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Abstract We describe the implementation of a computational program that, for a
given ideal with finite codimension in the ring of complex polynomials, constructs
the Newton polyhedron and determines the integral closure of the ideal. We follow
the definition given in [5] for the construction of the Newton polyhedron and the
algorithm described in [6] for the computation of the integral closure. This program
is divided in two modules, one for the calculation in the ring @'[z,y] and another
that works in the ring @[z, y, z].

1. Introduction

The integral dependence relation of ideals is one of the main tools in the study of
algebraic, geometrical and topological incidence relations between germ of functions
f:@™,0—-0a,0.

Saia in [5] showed the relationship between the integral closure and the Newton
non degeneracy condition of an ideal, Saia in [6] gave an algorithm for the deter-
mination of the integral closure of any ideal of finite codimension in the ring of
convergent power series €'{x1,...,2,}. This algorithm is based in the construction
of the toroidal embedding associated to the Newton polyhedron of the ideal.

We describe here the implementation of these algorithms in a computational
program that works in the ring of polynomials in two (or three) variables, denoted
by @lz,y] ( C[z,y,z] ). In the module for two variables, we implemented three
short subprograms for the calculation of the integral closure of the jacobian ideal

J(g) = <%§, %5> and the associated ideals <x%§,y%§>, <x%,y%§,y%§,x%§> for
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any germ of polynomial f € @'[z,y] which has isolated singularity at 0. We see
in the works of Yoshinaga [8], Ruas & Saia [4], and Kouchnirenko [3], that the
integral closure of such ideals is the key tool to calculate topological and geometrical
invariants of germs of functions.

This program is the first part of a package that is being implemented for the
determination of geometrical and topological invariants of germs of isolated singu-
larity mappings f:@[z1,...,%,] = Cy1,--.,Yyp] with n,p < 3. The program works
in Windows 95, is written in Pascal with Delphi compiler and the three dimensional
module uses the Graphics interface OpenGL.

2. Theoric results

We resume here definitions and results given in [5] and [6] needed for the imple-
mentation of the software.

2.1. Newton polyhedron and the non-degeneracy condition

Let @{z1,...,zn} be the ring of convergent power series around the origin with
a fixed coordinate system x = (z1,...,2,). For each series g(z) = _ apx", we
define supp g = {k € Z™ : a; # 0}. For any ideal I in @{z}, we call supp I =
U{supp g:g € I}.

Definition 1 The Newton polyhedron of I, denoted by T'(I), is the convex hull in
IR of the set
U{k—i—v 1 k€ supp I, ve]Ri}.

We denote by T'(I), the union of all compact faces of T (I).

In the sequel we shall consider I = (g1,¢2,--.,9s) an ideal of finite codimension
T{zx}

T < Q.
(91,92;5++,9s)

in@{z}, i.e., dimg

Given a finite subset A C 'y (I), for any series g(z) = Y apz® € @{x} we call
ga =Y pea akz®. We denote by C(A) the cone of half-rays emanating from 0 and
passing through A. Since C'(A) N Z* is a subsemigroup of Z*, the subset of @'{z}
given by Ca = {g € @{x} : supp g C C(A)N Z*} is a subring with unity of @{x}.

Definition 2 Algebraic characterization of non-degeneracy
A subset A C T'y(I) is non-degenerate if the ideal In generated by {g1 ., G2as---»9sat
has finite codimension in Ca.

The above definition is equivalent to the following:

Geometric characterization of non-degeneracy

A is non-degenerate if the equations g1, (z) = ... = gs, () = 0 have no common
solution in (@ — {0})".
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Definition 3 An ideal I is Newton non-degenerate if all compact faces F; C T'(I)
are non-degenerate.

Remark 1 The collection of all cones C(F;) for all compact faces F; of T'y.(I) gives
a polyhedral decomposition for IR, since I is an ideal of finite codimension in@'{x}
and T (I) is a convex polyhedron in IR} .

2.2. The integral closure and non-degenerate sets

Definition 4 Let I be an ideal in a ring A, the integral closure of I, denoted by
1 is the ideal of the elements h € A that satisfies an integral dependence relation
M+ ah" Y +... +a, = 0 witha; € I'.

Proposition 1 [7] When A = @{x1,...,x,} the following statements are equi-
valent:

1. hel;

2. (Growth condition) For each choice of generators {g;} of I there exists a
neighbourhood U of o and a constant € > 0 such that for all x € U:

I h(z) || < e.supllg:(2)]];

3. (Valuative criterion) For each analytic curve ¢: (@,0 ) — (X,zq ), hop
lies in (¢*(I)) (@{zx}).

