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Simultaneous Controllability for a System with
Resistance Term

G.O. ANTUNES, F.A. ARARUNA, L.A. MEDEIROS! Instituto de Matemdtica,
UFRJ, Caixa Postal 68530, 21945-970 Rio de Janeiro, RJ, Brasil.

Abstract. In this work we study the simultaneous controllability for a system
of equations that constitutes a model of dynamical elasticity for incompressible
materials.

1. Introduction

Let © be a bounded domain of R™ with regular boundary I". Let @ denote the
cylinder © x (0,T) whose lateral boundary is given by ¥ =T x (0,7).
In this work, we shall consider the simultaneous controllability for the system

yy — Ayr=~Vp in Q
Yo —Ays = —Vq n Q
divy; =0 in Q@
div yo =0 in Q@
Y1 =10 on X (1.1)
% =w on X
1%
vi(0)=wi, y1(0)=y; in Q
y2(0) =93, y5(0) =y; in 9

where p = p (z,t) and ¢ = g (z,t) denote the resistance terms.

Physically the above system models the small deformations or displacements of
the solid body Q2 C R™ composed of incompressible elastic materials, subject to
controls acting on the boundary X.

The simultaneous controllability for the system (1.1) is formulated as follows:
given T' > 0 large enough, find a Hilbert space H such that for every Set{ i, y9, y%}
belonging to H, there exists a pair of controls {v,w}, such that a solution
{y1 (v),y2 (w)} of (1.1) satisfies the equilibrium condition

1 (T) =y1 (T) = y2 (T) = 5 (T) =0, (1.2)

and
o
ot

1Partially supported by PCI-LNCC-MCT-2001.

w on .
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We investigate this problem by means of the Hilbert Uniqueness Method (HUM)
idealized by Lions [6].

The problem of the simultaneous controllability was initially studied by Lions [6].
Kapitonov [4] investigated a similar question. For exact controllability we mention
Cavalcanti et al [2].

2. Notations, Assumptions and Results

We consider g, Q; C R™, n > 2, two bounded domains with boundary 92y, 921 of
class C?, such that

ﬁl C Qo , (21)
Qo, Q are star shaped with respect to 2o € ;. (2.2)

Let us assume -
Q=0Q0\9Q. (2.3)

We set m (x) = & — 20, R(x9) = max|m (x)| and define
€N

I'(zg) ={xel;m(z) v(z)>0} and Ty (zo) =T\ T (x0).
The following partition of the boundary is chosen
Io=T(x0), T'1 =Tu(z0).
The action in the boundary ¥ is assumed to be of the following type

[ v on ¥y=T¢x(0,T)
Y700 on 2\Zg=T1 x(0,T) °

0

ﬂ:w on X,
ov

Y2 = on X\ Xg

In addition we consider the following hypotheses
p=¢g=0 on X (2.4)
We introduce the following Hilbert spaces

V:{ue(H&(Q))n;divuz()},

H:{UG(LQ(Q))n;divuzo, u-nzOonF},

with the structure of internal product and norm induced by (H{ (2))" and (L? (2))",
respectively. We still consider

V={pe(D(%)"; div =0},
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Xz{(pE(Hl(Q))n;divgo:O,@zOonFl},

and 5
Y = {(peX; Ay € (LQ(Q))R, a—f :Oonfo}.
The energy associated with the system (1.1) is given by
E(t) = Ex(t) + Ex(t), (2.5)
where

E; (t) :;{;/wa,ﬂ- (t)|2dx+;/ﬂ|y;i (t)|2dm}, i=1,2. (26

3. Inverse Inequality

Let us consider the following problem

Y — A®; = —Vp in Q
div &1 = 0 in Q
(I)l =0 on X (31)
Oy (0) =Y, &, (0)=d! in Q.

Lions in [7] showed that the solution ®; of (3.1) has the hidden regularity % €
v
(L2 (E))n and that mapping
7, o7 — 3.2
{ 1 1} = v ( )
is continuous from V x H in (L*(X))".
Remark 3.1: Multiplying the equation in (3.1); by mV®; and integrating in Q,

/<I>'1’mVy1dxdt—/ A@lmVCI)ld:cdt:/ (=Vp) mV &, dadt.
Q Q Q

Let us put

X = — / LT
o 0r; oxy,

with the summation convention of repeated indices. Integrating by parts in z; and
observing (3.1), comes that

T
X = —/ i mk@udt’ +/ 0 <6p mk) ®y;dxdt
0 8.21 r Q

8$k 8351
0%p Op Omy,
= ———mypPy;dadt — ——®y;dxdt
ankaxim’“ ndrdt o Oxi Oxy, e

2
0 00z 0 0z;
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Now,

T
n/ Ip ®;dzdt = n/ p®iidt| — n/
Q0w 0 Q

Therefore

8@12

d dt = /p div ®1dzdt = 0.
Q

9%p
X = b4, .
/ankaxi my®q;drdt

Making integration by parts again, it results in

T
op dop O
X = ——myPq;dt| — ®q;) dxdt
/0 akak 1 ‘F axkaxl< k®1i) d
Op Omy, Op 0Py,
— P dxdt — | —— dxdt
/&ck or; 0kak ow;
Jp

5k<I)1,d dt—/—mk div®dxdt
o Ok

= /p div®dxdt — / —mk div®dxdt = 0.

