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Abstract. We consider the interior Dirichlet problem for Laplace’s equation on
non-simply connected two-dimensional regions with smooth boundaries. The ap-
proximate double layer density function is found by solving a system of Fredholm
integral equations of second kind. Because of the non-uniqueness of the solution
of the system we solve it using a technique based on the solution of the “Modi-
fied Dirichlet problem.” The Nystrom’s method coupled with the trapezoidal rule
is used as numerical integration scheme. The linear system derived from the dis-
cretization of the functional equation is solved using iterative Krylov conjugate
gradient type methods. Theoretical and computational details of the method are
presented.

1. Introduction

This paper describes a numerical method for the solution of the interior Dirichlet
problem for Laplace’s equation in multiply-connected regions bounded by smooth
boundaries. The solution u is represented as a double layer potential, and the
resulting integral equation is then reformulated as a system of integral equations,
each of them over the interval [0,27]. For the numerical solution, the Nystrom’s
method is used with the trapezoidal rule as the numerical integration scheme.

The theory of integral equations and the existence of solution in a non-simply
connected region has been studied in details. For example, see [4], [6], [8] and
[9]. Numerical methods for solving Laplace’s equations has been developed using
integral equations, [2] and [7] among others.

The reformulation of the interior Dirichlet problem for a non-simply connected
region is based on the theory developed by Mikhlin [8] and Muskhelishvili [9]. This
uses the solution of the modified Dirichlet problem, to avoid the inconvenience
produced by the non uniqueness of the solution of the system of equations of the
original problem.
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2. Preliminaries

Let Q be a closed bounded non-simply connected subset of R? with boundary L =
UP_oL; , p > 1 with i)L; N L; = ®,i # j, ii)L; is a simple smooth contour, all
i=0,1,...,p, #ii) L contains the other curves within its interior.

The Dirichlet problem is:

Au(z) = 0, ¢
{ ut) = 21

where f is a real continuous function on L.
As it was suggested by Muskhelishvili [9] the solution of the Dirichlet problem
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can be obtained as a real part of a holomorphic function on () by transforming the
original problem into the modified Dirichlet problem

AU = 0, t e 0 (2.2)
Uty = ft)=>p 1 Aeln|t—ze|+a;, t € Ly

j=0,1,...,p,ag = 0, Ay are constants to be determined and z, is a point inside the
region bounded by Lj. The equation (2.2) always has solution for a suitable choice
of {G,J}

The solution of (2.2) can be thought of as the real part of a Cauchy-type integral,
and it involves a term of the form of the double layer potential

1 Olnr
;mean@,

where r = |t — z| and the direction of 7 is from ¢ to z. The element ds belongs to the
arc of the contour, % denotes the normal derivative in the direction of the outer
normal vector 7, and u(t) is called the double layer density function.

By letting 2z tend to a point 7 on L we obtain an equation of the form

u(r) + l/Lu(t)ah”"ds —f) =Y Ay —nl+a()re L, (23)

T on
k=1

with unknown function p(t), ¢ = t(s), and a(t) = a;, t € L.
We reduce the solution of the Modified Dirichlet problem to the solution of the
integral equation

u(7) +/L [1811”115 — S(, t)] p(t)ds + " Apln|r — z| = f(7), (2.4)

T On
k=1

where the function

. 1 if (T,t)GLj,j:L...,p,
S(rt) = { 0 otherwise
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and so ij S(r,t)ds #0,7 € Lj, j=1,..,p, see [8, p. 170].

It turns out that this condition is necessary for the unique solvability of (2.4).
in thz)s way the ij S(7,t)ds will have the values ¢; = ij wu(t)ds, 5 =1,...,p and
0o ="0.

It is known that the homogeneous equation associated with (2.4) has no solution
different from 0; see Muskhelishvili [9, p. 171]. The solution () of (2.4) will also
give a solution of (2.3) with a; = ¢; = ij u(t)ds =0, j=1,...,p.

3. The Functional Integral Operator

We consider the solution of (2.4) as a function u of the space X = ( ?:0 C’(Lj)> X
FP,(F =R or C). We denote p = (po, ft1, --fip; A1, ..., Ap) and we define the norm
of u by |ully = ]W“x{HMi”c(Li) JAjli=0,1,...,p7 = 1,2,...,p}. Clearly the
space X with this norm is a Banach space. Define the operator 7 on X by the
(2p+1)-tuple

Tp= {ujJerC”uﬁZAkln(-)—zkl} {/ ujdb’} :
=0 k=1 j

§=0 J j=1

where zj, is a point inside of the region bounded by Ly and K% : C(L;) — C(L;) is
the integral operator defined by

i = Ky(r) = [ j 2O 50| w0 (3.1)

Lemma 1. The operator T is a Fredholm operator.