These equivalences are essential in the algorithm that calculates the integral
closure.

Definition 5 We denote by C(I) the convex hull in IR of the set U{m:a™ € I} .

Theorem 1 [5] C(I) C I'.(I) and C(I) = U1 (I) if and only if I is Newton non-
degenerate.

When I'y (I) has compact faces which are degenerate, we need the following
results to compute the polyhedron C(T).

We consider the dual space IR™ of IR™ with coordinates (ay,...,ay).
Definition 6 For each a = (a1, ..., a,) € R™ we let:

a. (a) =min{(a,k) :k €T (gi;)}. (a, k)= Zaiki;

b. A(a) = {k € T'(g:;) : {a,k) = £(a)};

c. Two vectors a and a' are equivalent if A(a) = A(d’).
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This equivalence relation gives a partition 3 of the positive octant of the dual
space IR™ of IR™ in a finite number of closed convex cones with their vertices at
zero. This partition can be seen as the dual of the polyhedral decomposition of IR’}
given by the Newton polyhedron I'y (), given in Remark 1.

From this duality we see that for each (n — 1)-dimensional face F; in T'y(I)
there exists a class of integers vectors a’ € (Z7 — {0}) such that F; = A(a). These
integers vectors are all normal vectors of the hyperplane that contains the face Fj,
we denote by a’ a representative of this class of integers vectors and by F(a’) the
corresponding face.

Definition 7 For a compact face F(a') € T(I) and a given { € Z ., we call
Fi(a") ={meT (I):<m,a" >< ¢}

It follows from the finite codimension of the ideal I that for any compact face
F(a') C T(I), there exists an level £ such that Fy(a’) is a non-degenerate set, hence,
for each (n — 1)-dimensional compact face F(a*) C T'(I) we let:

Definition 8 Q; = min.{¢ : F;(a") is non — degenerate}.

We denote by F, the first non-degenerate set of the compact face F'(a®).

Theorem 2 [6] For each m = (my,...,my,) € Z'} the following statements are
equivalent:
1. me C(I);

2. The inequality Qg < <m, a,7"> holds for each (n — 1)-dimensional compact face
F(a) cT(I).

Therefore we see that the computation of the first non-degenerate sets Fg, of
all compact faces F(a’) of I'(I) is the key to compute C(I).

The equivalence between the algebraic and geometric characterizations of non-
degeneracy is the first tool that enable us calculate the non-degenerate sets Fg(a) in
'+ (I). Another tool to compute the numbers @); is the construction of the toroidal
embedding of @™ induced by T'; (), we shall resume this construction here.

2.3. Toroidal embedding

From the duality between the partition % of IR™* and the polyhedral decomposition
of IR} induced by I'; (I), we have that each vertex v of I'() is a vertex of at least

one set of n compact faces F'(a*) of dimension n — 1 in I'(). For each such set of n
compact faces such that v is a vertex of F; we have an associated n-dimensional cone

o € ¥ which is generated by the set of n integer vectors denoted by {al,a2,..., a%}.
For each n-dimensional cone o = o (al,a2,...,al) we define a mapping

a” 1 n

1
ﬂ-a':wg*)wn: Wo(yla-"ayn):(ytlll"'-'ynla--'ayﬁn"'-'yzn)a
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where (a{, ey a%) denotes the coordinates of the vector al.

We glue two copies C7 and @7 via the following equivalence relation, let y, € 7
and y, € @7, then y, ~ y, if and only if 7, (y,) = 7-(y,). We denote the quotient
set by X = {U@"(0)}/~, where LI@7 is the disjoint union of all @?.

X is a nonsingular n-dimensional algebraic complex manifold, called the Toric
Variety of T'y(I) and the application m: X — @™ defined by 7(y) = 7,(ys,), is the
toroidal embedding associated to I'y(I).

Therefore, for any monomial 2" € ™ and any n-dimensional cone o € ¥ the
following conditions are equivalent:

(*) |=™| < E.sup; {|gi(x)|} for all = in a neighbourhood U of 0;

(%) 2™ 0 7o (yo) < E.supi {|gi| 0 7o (yo)} for all y, € 77 (V).

This equivalence gives us an efficient way to find the numbers Q); associated to
the first non-degenerate sets Fy,.

