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Abstract. The goal of the present work is the numerical simulation of flows
between moving surfaces. The method is based on the finite differences explicit
Runge-Kutta multi-stage scheme with central spatial discretization and for sec-
ond order time appoximations. Tests are carried out for parallel plates (Couette)
flow and moving cylindrical surfaces for newtonian and non-newtonian (journal
bearings) fluids, with and without temperature variations and the results showed
to compare well with analytical, numerical or experimental data found in the
literature.

1. Introduction

One of the most common applications of viscous fluids is the flow between moving
surfaces. It is usefull to introduce a fluid between surfaces, such as a viscoelastic
fluid, to reduce the friction force and to minimize damage to them, which can be
done in a variety of ways. Such fluids have usually a non newtonian behaviour,
meaning that there exists a non linear relation between tension and deformation.

The numerical analysis of non newtonian flows is not a trivial task, requiring
experience with numerical methods. In this way, before developing a numerical
code for non-newtonian flows it is advised to calibrate it to the newtonian case.
Common problems such as a Couette flow between parallel [8] plates or rotan-
ting concentric/excentric cylinders with and without temperature changes can be
analysed.

One of the methods employed for the numerical solution [1] of fluid flows is the
method of finite differences, because of its simplicity, low cost and ability in well
representing such flows. This method is not new and many other alternatives could
be employed, such as finite elements, finite volume, boundary elements and spectral
methods. Each of these methods has its own advantages and disadvantages, which
will not be discussed here.

The method follows the central differences spatial discretization based on the
explicit Runge-Kutta time-stepping scheme. Although for implicit methods bigger
time-steps could be employed, it is preferable to use explicit ones like Successive
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Relaxation and Runge-Kutta, which are simple to implement, and admit parallel
and vectorial code structures. It is advised to employ the simplified Runge-Kutta
time-stepping scheme.

Numerical tests are carried out for parallel plates (Couette) flow between con-
centric and excentric cylinders, for newtonian and non newtonian fluids, taking into
account temperature variations. Comparisons were made for velocity profiles, tem-
perature distribution and streamlines. The non newtonian model employed is based
on the Convected Maxwell model, which applies for small non linear relations be-
tween tension and deformation. The complete set of governing equations for these
complex flows are presented in the next section.

2. Governing Equations

The complete set of governing equations for general fluid flows is formed by the
mass conservation, momentum and energy equations. Such set for bidimensional
incompressible flows can be written in the general adimensionalized form as follows
[2].

Momentum equations

X direction
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Poisson’s pressure equation
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Energy conservation
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where u and v are the velocity vector components, T the temperature, DT'/dt the
convective terms derivative, p the pressure and 7; ; the components of stress tensor.
Such equations are valid for newtonian as well as non newtonian fluids.

A Boussinesq approximation [2], [6] was employed which relates the velocity-
temperature coupling, being usefull for small temperature differences and for very
small fluid compressibility. For gases and water the hypothesis of Stokes apply
and one obtains the well known Navier-Stokes equations. However, the majority of
fluids found in nature has a non-newtonian behaviour, which can be modeled by a
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variety of models. One of the simple and efficient one is the Convected Maxwell
model [9], which can be written as

T+ =2n— (2.5)

here 7 represent the tensions, A the relaxation time, 7 the dynamical viscosity, 7
the extra tension and 4 the deformation rate.

The idea of this model is the junction of a dashpot and a spring combined in
series. After the necessary adimensionalizations we obtain the following form for
tension equations [9]
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where D, is the Deborah number (AV/L), for which X is equal to zero for the
Newtonian case. This number corresponds to the rate between the temporal and
process characteristics or, in other words, it is responsible for the “fluid memory”.

3. Description of Numerical Method

The finite differences three-stages Runge-Kutta scheme with central spatial dis-
cretization is employed, because of its implementation simplicity and efficiency when
analysisng these fluid flows [1]. For solving pressure equation a Successive Relax-
ation for Gauss-Seidel scheme was employed; such method can be understood as a
Runge-Kutta of one time-step.

A good mesh generation is very important when solving fluid problems such as
between excentric cylinders. Appropriate concentration must be obtained near wall
surfaces in order to well represent variable gradients. Significant computational
time could be reduced when using appropriate grids.

The set of governing equations must be transformed into a generalized coordinate
system [10]. Following the transformation (x,y,t) to (&,7n,t) a set of metrics is
obtained. Based on the following transformation the momentum in X direction
results in the following form
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where &g, 1z, & and 7, are the metrics of coordinates transformation given, for
example, by
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fz = Jyn- (32)

Here, J represents the Jacobian (areas relation). The other equations are written
in a similar form.

All terms of the complete set of governing equations are approximated based
on central differences [1], [3] for convective as well as diffusive terms based on
the Runge-Kutta coefficients for seccond order time integration with convergence
criterion based on pressure or temperature of order ¢ < 0.0001. The developed code
is based on the following algorithm:

1. initialize variables;

obtain metrics of coordinates transformation, when necessary;
apply initial and boundary conditions;

calculate tension components;

obtain velocity vector components;

evaluate the pressure;

obtain the temperature;

® N oo W

return to item 4 until convergence or stage required is reached.

4. Numerical Results

In the following, numerical results for parallel plate and rotating excentric cylin-
ders are presented and compared with ones found in the literature. Streamlines,
isotherms and velocity profiles are used to verify and to calibrate the code.

First results were obtained for Couette flow for various pressure gradients (-3,
-2,-1,0,1,2,3). The adimensional pressure is defined as follows

h? dp
=——— 4.1
2uU dz” (41)

where h is the plates distance, p the kinematic fluid viscosity, U the flow velocity
and dp/dx the dimensional pressure gradient. The analytical solution gives the
following velocity distribution

Y Y Y
Yy p? (1——), 42
R U T (4.2)
where y is the distance from the fixed plate in the direction to the moving plate.

