in quadratic mean, what implies the continuity of R(x,x′) in D [7].

2.2. Model Reduction

In order to find a reduced-order flow model that still reveals the main features
contained in the dynamics, one can search for an expansion of the form

v(x, t) =
∑

k

ak(t)ψk(x), (2.3)

with
E [ak(t)al(t)] = λkδkl, (2.4)
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i.e., the modes are uncorrelated, and

〈ψk,ψl〉 =

∫

D

n
∑

j=1

ψkj
(x)ψlj (x) dx = δkl, (2.5)

meaning that the set {ψk} ∈ L
n
2
is orthonormal. Inserting equation (2.3) into (2.2)

and using the relation given by (2.4), one obtains

R(x,x′) =
∑

k

λkψk(x)⊗ψk(x
′). (2.6)

Since by definition and according to our assumptions, R(x,x′) is a positive semi-
definite continuous Hermitian operator, Mercer’s Theorem [9] guarantees the exis-
tence and uniqueness of the spectral representation of R(x,x′) given by (2.6), where
{ψk} are the eigenfunctions of the integral operator with kernel R(x,x′) and {λk}
are the corresponding real and nonnegative eigenvalues so that

∫

D

R(x,x′)ψk(x
′) dx′ = λkψk(x). (2.7)

Then, the Karhunen-Loève Theorem [7] states that a continuous second-order sto-
chastic process with autocovariance tensor K(x,x′) can be expanded in a series
analogous to (2.3) where {ψk} are the eigenfunctions of the integral operator with
kernel K(x,x′) and {λk} are the corresponding eigenvalues. Since for v(x, t) the
autocovariance equals its autocorrelation, it is thus proved that the expansion stated
in equation (2.3) is realizable. The set {ψk} is formed by the POMs, also called
coherent structures [10].

The original flow u(x, t) can, therefore, be reconstructed with reduced dimension
through the truncation of the series (2.3) and addition of the mean flow:

u(x, t) =

K
∑

k=1

ak(t)ψk(x) + E [u(x, t)] , (2.8)

where the temporal coeficients ak(t) are easily found by projecting the flow onto
each POM ψk(x), i.e.,

ak(t) = 〈v(x, t),ψk(x)〉. (2.9)

Finally, the eigenvalues may be written, using the ergodic hypothesis, as

λk = 〈ψk,Rψk〉 = E
[

|〈ψk,v〉|
2
]

= lim
T→∞

1

T

∫ T

0

|〈ψk,v〉|
2
dt, (2.10)

indicating that they are a measure of the system mean energy projected on the axis
ψk in the functional space. Besides, it can be shown that the total mean energy
equals the sum of all eigenvalues and that it is optimal in the sense that given a
fixed number of modes, no other linear decomposition can contain as much energy
as the KLE for the particular dynamics from which the POMs were calculated [10].
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3. Pratical Construction of POMs

There are two pratical methods available for the construction of the KLE, namely
the original direct method and the more recent snapshot method introduced in [10].
Since this work deals with the direct method, it is the only one discussed.

3.1. Direct Method

In this method, the displacements of a dynamical system are measured or calculated
at N locations and labeled u1(t), u2(t), . . . , uN (t). Sampling these displacements M
times, we can form the following M ×N ensemble matrix:

U =
[

u1 u2 . . . uN

]

=







u1(t1) u2(t1) . . . un(t1)
...

...
. . .

...
u1(tM ) u2(tM ) . . . un(tM )






. (3.1)

Thus, using stationarity and ergodicity hypothesie, the variation from the mean is

V = U−
1

M







∑M

i=1
u1(ti)

∑M

i=1
u2(ti) . . .

∑M

i=1
uN (ti)

...
...

. . .
...

∑M

i=1
u1(ti)

∑M

i=1
u2(ti) . . .

∑M

i=1
uN (ti)






(3.2)

and the spatial correlation matrix of dimension N ×N formed as

R =
1

M
V

T
V. (3.3)

The POMs are then given by the eigenvectors of R, orthogonal due to its simmetry.
Eigenvalues will provide the POVs. Clearly, the matrix dimension is determined by
the number of sampling points N . For a three-dimensional flow v(x, t) ∈ R

3, the
number of operations needed for the diagonalization of R is O(N 3) [2].