3. The algorithm

Algorithm MAIN

1. Enter with the POLYNOMIALS GENERATORS of the ideal;
2. If there are POLYNOMIALS GENERATORS

1. for all POLYNOMIALS GENERATORS; format the characters of the POLY-
NOMIALS GENERATORS;

2. If the POLYNOMIAL GENERATOR exceeds the memory; Show an error
message and stop

3. If the POLYNOMIAL GENERATOR is Ok; them insert it in the LIST OF
POLYNOMIALS and Execute algorithms GRAPHICS and REPORT

If not Show an error message and stop;

Algorithm GRAPHICS:

1. Find the first face of the Newton polyhedron and put it in the LIST OF FACES
2. For each edge of a face in the LIST OF FACES, find the adjacent face and
include it in the LIST OF FACES

3. Plot the convex hull from the LIST OF FACES

Algorithm REPORT:

1. First “simple” test of finite codimension of the ideal: the generators must have
monomials which are in the coordinate axes;

If the codimension is not finite, show an error message and finish;
2. Show the generators of the ideal, the faces of the Newton polyhedron and the
normal vectors of each face;
3. Calculate all mappings m, of the toroidal embedding;

4. For each generator g;, do the compositions g; o 7, for all mappings m,;
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5. For each generator g; do the restriction gj, F for all compact faces F; of T'(I);

6. For each generator g; compute the functions g; . o, for all (n—1)-dimensional
compact faces F; of T'(I);

7. For each compact face F; of I'(I), test if there exists a non degenerate set
associated to Fj;

8. If test 7. is OK for all compact faces, do
1. Execute the algorithm INTEGRAL CLOSURE;
2. Show the monomials which are in the polyhedron C(1);
if not show message of error and finish;

Algorithm INTEGRAL CLOSURE:

1. For each (n — 1)-dimensional compact face of 'y (I) do

1. Find the first non-degenerate set associated to the face and include it in
the LIST OF FACES;

2. Plot the LIST OF FACES.

3.1. Construction of the Newton polyhedron

The construction of the Newton polygon of an ideal in @[x,y] is an adaptation of
the algorithm of Jarvis for the construction of a convex hull of a finite set of points
in the plane. In the three dimensional case this construction is an adaptation of
the algorithm of Chand-Kapur. The algorithms of Jarvis and Chand-Kapur are
described in [2], we show here the algorithm for the construction of the Newton
polyhedron of an ideal with finite codimension in @[z, y, z].

Since the Newton polyhedra considered here are associated to ideals of finite
codimension, a necessary condition to start the program is that there exists at least
one point of the Newton polyhedron in each coordinate axis. This computation
is done in the first “simple” test of the codimension, item 1. of the algorithm
REPORT.

There are two types of faces in any Newton polyhedron, the coordinate faces
(which are not compact) and a finite number of compact faces which are not in the
coordinate planes.

The algorithm to construct these faces is the following:

First step: Determination of an initial face of the Newton polyhedron.

The initial face to be determined is the Newton polygon defined by the points
which are in the plane xy.

Second step: Determination of an adjacent face of a fixed face.

Let F; be a face, and v an edge of F; which does not have the next adjacent face
determined. The next adjacent face of this edge is the one which defines a maximal
angle between the semi-planes defined by all the possible faces which have the edge
«. We obtain the maximal angle checking the angle between the normal vectors of
these possible faces.
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If there are more than one “face” in this condition, these “faces” are part of a
bigger face in a plane, hence we calculate this kind of face as a Newton polygon in
this plane.

Final step: The process stops when we find all adjacent faces for all edges of all
compact faces.

4. Determination of the non-degenerate sets

The main purpose of the algorithm REPORT is to check the existence of all non-
degenerate sets associated to the compact faces. For this we use the associated
mappings 7w, of the toroidal embedding in order to compute the numbers (); of
each compact face Fj.

The purpose of the algorithm INTEGRAL CLOSURE is to find the first non-
degenerate set F, of each (n — 1)-dimensional compact face F; of I'y (I) and cons-
truct the polyhedron C(I).

We describe now the algorithm used in the item 7. of the algorithm REPORT.

Test of existence of a non-degenerate set for each compact face F;.

The main idea in the Theorem 2 is that for each compact face (n-1)-dimensional
F; of I'(1) and for each generator g; of I, the first non-degenerate set Fi), gives the
smallest polynomial gz, in the Taylor series of g;, such that the set of common

n

zeros of the equations Giir,, = 0lisa subset of (@ — {0})

We fix a face F; and write each polynomial G;; = Yiieg, in the form G;; =
29y®2¢H; ;(z,y,2) such that the zero set of H;; is not in {€ — 0}". Then we
compute if there are common solutions of the equations H;; = 0 in the following

way: Consider the ideal H; generated by {Hi,...,H,;} and apply the theorem
bellow to the affine variety V = V(H;).

