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Abstract. Inverse problems form the basis of all measurements to the extent that
they involve the determination of the cause of a phenomenon based on observations
that can be affected by undesired effects such as instrument noise and an imper-
fect detector response function. There have been solutions of inverse problems in
geophysics, medicine, and engineering that have been stimulated by recent devel-
opments in the methods used to solve such problems. Some of this work is surveyed
with an attempt to classify the methods of solution. The solution methods may be
constrained by the type and accuracy of the instrumentation to be used and where
it can be located, and whether an active or passive source is available to excite the
detector.

1. Introduction

In a typical forward problem of geophysics, engineering, or medicine that can be
characterized with a model there are

e one or more governing equations for the field that is to be measured (e.g., a
thermodynamic, acoustical, or optical signal),

e properties that constrain the propagation of the field within the medium (e.g.,
attenuation coefficient or conductivity), and

e boundary conditions and possible internal sources (e.g., a surface albedo or
incoming flow of the field quantity).
From this information the field quantity is determined everywhere within the medium
at the nodal locations for the solution. As an example one can solve an elementary
heat conduction problem in slab geometry governed by the equations

p(m,t)cp(:v,t)T(;; H _ % {k(m,t)T(;;t)} + S(z,t) ,

(1) T(g’t) — ), t>0, (1.1)
z x=0
T( ,t) = T,, t>0,
T(x,0) = F(z), 0<z<L.

Here the temperature T'(x,t), as a function of the spatial variable z, 0 < x < L, and
time ¢ is the desired field quantity in terms of the incoming heat flux f(¢) at z = 0,
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the fixed temperature T, at the surface x = L, the initial temperature distribution
F(z), and a spatially distributed source S(x,t). The governing equation for the
temperature is a partial differential equation. If the thermal conductivity k, the
density p, and/or the specific heat ¢, depend on T'(z,t) then Eq. (1.2) is nonlinear.

For other disciplines the field equation may not be a purely differential equa-
tion. A corresponding elementary heat radiation problem in slab geometry for a
participating medium is governed by the equations

10I(z, p,v,t) ol (x, p,v,t)
c ot ta dx

1
:/ dl/a(:v,z/,t)/ du’ B(p — p, v — ) (z, 1,V ) + k(z, v, t) (v, T (2, t)),
all v’ -1

+ [k(z, v, t) + o(x, v, )| I (x, p, v, t)

pI(0, pyv,t) = flu,vt)y, 0<u<l, t>0, (1.2)
1
I(La_u7y7t) = 2/ dl// d,ul,r(l/lﬁVaul_)ﬂ),ul](L7//7VI7t)a t>07
all v’ 0
Iz, p,v,0) = Fla,v), 0<z<L.

Here the radiation intensity I(z,u,v,t), as a function of the spatial variable z
with direction cosine u, frequency v, and time t is the desired field quantity. It
is a function of the incoming flux f(u,v,t) at @ = 0, a reflection condition at the
surface © = L governed by the surface reflectivity r(v' — v, ' — p), and the initial
intensity distribution F'(x,v). The term I,(v,T(z,t)) denotes the blackbody re-
radiation term arising from radiant energy absorbed at a different frequency. The
governing equation for the intensity is an integrodifferential equation in terms of the
absorption and scattering coefficients k(z,v,t) and o(z,v,t) and the directionally-
dependent scattering phase function 8(u’ — u, v’ — v).

With the additional variables 4 and v that are not present in the heat conduction
equation, the radiative equation is the more complicated of the two to solve. The
radiative transfer equation can be even more difficult if there is a dependence in
the boundary conditions on a second variable to describe the direction of radiation,
which is the azimuthal angle about the normal to a slab surface. It is also possible
to pose a combined conduction-radiation problem in which the source term in the
conduction equation arises from absorbed radiation propagating within the medium.

For an inverse problem the field quantity is measured at one or more locations on
the boundary or within the medium and one or more characteristics of the problem
are estimated, such as the properties of the medium and/or the boundary conditions
and/or the internal sources. Thus an inverse problem forms the basis for inferring
fundamental data from measurements. Inverse problems are encountered in virtu-
ally all areas of science and engineering, although often they are not recognized as
such.