4. Modeling the Vibroimpact System

Consider the cantilever steel beam depicted in Figure 1. Its transversal displacement
w(x, t) is constrained in a section starting at the free end by two elastic barriers
with 50 mm of length and located at a distance ε from the top and bottom surfaces
of the beam. The beam geometric properties are: length L = 510 mm, thickness
h = 5.25 mm and width b = 24.85 mm. The elastic barrier modeling was performed
through a discretization that considers the existence of linear springs spaced by
0.1 mm sections, so that the system forced equation of motion is, according to
Euler-Bernoulli theory and at first disconsidering structural damping:

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= Ff sin (ωf t) δ (x− xf ) +

N
∑

i=1

Fci(t)δ (x− xci) , (4.1)
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Figure 1: Vibroimpact system.

where Ff is the sinusoidal forcing magnitude applied at xf = L/2, ωf its frequency,
δ is the Dirac delta function , xci the positions where the barriers were discretized,
i.e., assumed positions of the springs (here xci = {460; 460.1; . . . 510} mm), and
Fci the respective forces acting on the beam due to its impact against the springs.
These impact forces assume the following values:

Fci(t) =

{

0, |w(xci, t)| ≤ ε;
−k [w(xci, t)− ε sign (w(xci, t))] , |w(xci, t)| > ε,

(4.2)

where k represents the spring stiffness that was taken as 109 N/m.
The PDE (4.1) discretization was performed via Galerkin’s method using as trial

functions the first ten mode shapes belonging to the associated linear system [5].
An approximate solution of the form ŵ(x, t) =

∑

i qi(t)φi(x) was sought with

φi(x) = coshβix− cosβix−
senhβiL− senβiL

coshβiL+ cosβiL
(senhβix− senβix) , (4.3)

where βi is an appropriate solution to cosβL coshβL = 1, and qi are the temporal
coordinates.

4.1. Damping

Modal damping ratios were afterwards added to the discretized system of ODEs.
The first six modal damping ratios calculated from the frequency response obtained
with an experimental setup [11] are ζ1 = 0.0461, ζ2 = 0.0084, ζ3 = 0.0039, ζ4 =
0.0028, ζ5 = 0.0023, ζ6 = 0.0063. The other four ratios were assumed as 0.003.

4.2. Simulation

The beam was subjected to a harmonic forcing function with Ff = 140 N and
ωf = 100 rad/s which is slightly inferior to the beam first natural frequency. The
discrete system was integrated using MATLAB◦R ode45 4th/5th order Runge-Kutta
algorithm.

Figure 2 presents the simulation results for the beam free end. The curves
represent the top and bottom displacements of the free end between 0 and 0.07 s
and the thick horizontal lines represent the barrier position.
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Figure 2: Dynamic response.
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Figure 3: Microimpacts at the free end.

One can easily observe the presence of high frequency oscillations. Actually, in
the beginning, the beam movement almost resembles the first mode shape since
the excitation frequency is close to the first natural frequency. However, after the
first impact and due to the system flexibility, higher modes are excited. These
new oscillations have the effect of generating multiple impacts in a very short time
interval. These microimpacts depicted in Figure 3 add a lot of complexity to the
dynamics.

5. Application of the Decomposition

In order to calculate the empirical modes to this problem, the beam dynamics was
simulated until a final time of 30 s. The displacements of points spaced by 1 mm
were sampled each 0.03 s. Hence, for each point there were 1000 time samples.
For linear systems it is a good strategy to keep the sampling interval greater than
the first natural period [12]. In the present case, though, this condition can be
somewhat relaxed as the impacts tend to uncorrelate the samples. The Karhunen-
Loève expansion was then obtained through the direct method.

Figure 4 presents the first 50 POVs. As it can be seen, most of the energy is
concentrated in the first POV which accounts for 98.7 % of it. The second POV
accounts for only 1.17 % and the remaining ones account for less than 0.1 % each.
Furthermore, it is clear that only the first 10 POVs have physical meaning since the
other POVs have magnitudes inferior to MATLAB◦R numerical precision. This is a
direct consequence of the fact that only 10 mode shapes were used in the simulation.

Figure 5 shows the first eight empirical eigenmodes and mode shapes for the
system. One can see that the first POM significantly differs from the first mode
shape reflecting the influence of the barrier upon the system. And while the second
POM still presents some difference from the second mode shape, the remaining
POMs that are almost indistinguishable from the respective mode shapes.
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Figure 4: POVs obtained for the vibroimpact problem.
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Figure 5: Comparison between empiri-
cal eigenmodes and mode shapes.
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Figure 6: First eight temporal coeffi-
cients for the KL expansion.

The projection of the dynamics onto the POMs provides the temporal coefficients
that complete the expansion of the terms accounting for the variation in relation
to the mean in equation (2.8). Figure 6 depicts the first eight temporal coefficients
related to the POMs of Figure 5. It is interesting to note that at first only the first
two POMs account for the dynamics. However, after the first impact, all empirical
modes are excited. Besides, the following microimpacts continuously redistribute
the energy among the POMs.