Theorem 3 [1] Let V = V(I) be an affine veriety in @™. For a fized monomial
order on@|xy,...,x,] we have the equivalences:

1. V is a finite set;

2. For each 1 < i < n there exists one m; > 0 such that x]"* € (LT(I)), where
(LT(I)) denotes the ideal generated by the leading terms of I;

3. If G denotes a Grobner basis for I, then for all i, 1 <1 < n there exists one
x;" = LM(g) for some g € G, LM(g) denotes the leading monomial of g:

4. The complex vector space S = Span(z® : z* ¢ (LT(I))) is of finite codimen-
ston;

a‘[wlv-"yzn]
I

5. The complex vector space is of finite codimension.
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We remark that we are considering the equivalence between items 3 and 5 and the
fact that if the vector space Tlermzal jg of finite codimension, them there are no

common solutions for the equations {H; ; = 0,...,H,; = 0} given by the generators
of the ideal H;.

Algorithm:

1. For each (n — 1)-dimensional compact face F; consider the restrictions of the
generators g; to this face and compute the correspondent polynomials H; ;;

Loop: 2. Find the Grobner basis of the ideal H; = (H1 4, ..., Hsi);
3. Apply the theorem above to determine if the set is or not non-degenerate;

4. If the set is non-degenerate, go to the next face.
If not, search for the next level and add the set of monomials which are in this
level to the list POLYNOMIALS GENERATORS and returns to Loop;

5. Continue this Loop until find the first non-degenerate set;

If for one compact face this set is not found, the ideal is not of finite codimension,
therefore the algorithm does not compute the integral closure and shows message
of error.

5. An example in C'[z,y]

Let I = (g1,92), with g1(z,y) = 2% + 2%y — 223y + 2y®, g2(z,y) = 3 + 2°y —
2:E3y3 + a?y5

= R R R o W W =
2
r

Gy
1 2 1 4 5 & T 3 2 1 11 1 z 1 4

i

Figure 1: Newton polyhedron I'y (1) Normal vectors a

Report
Generators of the ideal: g;(X,Y) = X%+ X5.Y —2.X3.Y3 + X.Y®,
g2(X,Y) = Y® + X5V —2.X3.Y3 4 X.Y5

Edges of the Newton polygon: F; = {[0, 0], [0, 8]}, F» = {[0,8],[1,5]},
Fs; = {[175}7 [5) 1]}7 F, = {[57 l]v [950]}7 Fs = {[970]7 [OO)O]}

Normal vectors: a = (1,0), a® = (3,1), a® = (1,1), a* = (1,4), a® = (0,1)
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Mappings 7, of the toroidal embedding;:

7T1,2(y17y2) = (y%yg’,y?y%)
72,3(Y2,Y3) = (Y5-Y3, Y5-Y3)
7T3,4(Z/3a y4) = (yé-yiay‘%-yi

=

)

7r475(y4,y5) = (yi-ygayi-ys)

Composition of the functions 7 with the generators of the ideal:
Generator gy:

gromia(yiy2) = y1ys — 245 .y5° + i’ + i s’

g1 0m23(y2,y3) = v5-y5 — 2.u5%.y5 + vs®.ys + 3 ys

g1om34(ys,ya) = ¥5-vi" — 2.05.u1° + y5-ui + 3-v4

910ma5(ysys) = Y1 Y2 — 2.95° Y5 + yiys + Ui
Generator go:

g2 0121, y2) = U5 + y1y5 — 2.45.y5% + yi.yat
g2 0 m2,3(y2,Ys) = v5-¥5 + ¥5.95 — 23”08 + 12°. 08

92 0 m3,4(ys, y1) = y3-y3° +ySys — 2.95.04° + y5.ul

920 mas(Ya,ys) = Vit ys +yitye — 2.95° Y5 + yi.ys

Restriction of the generators to the compact faces:

Generator g1: g1 p, (X,Y)=XY5
91,0, (X,Y) = XY® —2.X3.Y3 + XPY,
gl\F4(Xa Y) =X°Y + X°?