Examples of inverse heat conduction problems are the estimation of the incom-
ing heat flux f(t) or the initial temperature profile F(z) or k(z,t)/[p(z,t)cp(z,t)].
Examples of inverse radiative heat problems are the estimation of k(z, v, t)+o(z, v, t)
or the incoming flux f(u, v, t) or the initial intensity F(z, ).
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A forward problem generally can be written as

By = S, reX, t>0,
1/} = 17[}0 ) RS Xa t=20 )
"/} = 'l/)boundary + OZ'I/J 5 x € Xboundary7 t>0. (13)

Here we denote the field quantity by 1 = ¥(z,t;p), where = denotes the phase
space of variables € X, such as the (1-, 2-, or 3-variable) spatial position r, the
(0-, 1-, or 2-variable) direction €2, and energy FE, and t is time. B and « are linear
or nonlinear operators. The parameters p that define the forward problem, such as
the properties of the medium and all the sources (S, ¥o, and Ypoundary), are known.
The solution of the forward problem for each possible set of parameters p defines
an implicit map M of the space of parameters p onto the space of functions ),

= Mp . (1.4)

In a typical inverse problem, a subset of unknown parameters in p are to be de-
termined from measurements of ¢ with a detector whose response function can be
modeled with the operator D, thus giving Dy = DMp. In practice this equation
has to be understood in the following sense: D3 can be only approximately mea-
sured, as denoted by D). Because M is an implicit map, this leads to an iterative
solution for the values of p from

Dy = DMp . (1.5)

However, the solution of this equation may not exist. When (DM)~! does not
exist, usually there are an infinite number of possible solutions, in which case the
classical approach is to use some form of “regularization” (Tikonov & Arsenin [16]).
This is done by selecting one of the solutions by adding an external constraint not
contained in the definition of the inverse problem. This amounts to constructing an
inverse for DM.

In any case, whether (DM )~ exists or has been obtained by regularization, the
solution of the inverse problem,

p=(DM)"'Dy , (1.6)

is usually ill conditioned. _
Even with a perfect detector and with measurements of the complete field ¥ so
that D is an identity operator, the determination of p can be difficult because M !
may be ill conditioned. Usually the mapping of p in Eq. (1.4) is well conditioned in
the sense that small changes in the parameters give small changes in v so that

lovll _ 1opl|
e L
1] Il

where, for example, for the Ly norm

i51= (fiswra)”

a>0anda=0(1),
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or, if f is of finite dimension,

1/2
Il = [Zf?] :
=1

If mapping (1.4) is well conditioned, then the inverse problem is not and the values

of ||6p||/||p|| become very sensitive to the small errors ||§(Dv)|| arising from (D)) =
D1 + 6(D).

How does one assess the degree of degeneracy in the solution that results from
measured data? This is usually done by performing sensitivity tests to see how
strongly each component of p influences the observation. The sensitivity can be
visualized by plotting DMp versus the component and examining the slope of the
curve: the smaller the slope, the greater the likelihood that the solution of the
inverse problem for that component will be highly sensitive to noise in the data.
Another way to interpret sensitivity of a solution to an inverse problem is to consider
the condition number C that can be expressed in terms of norms as

C = [[DM||[|(DM) ] - (1.7)

This equation applies in the case when DM is a linear operator; otherwise, the
Gateau derivative must be used in C' = |[DM]| [|[[(DM)~']};||. The condition num-
ber is usually large when there are many unknowns, which means that errors in the
unknowns p may be large; this has been encountered, for example, in the estima-
tion of the coefficients of a Legendre polynomial expansion of the angle-dependent,
scattering cross section of radiative transfer (Oelund & McCormick [13]).

How does one cope with mild to moderately-severe ill conditioning when con-
sidering an inverse problem? One technique is to look for a smaller number of
parameters or other parameters that are less sensitive to the errors in the mea-
sured data. An example is the use of a ratio of parameters like /o that give a
dimensionless variable, rather than the two variables themselves. The idea is to
find a combination of parameters that have greater sensitivity coefficients than the
parameters themselves.

After I briefly outline in Sec. 2 some of the inverse problems that have been con-
sidered in a variety of applications, in Sec. 3 I will illustrate different classification
schemes for inverse problems. Then methods of solution will be briefly overviewed
in Sec. 4.