Proof. For a detailed proof see Saavedra[12] [ |

Define the operator £ : X — X

K(n) = {ZK% + 3 Akln|() zk|} {/ pyds Aj} (3.2)
J=0

i=0 k=1 J j=1

and write 7 = I+K. In this form the solution of the modified Dirichlet problem
(2.2) is equivalent to the solution of the following integral equation

(I+K)p =1, (3-3)

where f = (fo, f1, ..., fp,0,...,0), and the zeros are repeated p times. Equation (3.3)
is equivalent to equation (2.4), with the additional condition || o kgds = 0,5 =
J

1,..,p. The integral equation (3.3) represents a system of integral equations formed
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by 2p + 1 equations and 2p + 1 unknowns functions and constants. It can be
represented in matrix form by
[ I+K%0 ko K%  In|(-) — 2| In{() =2 [ po 7T fo
Ko I+KH e In|(-) = 2| In|(-) = zp| M1 f1
’CpO ’Cpl ]+}Cpp 1n‘<')_zp| 11’1|(->—Zp‘ ,U.p .);p
0 le(-)ds 0 0 0 Ay 0
0 0 J; ()ds 0 0 A, | L O
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4. The Numerical Scheme

Assume that L satisfies the same condition as before and that it is already parame-
trized. Define the operator K, in (3.2), on the space H = ([[}_, C[0, 27];) x RP. To
avoid overly complicated notation, we consider p = 1. K is defined as

K :C0,27] x C[0,27] x R — C0,27] x C[0,27] x R

(K0 4+ K% p1 4+ Ay In|(-) — 21,
K¥%0 + K" pa + A In|(+) — 2],

/ pads — Aq ),
Ly

where z7 is a point inside the region bounded by L. The integral equation has the
form

IC(,uﬂa M1, Al) =
(4.1)

I+K)u=f. (4.2)

This equation has a unique solution u. To solve (4.2) we choose the Nystrom algo-
rithm based on a convergent numerical integration scheme for each of the intervals.
Because the smoothness assumption given for the boundary of €2, we take the same
numerical scheme on each interval.

We consider two partitions for the interval [0, 27| of the form: 0 =1t,0 < 41 <
e <tgm, =2m, ¢q= 0,1, ng and n; two natural numbers. Then we have

Tq 27

ST wit K™(s,tg )ing(te) =
j=0

K" (s, t)pq(t)dt + Ry (K™ pg) g7 =0,1.

and,

ni 27
S s paltn) = / i1 ()t + Roy, (11)-
j=0 0
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We also assume that for all 4 € H, lim,, oo RZ;Z =0 ¢r=0,1and
lim,,, .00 Ry, (pt1) = 0. By the uniformly boundedness principle we have that

m m
sup E |w;qm <oo,7,q=0,1 and sup E |wj m| < 0.
moi=1 moi=1

Having determined the quadratures, we define the corresponding discrete operator.
Denote the double index k = (m,n) with m,n, € N, then

’Ck,U(S(), SlaAl) =
(j

n
w0, K% (s0, 0, o (to ;) + Y wIh KO (s0,t1,5)pa (t1,5) + Ay Infug — 21,
j=0

NE

Il
=}

n
wi9, KM (51, t0,5 )0 (to 3) + > win K (s1,t1 ) pa (tr,5) + Ay In fug — 2],
=0

1M

3

(=)

wjmpa(t1,5) — A1> , (4.3)
j:

where the parametrization fo and f; of Lo and Ly, respectively, are assumed and
uo = fo(so),ur = fi(s1), u(s0, 51, A1) = (po(s0), pa1(s1, A1)). We observe that for
every k, Kj, is a compact operator.

Lemma 2. Kppu — Kp as k — oo, i.e. as m,n— oQ.

Proof. Define

m

’Cf’g“o(si) = Zw;‘?mKio(si’tO,j)MO(tOJ)a i=0,1,
j=0

n
Kippa(si) = Y wih, K™ (sit)pa(trg),  i=0,1
3=0

Then
lim ICig,uo =K%, and lim ICill,ul =K% po,p1 € C[0,2n], i =0, 1.
In addition, if Lnp1(t) = 37_g wjnp(ts;), then
Lppy — Ly =/ pads,  p1 € C[0,27].