Generator gz: go,,,(X,Y) = Y8+ XY5
92,05 (X,Y) = XY? -2 X3V + XOF
92‘F4(X, Y) = XY

Test of existence of non-degenerate sets of the compact faces
Compact face Fy:
91yps © T2,3(Y2. Y3) = Y593 = (¥5.95).(1)
92,0 © T2,3(Y2.Y3) = Y595 + 9598 = (43.98).(y3 + 1)
Compact face F; is non-degenerate
Vertices of the highest face of the non-degenerate set: {[0,8.00]), [1.00,0]}
Compact face Fj:
9115 © T3,4(Y3, Y1) = Y391 — 29391 +y3.y8 = (¥5.92)-(vi° — 2.8 + 1)
920 © T3,4(Y3, y1) = y5y5" — 2.95.01° + y5.v8 = (y3.92)-(y1® — 2.8 + 1)
Compact face F3 is degenerate
Searching for the non-degenerate set of this face.
Finding the polynomials of the next set:
Polynomial generator: gi ,,,(X,Y) =0
Polynomial generator: gy r3(X,Y) =Y?®
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Weighted polynomial: g1 .., o w34 (ys, ys) = (49.42)-(0)
Weighted polynomial: gz ., © ms4(ys, y4) = (45-43%)-(1)
Polynomial P, =0

Polynomial P, =1

Found non-degenerate set.

Vertices of the face of the non-degenerate set: {[0, 8.00], [8.00,0]}.
Compact face Fy:

91 © Ta5(Yar Us) = ¥i-ys + yi = (y3-98).(ys + 1)

9214 © Ta5(Ya, Us) = yi-ys = (y1-v3)-(1)
Compact face F} is non-degenerate.

Vertices of the face of the non-degenerate set: {[0,1.00], [9.00,0]}.

T I - BTy

1 : 1 4 5 & T & o 1

1 1 4 & & T 4 @ @0

Figure 2: Polyhedron C(I). C(I) showed as intersection of the highest levels(lines)
of each non-degenerate set

6. An example in Q'[z,y, 2|

Let I = (g1,92,93); with gi(z,y,2) = 2® — y*2° + 3% ga2(2,9,2) = xyz and
g3(x,y, 2) = 324 + 2%y,
T
|
!
|
]
|
T
i
1 —
|
.
%
}_.\

S

,

Figure 3: Newton polyhedron T, (I) Edges of T (1)



A software for the integral closure 329

Report
Generators of the ideal:
gl(xayvz) = X3 - Y2Za gg(l',y,z) = YG + X3YZ37 93(56,2/,2) = 3Z4 + X5Y2

Normal Vectors: a' = (1,0,0), a®> = (8,9,6), a® = (6,3,12), a* = (0,1,0), a® =
(0,0,1)

Compact faces of the Newton polyhedron:

Fy ={[3.0,0][0,2,1][0,0,4]}, F5 = {[3,0,0][0,6,0][0, 2, 1]}.

Functions of the toroidal embedding

hi2,3(y1, Y2, y3) = (19595, ¥2-v5.y5, ¥0 y5.y3%)
hos3.4(y2, s ys) = (U3-¥5-¥9, U5 U3y, vs-y3° U4
6,0, 0

hsa5(Ys Y1, Us) = (YS-Y4-99, v3-vi-v8, vs°-y3-ys)

Composition of the functions with the generators of the ideal:
Generator gy:

g1 o h1,2,3(y1= Y2, Y3) = y?y§4y§8 - y§4y§8

910 haza(y2. Yz, ya) = v5 us® — v5 y3°yd

g1 0 h3a5(ys, Y1, ys) = Y5> — y3°Y3ys

Generator gs:
g2 0 h123(Y1,Y2,Y3) = v ys® + yiys s

920 ha3.4(Y2, Y3, ya) = Y5 uays + v5 1y ya

920 h3,15(Y3, Y, Ys) = Y3~ ys + v3 yays

Generator gs:

930 h123(y1,92,y3) = 3u3'ys® + y7y5 3’

93 0 ha3.4(y2, Y3, ya) = 3y5*y5° + ¥5°y5°u3

93 0 h3,45(Y3, Y1, Ys) = 3Y3°ys + y3oy;

Restrictions of the generators to the compact faces:

Generator g1: g1jp,(X,Y, Z) = X3-Y?Z, g r (X, Y, Z) = X3-Y?Z.
Generator gs: gop, (X, Y, Z) =0, goyp, (XY, Z) = Y.

Generator g3: g3r,(X,Y, Z) =32*, g3, (X,Y, Z) = 0.