2. Overview of Geophysics, Medical, and Engine-
ering Applications

It is hard to adequately describe the plethora of applications where inverse methods
have been used. In geophysics the problems range from in situ, invasive-detector
techniques such as “oil well logging” (which is the depth-dependent sounding for
petrochemicals) to seismic tomography. In oceanography typical applications arise
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with the in situ characterization of sea water (typically for the phytoplankton con-
centration in open ocean waters or for sediment and pollutants in near-coastal wa-
ters) to the characterization of the ocean’s temperature for the assessment of global
warming. Temperature profiling of the atmosphere (e.g., from weather balloon mea-
surements) is an application in atmospheric sciences. Remote, noninvasive-detectors
sometimes are used instead of in situ detectors to acquire data from a flyover by an
airplane or satellite.

In medicine, many of the modern clinical diagnostic techniques used today, such
a computerized tomography or magnetic resonance imaging, involve the solution of
inverse problems. Computerized tomography involves the use of ionizing radiation
sources such as x-rays or gamma-rays and relies on the assumption of straight-line
propagation of the radiation field. But researchers also are investigating optical
mammography applications that require analyzing extensive multiple scattering.

Table 1: Inverse problem applications in different engineering disciplines.

Engineering
Discipline Application
Aerospace Aerodynamic shape optimization
Biomedical Electrical impedance tomography for imaging
Optical coherence tomography
Chemical Trace chemical concentrations
Civil Leak location in underground piping systems
Flexural rigidity of a beam from deflection measurements
Identification of vibrations of piping systems
Estimation of hydraulic transmissivity
Computer Voice recognition
Image reconstruction
Electrical Electromagnetic scattering properties
Electric impedence imaging
Mechanical Thermal conductivity from heat conduction measurements

Thermal diffusivity from heat conduction measurements
Surface heat flux from heat conduction measurements

Thermal contact resistance

Cutting temperature estimation from heat conduction measure-
ments

Heat flux estimation in thin-layer drying

Heat source estimation

Mechanical properties of thin films

Control of the solid-liquid interface during solidification
Metallurgical | Nonlinear constitutive laws identification from indentation tests

Optical coherence tomography is another example in which light is used for
tissue diagnostics. In that case light that is coherently backscattered from structures
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within the tissue (to depths of a few millimeters at most) is collected and interfered
with light from a reference, which allows measurement of the echo time delay and
amplitude of the reflected light for imaging purposes. Magnetic resonance imaging
also is an inverse diagnostic method that avoids the use of ionizing radiation.

Optical techniques for dental applications also are being investigated for the
detection and imaging of early carious lesions.

The same diversity of applications occurs in a variety of engineering disciplines.
Table 1 gives examples of a few topics, many of which have been addressed in recent
“Inverse Problems in Engineering” conferences (Zabaras et al. [20]; Woodbury [19]).

A number of books are recommended as good references for applications in
different disciplines ( Beck et al. [2]; Bertero & Boccacci [3]; Hensel [4]; Herman [5];
Hestenes [6]; Iyer & Hirahara[7]; Ozisik & Orlande [14]; Trujillo & Twomey [17]).

3. Classifications for Inverse Methods

Besides the grouping applications by discipline, as above, there are several possi-
ble classification schemes that can be proposed that help place different problems
and/or solution methods into some sort of structure. Kubo [9] proposed that inverse
problems be classified as (with some re-organization):

1. Material properties determination problems,

2. Sources and forces determination problems,

3. Boundary/initial value determination problems,

4. Shape determination problems,

5. Governing equation(s) determination problems.

Categories 1-4 depend on the medium which may be severely inhomogeneous, mo-
derately inhomogeneous, or spatially uniform. Examples of what is determined in
the different problems for the transfer of radiant energy in a participating medium
are: the absorption coefficient of the medium (category 1), the blackbody radiation
emitted by the medium (category 2), the incident heat flux entering the medium
(category 3), and the shape of an object imbedded within the medium (category
4). (The radiative transfer equation is generally accepted as the governing equation
for such problems.) Category 5 represents the ultimate difficulty when solving an
inverse problem because the governing equation(s) used to define the propagation of
the signal containing information is not known, so different models must be tested.

Other categorization schemes exist that are useful when attempting to design an
experimental program to solve problems of the type discussed above, as described
in Table 2.

Why is it important to consider the type of detectors to be used? Because the
number of independent parameters that one can estimate depends on the number
and type of detectors, as illustrated in Eq. (1.6). In the most information-specific
situation the detector is located in an element of configuration space (in dr about r
and is directed in an element of solid angle (in d©2 about €2); the detector measures
energy (in dE about F) in time intervals (in dt about t) or frequencies (in dw about
w). A directionally-integrating detector removes some or all of the information con-
tained in the two variables that specify €2, while a temperature sensor, for example,
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Table 2: Considerations when developing a solution to an inverse problem.