Finally, the system dynamics was reconstructed according to the KLE. Figure 7
presents this reconstruction using one, two and three POMs. One can observe that
although the first POM has almost 99 % of the energy, the reconstruction based
exclusively in this mode is not enough accurate. On the other hand, using three
POMs one can achieve an excelent precision in this reconstruction. This result
leads to the belief that using these three POMs as trial functions in the Galerkin’s
method shall yield an accurate reduced-order model.
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Figure 7: Dynamics reconstruction using one, two and three empirical modes.

6. Reduced-order Model Formulation

Rewriting the beam equation of motion (4.1) in a more compact form as

ρA
∂2w(x, t)

∂t2
= F (x, t)−D (w(x, t)) , (6.1)

where D (w(x, t)) = EI∂4w(x, t)/∂x4, and noting that the use of POMs leads to
the following approximate solution

ŵ(x, t) =

n
∑

i=1

ai(t)ψi(x) + E [w(x, t)] , (6.2)

the application of Galerkin’s method to the PDE (6.2) using the POMs as trial
functions yields this ODE system:

ρAäj(t) =

∫ L

0

F (x, t)ψj(x)−

n
∑

i=1

ai(t)

∫ L

0

D (ψi(x))ψj(x) dx−

∫ L

0

D (E [w(x, t)])ψj(x) dx. (6.3)

Since structural damping is not part of the PDE defining the equation of motion
and was introduced in the original discretized model a posteriori, the question of
how to introduce it in this new model arises at this point. As shown in Figure 5,
with the exception of the first POM, all the other empirical modes are very similar
to the respective mode shapes. Hence, it was decided to use the same damping
ratios from the original model in this new one. Figure 8 presents a comparison
between the original and the reduced-order model constructed with 5 POMs. The
result is clearly not as good as expected, even though only 3 POMs were required
to perform an excellent reconstruction of the dynamics as depicted in Figure 7.
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Figure 8: ROM with 5 POMs.
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Figure 9: ROM with 10 POMs..

Likewise, Figure 9 shows a comparison between original and the full KLG mod-
els. Although the result has improved, one can see that the full KLG model is not
yet capable of reproducing the original response, specially regarding low frequency
oscillations. A probable explanation for this result is that the use of the modal
damping ratios for the first and second POMs is innapropriate as they are phys-
ically different. Therefore, good results could be expected if the modal damping
ratios were projected onto the base generated by the POMs. In other words, since
the first POM does not correspond to any mode shape, actually consisting in a
weighted average of them, its damping ratio should also be a weighted average of
the modal ratios. This question will be further addressed in a future paper.

7. Conclusions

This work presented the application of the KLE to a vibroimpact piecewise linear
system. It was shown that the used model is capable of reproducing the existence of
microimpacts that have significant effects upon the global system dynamics. More-
over, the empirical eigenmodes and respective temporal coefficients may enhance the
understanding of the energy flux throughout the system. Since the original model
contained only ten mode shapes, the KL expansion was only able to capture ten
POMs. In spite of that, only three were necessary for a good dynamic representation
of the system. Finally, a reduced-order model was constructed via Galerkin projec-
tion having the POMs as trial functions. Unfortunately this was not good enough
due to the use of modal dampings for the empirical modes as previously discussed.
This could have been avoided if the structural damping had been accounted for in
the PDE through the insertion of a term c∂w(x, t)/∂t as proposed in [1]. In this
case, though, there would be the additional difficulty of estimating the coefficient
c from the experimentally calculated modal damping ratios. It is yet important to
highlight that a KLG model can be directly derived from an experiment.
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Resumo A expansão de Karhunen-Loève (KLE), também conhecida na literatura
como decomposição ortogonal própria é uma poderosa ferramenta estat́ıstica para
formulação de modelos reduzidos de estruturas. Para isso, a dinâmica do sistema
é modelada como um processo estocástico de segunda ordem e é constrúıdo o ten-
sor autocorrelação espacial deste processo, cuja decomposição espectral fornecerá
um conjunto de autofunções ortogonais chamados de modos ortogonais próprios
(POMs) ou modos emṕıricos e um conjunto de autovalores associados represen-
tando a energia de cada modo. Estes modos emṕıricos são usados como funções de
aproximação no método de Galerkin para se construir um modelo reduzido. Neste
trabalho, será estudado um sistema de vibroimpacto linear por partes constitúıdo
por uma viga cuja vibração transversal é limitada por batentes elásticos.
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