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Abstract. We prove the existence and uniqueness of a global regular solution to the
mixed problem for the nonhomogeneous wave equation in a noncylindrical domain
using a hyperbolic nonsingular smooth transformation of the original problem to a
nonlinear hyperbolic problem in a cylinder.

1. Introduction

Solvability of various initial boundary value problems for linear and nonlinear
hyperbolic equations in noncylindrical domains was studied by many authors
[1,2,5—11]. These problems are interesting and non-obvious from the very beginning-
formulation of a problem: what kind of conditions to impose at lateral (moving)
boundaries of a domain. The biggest part of the papers in question was devoted
to the mixed problem with the Dirichlet condition at the lateral boundary. In our
paper we formulate the mixed problem with nonlinear first order differential ope-
rator at the moving boundary. In cylindrical domains this conditions was used by
various authors [3, 4]. It is of the form:

Ju
— U =0,
o o(ue)
r
where % is the derivative in the direction of the exterior normal on the boundary

T', u; is the tangential derivative on T'.
In our paper, we propose the condition of the form:
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-+ |u8|p Us
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L(t)
where u; is the tangential derivative at the moving boundary T'(¢).

We prove the existence and uniqueness of a global regular solution to the mixed
problem in a noncylindrical domain using a hyperbolic nonsingular smooth trans-
formation of the original problem to a nonlinear hyperbolic problem in a cylinder.
Then we exploit the Galerkin method to prove the existence result. The inverse
transformation gives the desired result.

1Partially supported by CNPq.
2Supported by CNPq
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2. Notations and the Main Results
Let Q7 be a non cylindrical domain of R? defined by:
QT = {({L‘,t) € Rz;al(t> <r< a2(t)70 S t< T}a

Dt:QTm(T:t),
where a4 (t), aa(t) € C?[0,T). We consider the following problem:

gy — K tge = f(a,t) in Qr, (2.1)

u(x,0) = ug(x), ug(2,0) = uq (), a1(0) < z < az(0), (2.2)

u =0, ug + B us|” us =0, t >0, (2.3)
=02 (t) z=a(t)

where us; = u; + o (t)us, p > 0, B8, k are given constants. We denote by V(D)
the following space of functions:

V(Dy) ={g € H' (Dy), g(ax(t),t) =0},
V(1) = as(t) — ax(t),

(u,v)(t):/D u(z, t)v(x, t)dz.

Theorem 1 Let 3 < 0, o (t) > 0, ug € H*(Do) NV (Dg),u1 € V(Dy) and the
following conditions hold:

(i) 0 <7y < () <7 < oo, Vt>0;
(ii) ug(0) + B(0) [v1(0)|” v1(0) = 0, where v1(0) = u1(@1(0)) + ahug(a1(0));

(ii1) lyah(t) + (1 — )i ()| < kik, k1 € (0,1);Vy € [0,1].

Then for any f € H(0,T;L*(D;)) there exists a unique strong solution to
(2.1) — (2.3) :
u € L*®(0,T; HQ(Dt) NV (Dy));
ug € L*(0,T;V(Dy));
ug € L0, T; L2(Dy)).

Proof: To prove this result, we transform Qy in a cylinder @ = (0,1) x (0,T) by
the transformation,

x — ay(t)

y= @) — ()’ T =t, v(y, ) = u(z(y, ), 7). (2.4)

In these variables, with 7 replaced by ¢, the problem (1.1) — (1.3) is reduced to
the form:

Vit — A1y — 2020y — bivy = fi1(y,t) in Q, (2.5)
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v(y,0) = uo(z(y,0),0) =wvg(y) in (0,1),
0u(y,0) = ua(2(y, 0), 0) + a/ (0)(0) (2.6)
+ O (@ (y.0) = vi(y), I (0,1),
v(1,t) =0,
0y (0,8) + By(0) 02 (0, 8) P ve(0,8) =0, £ >0 (2.7)
Here,
k> — [yy'(8) + o1 (1)
m =)
_ oy (1) + i (t)
a2(y7 t) "/(t) )
bt = B2 alt) = Fr(.1).0),

Remark 1 It is easy to verify that under the conditions of Theorem 1 is diffeomor-
fism and preserves hyperbolicity of the problem (2.5)—(2.7). It means that solvability
of (2.5) — (2.7) implies solvability of (2.1) — (2.3).

Theorem 2 Let all the conditions of Theorem 1 hold, then there exists a unique
strong solution of (2.5) — (2.7) from the class:

ve L0, T;V(0,1) N H?(0,1)),
vy € L(0,T5V(0,1)),
vy € L°(0,T; L?(0,1)).

To prove the existence of Theorem 2, we will use the method of Galerkin.