Lemma 3.1. Assumeq=q(x) € [Cl (Q)}n Then, for every solution of (3.1) with
data {@?, @}} € V x H, the following identity holds:

32 fLasta) (o)

= (9 (1) ,a(@)Ve1)|g

0%, |*
ov

ap aq)lz

ddt

42 Z/ k |q>/ )P = |V (1) dxdt+ Z/@xi 833; 8@; dxdt.
J,k=1

Lemma 3.2. Assume T > 2R(xg). Then the following estimate holds for every
solution of (3.1) with data {®9,®1} € V x H,

R (o) 0%, |?
Eo < 2(T —2R(m0))/20 v

In the proof of the Lemmas 3.1 and 3.2 we used the idea of Lions [6] together
with the Remark 3.1.

We consider now the homogeneous problem for &,

ds. (3.3)

DY — ADy = —Vgq in Q
div y = 0 in Q
0]
0®: _ on X (3.4)
ov
q)g =0 on 21
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Similarly to the Remark 3.1, multiplying the equation in (3.4); by mV®, and
integrating in (), we obtain

/@ng@)gdmdt—/ A(I)ngCDdedtz/ (=Vq) mV®ydzdt = 0. (3.5)
Q Q Q

Lemma 3.3. Assume q € [Wl’oo (Q)]n Then for every weak solution of the ho-
mogeneous problem (3.4) with data {<I>g, <I>§} €Y x X the following identity holds

2

1 0P
[ (1058~ 1900a?)dz 5 [ qun| 2] as
20 E1
8@22(t) T 1 an 2 2
= | Pyt = =— (195" — |[V®2|” ) dadt
(o). 05520 )| 5 [ S0 (joif = v

% 8(I)QZ (‘3<I>21
@ 0r; Ox; Oxy

dxdt,

where V,®o denotes the tangential gradient of ®o.
Let A2 > 0 be the first eigenvalues of the following spectral problem

—AP=)X20 in Q
div ® =0 in €

or _ 0 on Iy (36)

ov

b = on I'i.

(n—1) . ,
Lemma 3.4. Assume T > 2R (z¢) + S Then every solution of the (3.4) with
0
data {®9, @3} €Y x X wverifies
R
Fon < [ ey as (3.7)
2(T2R(x0) ) o
Ao

The proof of the Lemmas 3.3 and 3.4 were done as in Lions [6] adapted to (3.5).

-1

Theorem 3.1. Let Q be a domain satisfying (2.1)—(2.3) and T > 4R (z9) + n)\
0

Then for every data,
{@),01} eV x H, {89, ¢} €Y xX,

the solutions ®1, ®o of the homogeneous system
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o — AP = —-Vp in Q
oY — Ady = —Vgq in Q
div &1 =0 in Q
div &5 =0 in Q
P, = on %
099, Y . (3.8)
o = on 0
o, = on X
D1(0) = @Y, ®1(0) =D in Q
Dy(0) = DY, BL(0)=BL in Q
verify
R (z0) / 02, |\
Ey< —ri—m— — + @5 | dX. 3.9
0= OT T (wo) Jo, \ O T2 (39)
-1
Proof. From (3.3) and (3.7) we obtain for T' > 2R (o) + ;
0
R 9%, |°
Ey < (o) — / <’al + <I>’22> ds. (3.10)
2(T—2R(az0)—> B \I ¥
Ao
Suppose that the following inequality is verified
i
/ b@ dZ’ < 2E,. (3.11)
Yo
Then from (3.10) and (3.11) it follows
R Ly 2
By < (o) — / (81+<I>’2) dz, (3.12)
2<T—4R(a:0)— o ) o \ ¥
0

for T > 4R(x0) + "T;l

To conclude the proof of the theorem, it remains then to verify that (3.11)
happens.