Ly

Thus, given € > 0, there exists a natural number N such tat for all m,n > N
[Kimto — K pol| o 0, < €/2 and [|Kiipn — K™ g | <¢/2 fori=0,1,
and | L1 — Lua| < e.
Therefore

HC[O,QW



96 Flores and Saavedra

|Krp—Kull yy = Maz { ([Ko o — Ko + Kty — KO pia[ g o -

H’C;r?/io o ]CIOMO + IcrlLl,ufl — ’Cll'u’lHC[O,%'] , |£nu1 — E,u1|} < €. |

We now consider, the sequence of operators{Kj},k € N x N. It is known that
this sequence of approximating operators need not to converge to the operator K.
But for the error analysis, it is sufficient to have

Jim | = K)K | = 0. (4.4)

Lemma 3. The sequence of operators Ky, : H — H,k = (n,m) withn,m > 1, is
collectively compact, i.e. the set

B = {Kip:[lpll g < 13n,m =1}
18 precompact in H.

Proof. See Saavedra [12]. The proof is based on the theory of collectively compact
operator approximation due to Anselone [1]. [ ]

This result and the results from Anselone [1] imply (4.4), and this suffices for
proving stability of the numerical method. The result (4.4) and the fact that {Kx}
is uniformly bounded gives us

L+ |[(I+K)7H K
T+ KK — K] = (45)

—1
(T +Ke) 7| < 7= ”

where ¢ is a constant.

Theorem 1. Assume K € C(L; x L;),i,j =0,1, and (I + K)~ ! exist. Then for
m, n sufficiently large, the solution uy of (I + Kg)ux = f and the solution u of
(I+K)pu=f satisfy

Max
s € Lg

Maz

[ R (K p0)| + 5 € Lq

|Rn(’Ca1N1>

lpe — pl| < e Maxg=0,1 { ,Rn(m)l} )

where ¢ is a constant and R,, and R, are the error for the approximate integration
scheme.
Proof. By hypothesis, (I + Kx)ur = (I +K)p or(I 4+ Ki)(ur — 1) = (K — Kg)p and
so (g —p) = (I +Kg) (K — Ki)p. By (4.5)

sk = allgr < ell(K = Kul (4.6)

Furthermore, expanding the right hand side we have

(K=Kl g = |(Ki—K) (po, i1, A1)l g =
Max {HIC%?MO — K% + KO0y — KO iy

12940 — K'pug + KXy — KMy

o)
Lopr = 7, Ml(t)dt'}

e,
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< Mazx {H (K — K) MOHC(LO) +[[(K = k) MlHC(Lo) ’

H(IC}S - K1) 'LLOHC(Ll) + H(’Crlzl - K1) “1HC(L1) ; ’ﬁnﬁ‘l - fL1 “1<t)dt‘}
= Max { Maz |K9%%0(s) — KO po(s)| + Maz K i (s) — KO ()|

s€Lg s€Lg
M |13 o) = KMo ()] 27 KK a (5) = KM ua (5)] s |Ltis = [, (8)ee|}
= Maz { 25 | R (K%p0)| + 242 | R (K 1) +
R (K20) | 4+ 2257 [ R (KM 10)| R ()]} .

From this result and the fact that we have chosen convergent numerical integra-
tion schemes, the method is convergent. Its rate of convergence will depend on the
rate of convergence of the numerical integration schemes. We use the trapezoidal
rule for quadrature since it achieves excellent convergence for smooth functions on
periodic domains. The operator equation (I + Kg)ur = f, on [0,27] x [0, 27] X R is
equivalent to the (m +n + 1) x (m + n + 1) linear system

m n
peo(tos) + hm Yy Ko, to5)mk0(to,) + hn D KO (bt )i (trg) +
=1 j=1
Ajlnlto; — 21| = fro(to), i=1,2,...,m;

m n
pri(tis) +  hm ZKlo(tl,ia to,j)1k,0(to,5) + hn Z/Cll((tu, tj) e, (te,y) +

Jj=1 J=1

A1l71,|t172' 721‘ :fk71(t1,i), 1= 1,2,...,17,;

ha Y i (tyg) = 0. (4.7)
Jj=1

5. Iterative Methods

The linear system (4.7) is dense and nonsymmetric. Solving this linear system using
Gauss elimination will require O(N?3) operations. If the number of node points N
increases then an iterative algorithm will be necessary, one that requires a few
iterations and is faster than Gauss elimination. Applied to a dense linear system,
one iteration of an iterative methods usually requires order of O(N?) operations.

We consider solving the linear system (4.7) using Krylov-subspace methods.
Such methods produce approximation x, to the solution x of the linear system
Az = b from the affine space zq + K,,(ro, A), where zg is the initial guess and the
nth Krylov-subspace is K, (ro, A) = span{rg, Arg, ..., A" 1rq} with rq = b — Az,
and with the property that the residual r,, = b — Az,, = 0 in some sense.