3. The Method of Galerkin

In order to exploit the Galerkin method, we introduce a new unknown function z
such that z(y,0) = z(y,0) = 0. In fact, let ¥ = vo(y) + tv1(y), then z = v — 2
satisfies the following problem:

zi = G1zyy — 2022y — bi1zy = fa(y,t),  n Q, (3.1)

2(y,0) = 2(y,0) = 0, (3.2)

z(1,t) =0, (3.3)

2,(0,8) + By(t) [2:(0,) + v1(0)|? (2:(0, 1) + v1(0)) +v4(0) + tvy(0) =0,  (3.4)

where f2(y,t) = f1(y. 1) + a1ty + 2a2ty: + bitby.
Let {w;(y)} be a basis in V (0, 1) orthonormal in L?(0,1). We define approximate
solutions to (2.1) — (2.4) in the form:

Ny, t) = Zgjv (t)w;(y).
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The unknown functions g;-V (t) will be find as solutions to the following Cauchy
Problem:

(= 5w5) (8) + (12 wyy) (8) + (ary2y s w;) (8) = 2 (@221, w;) (1)
a1 {B1(1) [ (0.8) + 01 (0)|” (5 (0,) + v1(0)) + v + t0},(0) } w;(0)
= (b2 wj) (8) = (f2,w5) (B), (3.5)

gN(0)=gN(0)=0, j=1,2...,N. (3.6)

The system (3.5) is a normal system of N ordinary differential equations, there-
fore, by the Caratheodery’s Theorem, (3.5) — (3.6) has solutions at some interval
(0, Ty). It means that the approximations zV (y,t) exist at the same interval. To
prolong them at the whole interval (0, T") and to pass to the limit in (3.5) as N — oo,
we need a priori estimates of z%.

3.1. First Estimate

Substituting in (2.5) w; by 2;", after some calculations we come, omitting the
index N, to the identity:

10 ! 1
ia / (Zf(ya t) + alZZ(ya t)) dy =+ / (aly — bl) Zyztdy
0 0

- lk —af(#)

) ] [BY(t) |2 + v1]? (2 + v1) + 0§ + tv]] 2

y=0

1 / 1
2 au 2) oy (t) 5
Q2y2; — —2, ) dy + z:(0,t) = [ fazedy.
/0 ( vt 2 y(t) 0
Using the assumptions of Theorem 1 and the Young’s inequality, we reduce it
to the inequality:

OB, (t !
A 8K 0 20,0 +uOF P < CERO + O+ [ By 1)
0
! k2 — o (1)
where FEj(t) = / (th +alzg) dy, Ko(t) = Ttl) ; positive constants
0 v

C1,Cy are defined by wvg,v; and coefficients a1, as, b;.
By Gronwall’s lemma:

Ey(t) < C, Vte(0,T). (3.8)
Returning to (3.7), we get:
t
81 [ Kolryr) e 0.7) + w0 dr < 0 39)
0

and the constants Cy, Cy, C' do not depend on N, ¢ € (0,T).
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3.2. Second Estimate

Differentiating (3.5) with respect to ¢, substituting in the result w; by 2l we come
to the equality:

1o (', ) o !
35 [ztt + alzyt] dy + 5 (a1t 2y 2yt + 2a0:2¢2y1) dy
0 0

1

3 2
+ QlytZyZyt — 202: 2yt 241 + 2024124 241 + 302y~ bitzyzee — b1zyizee | dy
0

=M (®) |z +v1]” (20 + 1) + ha(8)(p + 1) |2e + 01]” 200 + B (8)] 2t

y=0

G020, £) + ha(8)220(0, 8)] 240 (0, £) = /0 Forzandy, (3.10)

where:
ha(t) = BEo(t)v(t),
ha(t) = Kol(t();ﬁy(ovt),
ay(t

ha(t) = 2— 0,t)z4(0,t).
l3() W(t) Zt( ) )Ztt( ) )

Putting in (3.5) ¢ = 0, substituting w; by 2%} (0,¢) and taking into account
assumption 2 of Theorem 1, we obtain:

1
/ |2 (y, 0)]* dy < C, (3.11)
0

where C' does not depend on N.

Integrating (3.10) over (0,7), taking into account the estimates (3.8),
(3.9), (3.11), we get:

1 t
Es(t) = / (23 + alzjt) dy <C (t + / EQ(T)dT) .
0 0
The Gronwall’s lemma implies:
Ey(t) <C, Vvte(0,T), (3.12)

where the constant C does not depend on N. Returning to (3.10), we get:

/T 12 (0, 1) +v1(0) (zﬁ(o,t))th <0, Vre(0,T). (3.13)
0
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4. Existence of Strong Solutions

It follows from the estimates (3.8),(3.12) that:
2N — 2 weak star in L>(0,75V(0,1)),
2N — 2 weak star in L>(0,T;V(0,1)), (4.1)
28 — 2y weak star in L>(0,T; L?(0,1)).