Check of the non-degeneracy of the compact faces:

Compact face Fy:

911F, © ha3a(y2,y3,y1) = ¥3*y3® — v3tua®yi = (5 y3®).(1 — y3)

G217, © h2,3.4(y2,y3,y4) = 0 = (1).(0)
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937, © ha3.a (Y2, ys, va) = 305 y5° = (4575°)-(3)

R (XY, Z) = X° = Y?Z = (1).(
9217, (X, Y, Z) = 0= (1).(0)
931/, (XY, Z) =32 = (1).(

Groebner basis for this restriction: {X3 — Y22, Z4}
Compact face F; is degenerate
Searching for the non-degenerate set of this face

g R(X,Y,Z) =0

9211, (X, Y, Z) = X°Y Z°
9317 (X, Y, Z) =0

Groebner basis for this restriction: {Z4, X3 — Y27}
Degenerate set of compact face F
Searching for the non-degenerate set of this face

g R(X,Y,Z) =0

9211, (X, Y, Z) = Y°
9317, (XY, Z) =0
Groebner basis for this restriction: {Y%, 74, X3 - Y27}

Found non-degenerate set of compact face F5

Compact face F3s:

911Fs © 3,45 (Y3, Ya ys) = u3° — vz viys = (¥5%).(1 — y3ys)
92/ © 3,45y, yas ys) = y3°ys = (y3°u4)-(1)
9315 © h3,4,5(y3, Y4, y5) = 0 = (1).(0)

iR (XY, Z) = X° — = (1).(X° -Y?2)
g (X,Y,2) =V = (1) <Y6>
9375 (X, Y, Z) =0=(1).(0)
Groebner basis for this restriction: {X3 — Y27,V 6}

Compact face is degenerate
Searching for the non-degenerate set of this face

gr (X, Y, Z) =0

G (X, Y, Z) =0
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9317, (X, Y, Z) = X°Y?

Groebner basis for this restriction: {X2Y*Z, Y% X3 —y2Z7}
Degenerate set of compact face F3
Searching for the non-degenerate set of this face

g (X,Y, Z) =0
917 (X, Y, Z) =0

931, (X, Y, Z) = 37*

Groebner basis for this restriction {X2Y*Z, 74 Y% X3 —~Y2Z}
Found non-degenerate set of compact face F3

Monomials 2%4°2¢ in the Integral Closure satisfy:

6a + 3b + 12¢ > 48
8a + 9b + 6¢ > 54

Figure 4: The polyhedron C(T), showed as intersection of the highest levels (planes)
of each non-degenerate set.

Acknowledgement: This work was done when the first and second authors
were students of Mathematics and the third author was lecturer at the Departa-
mento de Matematica do Instituto de Geociéncias e Ciéncias Exatas, UNESP, Cam-
pus de Rio Claro, SP. The authors thanks this institution for giving all conditions
for the development of this work.

References

[1] D. Cox, D. O’Shea, & T. McDonald, “Ideals, Varieties and algorithms, an In-
troduction to computacional algebraic geometry and commutative algebra”,
Undergraduate Texts in Maths., Springer Verlag, New York, 1991.



332

2]

Biscaro, Pisa and Saia

L.H. Fgueiredo & P.S.P. Carvalho, “Introducao a geometria computacional”,
18° Coldquio Brasileiro de Matematica, IMPA, 1991.

A.G. Kouchnirenko, Polyedres de Newton et nombres de Milnor, Invent.
Math., 32 (1976), 1-31.

M.A.S. Ruas & M.J. Saia, The Polyhedron of equisingularity of germs of
hypersurfaces, Proceedings of The 3"¢ Workshop on Real and Complex Sin-
gularities, Pitman Research Notes in Mathematics Series, (1995), 37-48.

M.J. Saia, The integral closure of ideals and the Newton filtration, Journal
of Algebraic Geometry, 5 (1996), 1-11.

M.J. Saia, The integral closure of ideals and the Whitney equisingularity
of germs of hypersurfaces, “Proceedings of The 4" Workshop on Real and
Complex Singularities”, Série Matemdtica Contemporanea, Soc. Bras. Mat.,
(1998), 183-198

B. Teissier, Introduction to equisingularity problems, Algebraic Geometry,
Proc. Sympos. in Pure Math., Amer.Math. Soc., 29, Providence, RI, (1975),
593-632.

E. Yoshinaga, Topologically principal part of analytic functions, Trans.
Amer. Math. Soc., 314 (2) (1989), 803-814.