The iterative methods considered here are the GMRES (generalized minimal
residual method) of Saad and Shultz [11], the Bi-CGSTAB (bi-conjugate gradient
stabilized) of Van der Vorst [13], these two methods operate directly on the original
system, and the CGN (the conjugate gradient method applied to the normal equa-
tion). The Conjugate Gradient (CG) due to Hestenes and Stiefel [5], only works
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for symmetric positive definite systems. The CGN algorithm refers to CG method
applied to the normal equation AT Az = ATb instead of Az = b. We remark that in
the CGN algorithm the product AT A is never actually computed. Instead, when-
ever the product AT Az is needed by the CG algorithm, it carries out the product
of two matrix-vector multiplications A7 (Ax). It is known that the convergence of
the CGN method is determined by the singular values [10], the convergence of the
GMRES is determined by the eigenvalues or pseudo-eigenvalues, and there is no
convergence theory for the convergence of the Bi-CGSTAB method. These three
method have been found to perform fundamentally different [10]. However, in ap-
plications of these methods to integral equations of second kind, we observed that
the three methods have similar performance. This is shown in Table 2 and Fig-
ure 2. Convergence results for the CGN applied to Fredholm integral equations
of second kind has been studied by Flores [3]. The dominant cost of the methods
is in calculating the N2 operations of the matrix-vector product. The CGN and
the Bi-CGSTAB methods require two matrix-vector multiplications per iteration
meanwhile the GMRES method only requires one matrix-vector multiplication per
iteration. The storage requirements for the CGN and the Bi-CGSTAB methods
is of order O(N?) per iteration while the kth iteration of GMRES has an storage
requirement of order O(kN + N?).

6. Numerical Examples

We solve the Dirichlet problem over a region bounded by two kinds of curves, the
outer boundary is an ellipse and the inner boundary is an oval of Cassini, Figure 1.
In this example we look at the effect of the absolute error for the function
u(x,y) = y/(z? + y?), this function is also used as the true solution to obtain
the error in the approximation. The points inside the region where the harmonic
function is evaluated has been chosen in order to study the accuracy of the method in
different, parts of the region. Table 1 shows that the solution decreases its accuracy
as the point where it is evaluated is closer to the boundary. Also, we have noted from
Table 1 that the largest error is obtained where the point is close to the boundary.
Table 2 shows that in order to to improve the accuracy at the point (0,0.23) we need
to increase the number of nodal points in both boundaries, and consequently the
order of the linear system (4.7) needs to be increased. Table 2 and Figure 2 shows the
numerical behaviour of the iterative methods CGN, GMRES and the BiCgSt. We
noted that the number of iteration for all methods remain constant, this is known
as mesh — independence principle, this behaviour which is due to the distribution
of the eigenvalues of the compact integral operator has been analized in Flores
[3]. Numerical experiments show that the speed of convergence at the point farther
from the boundary behaves in accordance with the theoretical error formulas for the
trapezoidal rule used in the integration. However, a glance at Table 1 shows that
at the point closer to the boundary the speed of convergence is dramatically slower.
To increase the accuracy we need to increase the number of nodal points. In Table
2 the columns label CGN, GMRES and BiC¢St represent the number of steps
needed by the respective iterative method to achieve an approximating solution.
The iterations were stopped when the norm of the residual [|b — A4, | < 1.071°.
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Table 1: Error as a function of closesness to the boundary

(x,y) Error(n,m =32) Error(m,m = 64)
(0.0,229)  2.4884D + 00 1.9262D — 01
(0.4,0.4) 4.7207D + 00 2.1179D + 00
(0.6,0.6) 7.5835D — 02 5.7600D — 03
(2.0,1.5)  2.4319D — 05 2.0363D — 07

(2.12,1.76)  7.8319D — 02 1.9035D — 04

See Figure:1

Table 2: Convergence of the iterative methods

m,n order CGN GMRES BiCgSt Error
8 17 5 4 4 1.6890D + 01
16 33 11 7 6 6.8326D + 00
32 65 11 8 7 2.3013D + 00
64 129 11 8 8 4.7691D — 01
128 257 11 8 7 3.0519D — 02
256 513 12 8 7 1.4198D — 04
512 1025 12 8 7 3.1024D — 09
1024 2049 12 8 8 1.3722D — 12

Iterative Methods at the point (0.0,0.23)
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Figure 2: Rate of convergencé for the iterative methods
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