In fact, multiplying the equation in (3.8); by @), and integrating on @, we
obtain

0P,

/(<I>’1’ 5+ VO, VP, dedt —
Q ) (91/

—®LdY = /pdiv @édmdt—/p@’sz. (3.13)
Q )

Since @3 € C ([0,7T],Y) N CL([0,T],X), p satisfies (2.4) and ®3 = 0 on Xy, then

from (3.13), it follows

d
/ ()Pl + VO, VD)) dudt = / @cp LAY (3.14)
Q o
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Now, multiplying the equation (3.8), by ®}, and integrating in Q, we get
/ (DL D] + VO,V dadt :/ q div | dzdt — / q®d¥.
Q Q )
Since ®; € C ([0,7],V)NC* ([0,T],H), then
/ (PP + VO, VD)) dadt = 0. (3.15)
Q

Adding (3.14) and (3.15) comes

d 0P,
— (P[P, + VO, VP dtda::/ ——®LdY,
/th(12 1V®,) o, o0 72
that is,
/ ’ T 09, /
{(@1 (1), @5 (1) + (V1 (1), V2 (1))} = . o P5dX.
0
Therefore,
/ &{h@/gdz‘ < 2(Eo1 + Ep2) = 2Ey,
o 31/
concluding the result. |

n—1

Ao
®; and ®, be two solutions corresponding to the initial data {@?,CI)%} ceVxH
and {<I>g, <I>§} €Y x X respectively. If &; and ®4 satisfy

Corollary 3.1. Assume Q as in the Theorem 3.1 and T > 4R (zg) + . Let

o
%—I—CPIQZO on X, then b, =Pd,=0 in Q.
v
Proof. The proof follows immediately from (3.9). |

4. Simultaneous Controllability
The main result of this work is the following theorem:

Theorem 4.2. Let §2 be a bounded domain of the R™, n > 2, satisfying (2.1) —(2.3)
-1

and T > 4R (x0) + nT Then for every data
0

{y0, 91,98, y3} € H x V' x (L*(Q))" x X', there exists a control v € (L*(Z))",
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such that the solution {y1,y2} of the system

Yy — Ay = —Vp in
Yy — Ays = —Vgq in  Q
div y1 = div yo =0 mn Q
_ v on >0
0 on Y1
dys v . (4.1)
E = E on 0
y2 =10 on >
0=y, v (0)=y; in Q
y2(0) =13, 15 (0)=y; in  Q

verifies
yi1(T) = y1 (T) = y2(T) = y5 (T) = 0.

Proof. We will apply here the HUM.
First we solve the homogeneous system (3.8) with the initial conditions
0P,

{00, 01,09, @1} eV x V x Y x X.
1
2) 2
(ot ob ooyl o= { [ [0 ]} 12
o v

Let us define the quadratic form
It follows from the Corollary 3.1, that (4.2) defines a norm in V x V x Y x X.
We build the space,

F=VxVxyxx
From (3.12) follows the immersion
F—VxHxXx(L*(Q)". (4.3)
Therefore
Vix H x X' x (L*(Q)" — F'

with continuous immersion.
Note that

0P n
{09, 01,05 @3} € F & - + @) € (L (%)) (4.4)

On the other hand, from (3.3), the continuity of the application (3.2) and (4.3), we
obtain

oP
{0, 01) e VX H& a—; e (L2 (%0))°. (4.5)
Hence, from (4.4) and (4.5), it follows that

{®), @1} eV x H
{0}, @], 05,03} € F & and
P, € (L% (o))" .
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Thus, we consider the norm

1
0% 04} o= { [, ol an)”
)

and the Hilbert space
G-V xX xle

From (3.7), it follows
G— X x (L*()".

Therefore,
F=VxHXxxG

and
FF=V'xH x@&.

We consider the following backward system

Ul — AU, = —-Vp in Q@
Uy — AU, = —Vq in Q
div Wi = div U5 =0 in Q@
0%,
U, = 2 ), on X
\Ill =0 on 21
ovy 0 (09
— ===+ b))
ov ot < o 2) on o
Uy =0 on X
U (T)=9(T)=92(T)=945(T)=0 in £,
@
where 9 (0% + @) | is taken in the following sense
ot \ v

<§t (8;;1 +<I>'2> ,v> = —/Z (8;;1 +<I>'2> v'dx,
0

for all v € H{ (0,7 (L? (Tp))").
Consider now the application

A:F—F,
defined by

A {(b(l)a (I)L (I)(2)7 (I)%} = {\Illl (0) ;=¥ (O) ) \I//2 (O) ;=W (O)} )

where {¥, Uy} is the solution of (4.6).

The norm in (4.2) induces in ¥V x ¥V x Y x X the following inner product

91\ (O
({29, 1,89, 05}, {62, ¢b, €3, 631) =/E (ayl”’?) (;vl

39

(4.6)

(4.7)
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hence
(A {0001, 09,23} {29, @1, 83, 8L}), = [|{@, &1, 8 5L}

and A is a isomorphism between F' and F’. Therefore, for every { vy, yt, vy, y%} eF,
there exists only one {®}, &1, ®), @3} € F such that

By (4.7) and (4.8) we conclude that the unique ultra weak solution of (4.6) satisfies

0P
(1.1). Then the unique ultra weak solution of (1.1), with control v = (“)71 + @
v
verifies (1.2).
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Resumo. Neste trabalho estudamos a controlabilidade simultanea para um sistema
de equagoes que representam um modelo da dindmica de elasticidade para materiais
imcompressiveis.
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