A. Measurement detector(s)
1. Number (sufficient for any spatial heterogeneities?)
2. Location
2a. Outside the medium (external)
2b. Inside the medium (in situ)
3. Type
3a. Narrow field of view (collimated)
3b. Broad field of view (angle-integrated)
B. Source of excitation
1. Number (sufficient for any spatial heterogeneities?)
2. Location
2a. Outside the medium (external)
2b. Inside the medium (in situ)
3. Type of activation of signals to be measured
3a. Passive (inherent to problem)
3b. Active (induced in problem)
4. Time dependence
4a. Steady-state
4.b. Pulsed
4.c. Oscillatory

removes all the spectral information in the energy variable.

Why is it important to consider the location and type of the excitation of the
system? The amount of information that potentially can be extracted from mea-
surement data depends on where the excitation occurs and its characteristics. There
are examples where there is an experimental mismatch: for example, if there is a
spatially distributed source deep within an object such that the signal undergoes
“corruption” from material inhomogeneities (or extensive multiple scattering, in the
case of photon propagation), then the signals are masked by the background noise
of the system and/or the detectors.

The relative information content that is potentially available is contained in the
sensitivity coefficients. The design of any experiment thus should first include an
examination of the sensitivity coefficients to determine if the experiment is even
worth doing.

4. Some Solution Methods

For complicated problems where there is a significant spatial dependence of the
source or the material properties to be determined, one procedure is to use an itera-
tive comparison of the radiation field computed with an assumed source or material
property spatial distribution. Then typically the conjugate gradient method or the
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Levenberg-Marquardt method is used to solve problems with an implicit or iterative
approach. Such an inverse problem can be solved by minimizing a least-squares
functional or mismatch function (Press [15])

K

A(Y, @(x) = [IY — @()|P =Y [¥i — @), (4.1)

k=1

where Y}, is the experimental data and, ®(x) is the output from a computer code
that solves the forward problem with input data x that comprise the set of unknowns
to be determined. (I view such a procedure as analogous to hiking in a group of
mountains and wishing to get to the lowest nearby valley; the conjugate gradient
method attempts to get a hiker headed into the correct nearby valley and in the
most vertical, “fall-line” direction.)

Other mismatch functions can be considered besides that in Eq. (4.1), as suc-
cinctly described by Mohammad-Djafari [12]. These include the L, norm,

K
A(Y,2(x) = (IIY — @)|l)" = > [ — ®xlx (4.2)
k=1

a weighted least squares

K
A(Y,8(x) = [Y-2x)'Q[Y - @(x)] = Y > a;(Yi~ 2i(x))(Y; - ®;(x)) . (4.3)

i=1 j=1

or a mismatch function based on information theory, such as the Kullback-Leibler
“cross-entropy” function (Kullback [10])
k
. 4.4
=) (4.4

K
A(Y,®(x)) =) Yiln <<1>
k=1

Not many inverse transport problems that have been solved with mismatch functions
other than the least squares estimate.

An important thing to note is that the cross-entropy function, sometimes also
referred to as the “information gain” is more general than least squares and reduces
to that case in the limit of small differences between Yy, and @ (x) (Kullback [10]).
For this reason I believe it should be considered for use in a variety of inverse
problems.

An alternative iterative method of solving inverse problems is the so-called reg-
ularization approach in which the function to be minimized takes the form of

A (Y, ®(x)) + M (x,Xq) , (4.5)

where xg is a prior solution, and A; and A, are two mismatch functions. When
the regularization parameter \ is nonzero, the second (“damping”) term tends to
force the new estimate of the unknowns, x, to stray not too far from the previous
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estimate. The optimization of the value of A has received extensive investigation
(e.g., the work of Alifanov et al., 1995). If no information is available for the value
of zg, then selection of g = 0 amounts to the usual norm or energy minimization.

The method of generalized cross-validation also can be used to determine the
optimal value of A\. This is done by considering a measured signal d; = s; + ¢;
to consist of the noise-free signal s; plus noise €;. The generalized cross-validation
approach works by deleting one of the data points and then using the rest of the
data to obtain a predicted value against an independent measurement. This is
repeated for all the data points to develop a predicted error analysis. The value of
A that minimizes the predicted error is the optimal one.