Fig. 1 presents the velocity profiles for various adimensional pressure gradients.
Such results are in good agreement, for all constant pressure lines, with the ones
obtained by Schlichting [8].
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Fig. 1 Velocity profiles for various adimensional pressure gradients

Fig. 2 displays the velocity profile comparison for the product P.FE.=8 among
the plates. The results are in good agreement as expected after obtaining good
velocity profiles agreement.
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Fig. 2 Comparison of the velocity profiles for P = 0.8 with the results from
Schlichting [8]

In the following, a temperature distribution is presented and compared. The
analytical solution in adimensional form is given by

-1 vy Yy Yy

n_%_h+aah0 2. (4.3)
where Ty is the fixed wall temperature and 77 the moving plate temperature. Fig.
3 shows the temperature profile for different P, E. numbers, from 0 to 8 (0,1,2,4,8).
The results show good agreement for higher P, FE. but not between these adimen-
sional variables. This difficulty can be associated to the strong velocity-pressure
coupling in the numerical technique employed, while the coupling between pressure-
temperature or velocity-temperature is weak. In any case, such results are accept-
able because of the small differences presented.
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Fig. 3 Temperature distribution for Couette flow for various P, E. products

After these comparisons for a simple flow situation, numerical results for the
flow between concentric and excentric cylinders is presented based on the boundary
fitted coordinates system. First results were obtained for newtonian flow between
concentric cylinders, whose mesh is presented in Fig. 4. Such results were obtained
for P.=0.71 and R.=300 for external diameter 2.6 times the internal one and angular

velocity 1, as can be seen in Fig. 5.

The comparison with experimental data

(Hawarth [4]) shows good agreement of the numerical results.

Fig. 4 Grid for concentric cylinders, 31x61 points

Following, Fig. 5 shows the isotherms for natural convection flow for R, =
10% and P, = 0.71 for cylinder excentricity 0.8. Good agreement is observed when
comparing these results with the ones presented by Ming-I et al., [7]. The isotherms
are symmetric with respect to the vertical axis, and the heat tends to make the

temperature uniform for the whole cavity.
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Fig. 5 Comparison of isotherms: (a) present work (b) Ming-I et al. [7];
R.=0,R, = 10°

The corresponding streamlines are presented in Fig. 6. They compare very well
with the ones found by Ming-I et. al. [7], showing that the developed code is able to
well represent the flow between excentric cylinders for a variety of non dimensional
numbers mentioned before.
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Fig. 6 Comparison of streamlines: (a) present work (b) Ming-I et al. [7];
R. =0, R, = 10°

Fig. 7 presents the flow for internal cylinder in movement for R.= 378 and R,
= 10°. In this new situation the flow is not symmetric. Temperature distribution
is also affected, as can be seen in Fig. 8, where centrifugal forces tend to produce a
mixed convection (natural plus forced convection) flow, which is now more complex.

There appear small differences between the results of the present work and the
ones obtained by Ming-I et al. [7], the latter using the finite volume method, whose
results were compared with experimental ones.

Finally, numerical results for non-newtonian flows are presented and compared.
The computational grid employed consists of 31x61 points. Mesh concentration is
necessary mainly near walls using streching factor of order 1.1 (from line to line).
Although this is a coarse grid, good temperature distribution was obtained. Fig.
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9 shows the isotherms obtained for laminar flow (R, = 1, P,=5.71 and D.=0.01),
between eccentric cylinders with eccentricity 0.8. The ratio between internal and
external radius is 1.6 and the angular velocity is equal to 1.
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Fig. 7 Comparison of isotherms: (a) present work (b) Ming-I et al. [7];
R, = 378., Ry = 10°
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Fig. 8 Comparison of streamlines: (a) present work (b) Ming-I et al. [7];
R. = 378, R, = 10°

Comparison of these results with the ones presented by Li e Davies [5] showed
good agreement. The position of central isolines is approximatly the same, and the
others have the same behaviour.
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Fig. 9 Comparison of isotherms: (a) present work (b) Li e Davies [5],
R.=1e D, =0.01

5. Conclusions

Numerical tests have shown that the numerical method based on the finite dif-
ferences spatial discretization and Runge-Kutta time-stepping scheme can be used
to solve the flow between moving surfaces and the accuracy of the code has been
compared through comparisons with analytical, experimental data found in the
literature. The approach is obviously vectorizable and paralelizable.

Special care has been taken on the treatment of non newtonian terms (tensions),
and a very good method capable of well represent newtonian as well as non newto-
nian flow behaviours was obtained. It was shown that the method works well with
or without temperature variations, rotating or not, newtonian or non newtonian
flows for cartesian as well as generalized geometries. Besides, the code structure
was very simple allowing a performance around 1 Gigaflops at CRAY T-94 from
CESUP-UFRGS, which is almost five times that of the common commercial codes
used at that computer.

In conclusion, the numerical results obtained here indicate that there are many
interesting physical phenomena associated with laminated flows between moving
surfaces. This understanding is essential if real progress is to be done for more
complex problems involving (non) newtonian flows whose applications for moving
surfaces are obvious.
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Resumo. O objetivo do presente trabalho é a simulacdo numérica do fluxo en-
tre superficies méveis. O método baseia-se no processo de integragao temporal
de Runge-Kutta multiestagios com discretizagdo espacial em diferengas centrais
(segunda ordem). Testes sdo feitos para placas paralelas e superficies cilindricas
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méveis (mancais) para fluidos newtonianos e nado-newtonianos, com e sem variagoes
de temperatura e os resultados obtidos comparam adequadamente com resultados
analiticos, numéricos e experimentais encontrados na literatura.
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