Moreover, (3.3) and (3.13) imply that:

((0,6) +1:(0)) ¥ € HY(0,1) €0, T),

therefore:
5+1

|2 (0, 1) + v1(0)] 12¢(0,8) + v1 (0)[ L. (4.2)

=
C(0,T)

The limits (4.1) and (4.2) permit us to pass to the limit as N — oo in (3.5) and
obtain for a. 1. ¢ € (0,7 :

(21, 0) (1) + (a12y, by) (1) + (a1y2y, 9) (1) = 2 (a22yt, @) () = (brzy, 9) (1)

- lk —af ()
72

0 ] {B(t) [2:(0,£) + v2(0)|” (2¢(0,2) + v1.(0)) + v + £ (0)} $(0)

= (far ) (1), (4.3)

where ¢(y) is an arbitrary function from V' (0, 1). It means that z(y, t) is a generalized
solution (3.1) — (3.4) and we may rewrite (4.3) for a. 1. ¢ € (0,T") in the form:

(2y, (a19)y) (t) + G()$(0) = (F, 9) (1), (4.4)

where G(t) and F(y,t) are known functions and f € L>(0,7;L?(0,1)). Because
G(t)
1,t) = 0 and 2,(0,t) = ———
AL0) = 0 and 2,(0.0) = o0
ized solution to the following boundary value problem for the ordinary differential
equation:

, it follows from (4.4) that z(y,t) is a general-

L, F
w al(yvt)’
_ _ G
z(1,t) =0, 2y(0,t) = (0.8’

hence z,, € L>(0,7; L?(0,1)). This proves the existence part of Theorem 2 |



Non-Homogeneous Wave Equation 123

5. Uniqueness of the Solution

Suppose that there exist two solutions z1(y,t) and z2(y,t) of the problem (2.4) —
(2.6).
Putting 2(y,t) = 21(y, t) — 22(y, t), we obtain:

Ztt — Q12yy — 2022yt — b12y = f1(y, 1),

z(y,0) =0,
Zt(y7 O) = Oa

z(1,t) = 0,
29(0,8) + B7(1) [J214(0. 1P 210(0,£) = 2240, 8)/P22:(0,8)] = 0.

Proceeding as by proving the First estimate and observing that the function
|v¢|” vy is monotonous, we obtain the inequality:

&@<cfEmwﬁ

where Fy(t) = fol (22(y,t) + arzg (y, 1)) dy.
By the Gronwall’s inequality:

Ei(t) = 0.

This implies that z1(y,t) = z2(y,t) and, therefore, the solution of the problem
(2.4) — (2.6) is unique. This complete the proof of Theorem 2 |

Remark 2 Assertions of Theorem 1 follow directly from Theorem 2 and Remark
1.

References

[1] J. Cooper and C. Bardos, A nonlinear wave equation in a time dependent
domain, J. Math. Anal. Appl. 42 (1973), 29-60.

[2] J. Cooper and L.A. Medeiros, The Cauchy problem for nonlinear wave equa-
tions in domain with moving boundary, Annali dela Scuola Normale Superiore

di Pisa XXVT (1972), 829-838.

[3] A.T. Cousin, C.L. Frota and N. A. Lar’kin, Regular solutions and energy decay
for the equation of viscoelasticity with nonlinear damping on the boundary, J.
Math. Anal. Appl. 2 (1998), 273-296.

[4] A.T. Cousin and N.A. Lar’kin, On the nonlinear initial boundary value problem
for the equation viscoelasticity, Nonlinear Anal., Theory, Methods and Appl.
31 (1998), 229-242.



124

[5]

[10]

[11]

[12]

[13]

Lar’kin and Simoées

N.A. Dragieva, Solution of the Wave Equation in a Domain with Moving
Boundaries by Galerkin’s Method, Zh Vychise Mat. Tiz 15, No. 4 (1975),
946-956.

J. Ferreira, Nonlinear hyperbolic-parabolic partial differential equations in non-
cylindrical domains, Rendiconti dei Circolo Mat. di Palermo 44 (1995), 135-
146.

N.A. Lar’kin and J. Ferreira, Global solvability of a Mixed Problem for a Non-
linear Hyperbolic-Parabolic Equation in Noncylindrical Domains, Portugaliae
Mathematica 53 (1996), 381-395.

J. Limaco Ferrel and L.A. Medeiros, Kirchoff-Carrier elastic strings in non-
cylindrical domains, Portugaliae Mathematica 4 (1999), 465-500.

J.-L. Lions, Une remarque sur les problemes d’evolution nonlinaires dans les
domaines non cylindriques, Rov. Romaine Pures Appl. Math. 9 (1964), 11-18.

J.-L. Lions, “Quelques Methodes de Resolution des Problemes aux Limites Non
Liniares”, Dunod, Paris, (1969).

L.A. Medeiros, Non-linear wave equations in domains with variable boundary,
Arch. Rational Mech. Anal. 47 (1972), 47-58.

M. Nakao and T. Narazaki, Existence and decay of solutions of some nonlinear
wave equations in noncylindrical domains, Math. Rep. 11 (1978), 117-125.

Y.I. Sidelnik, Existence and uniqueness of a generalized solution of the mixed
problem for an equation of plate oscillation type in a noncylindrical domains,
J. of Soviet Math. 63 (1993), 98-101.