In contrast to iterative methods for solving inverse problems, for some problems
analytic methods can be developed that require no iteration involving solutions of
the governing equation for the problem under consideration. For such methods no
mismatch function is used since the deterministic methods are derived directly from
the governing equation itself, but the problems that one can potentially solve with
such an explicit approach typically are much simpler than those with an implicit
approach. As an example, such methods may enable one to determine the properties
of a spatially uniform material, or perhaps to identify the present of at most a few
spatial nonuniformities, but generally such a method cannot be used to analyze a
material with many spatial inhomogeneities. However, an explicit method has the
attractive feature that it can give an initial estimate of the unknowns to use in an
implicit procedure, thus possibly improving the likelihood that an iterative search
will eventually lead to a global minimum rather than a local one. Another attractive
feature of an analytic method is that it can be used to derive analytic sensitivity
coefficients that more clearly display the functional dependence of the sensitivity
coefficients than those computed with traditional iterative approaches.

As an example of a simple analytic algorithm, consider a small, spherically-
symmetric source emitting radiation isotropically in all directions into a large ho-
mogeneous medium for which the boundaries can be considered to be at a radius
of infinity. For a source magnitude ®; [W] the equivalent equation to Eq. (1.3) is
given in “conservative form” by (Lewis & Miller [g]),

R e (7)) {[(1—u2)1(7",u)]

r

} + (k +0)L(r, p)

(I)S(S(T)(s(:u’ B 1)
822 ’

r2 or o

1
_ g/ 10 )yt + r>0. (46)
—1

The simplicity of the problem suggests we develop a recursion relation for the spatial
moments of the radiance I(r,u) by multiplying Eq. (4.6) by 872r""2P(u) and
integrating over 0 < r < oo and —1 < p < 1. The final result for the recursion
relation is

(k+1)(k—n)lp 1441 — kn+k+1)L, 1,1+ Rk+1)(k+ (1 —0k00) Lk
= (2k +1)®s0k,00n,0 - (4.7)
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where the definition
oo 1
h =82 [ [ R0 Iwdrdy (4.8)
0 —1

has been introduced. (Note the dimensions of the different L, 1, moments depend
on the index n.)

Use of Eq. (4.7) with n = k = 0 and with n = 2, k = 0 gives (after use of the n =
k = 1 result) an equation for the mean square distance of travel, <r?> = Iro/Inp =
2[k(k + )], This simple equation depends only on the properties of the medium
and could be used with a small spherically-shaped detector, such as a foil used to
measure a neutron or gamma ray capture rate in a nuclear engineering application,
so that the detector matches the constraint that & = 0. On the other hand, for
a detector with a flat collector oriented perpendicular to 7, then the directional
moments & = 1 are applicable. If the source strength ®, is known, for example,
then (McCormick & Kaskas [11]) I1,1/®5 = [k(k+0)] L. Thus, depending on what
type of detector is used and what measurements are made, the same combination
of properties of the medium could be determined.

In practice, however, neither of these algorithms is useful with experimental
data. Both are very sensitive to the number and locations where measurements of
I(r, ;1) are made that are needed to compute Iz and I or I3 1, a limitation that
also is true for an iterative method based on the repeated numerical solution of
Eq. (4.6). The algorithms also suffer because the scattering in Eq. (4.6) is isotropic,
but this limitation can be easily overcome (McCormick & Kaskas [11]). These
examples illustrate that a separate analytic inversion algorithm must be developed
for each type of detector, whereas with an iterative procedure for solving inverse
problems a common computational procedure can be developed independent of
the type of detector. Other analytic algorithms for radiative transfer applications,
which work much better than the above simple example, are listed at my website,
http://www.me.washington.edu/faculty.

Once an analytic algorithm has been developed, however, it can be useful in
three ways:

1. As a stand alone method for estimating up to a few parameters,

2. To obtain initial starting values in an interative solution,

3. For adjusting a few parameters at each step in an iterative solution after all

parameters have been estimated.
To date analytic algorithms have been applied only as stand alone methods, so
further work needs to be done to fully explore their potential.

5. Conclusions

Any measurement problem can, in a sense, be viewed as the solution of an inverse
problem in which measured data is to be converted to an estimation of the vari-
able(s) of interest. Diagnostic applications in geophysics, medicine, and engineering
are prime examples of inverse problems that have been solved. Both iterative and
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analytic algorithms have been described here, but to solve a complicated problem,
such as one with a strongly varying spatial dependence of cross sections, then ite-
rative algorithms are necessary.
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