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Abstract. The interval probability is a proposal for solving numerical problems in
computing probabilities. This paper presents advances on the calculus of interval
probabilities for discrete random variables. Several examples illustrate this new
approach.

1. Introduction

Real numbers, IR, are usually implemented in computers as floating-point numbers
[8] so, most of them can be represented with fixed accuracy. This is a serious problem
in all fields where high accuracy calculations are required [7]. Several different
representations of real numbers have been proposed, but the most widely used is the
floating-point representation [7, 8]. A floating-point system S = S(b,1, €min, €maz)
has a base b, a precision [, and the largest and smallest allowable exponents, €,,44
and €,,i,- S has 2(b—1)b" " (€4 — €min +1) +1 elements, and these are the unique
numbers processed by the computer. Unfortunately, the algebraic characteristics
of the floating-point system are extremely poor if compared with the ones of the
real numbers system. While (IR, +,-) is a field in general the addition operation of
floating-point numbers is not associative.

Example 1 This example is presented in [1]. The representation of 1/3 with four
significant digits is considered. The rounding for the nearest is 0.3333. This value
can be substituted by the interval [0.3333,0.3334], using the directed roundings [11].
This interval seems more inaccurate than the real value, but it is more reliable be-
cause it shows the present degree of uncertainty. It also shows that 0.3333 is an
underestimation of the actual value. The interval representation provides informa-
tion about the computed value which a single number cannot do.

The examples below show how numerical errors affect the computation of pro-
babilities. Respect to those involving discrete random variables it is well known [14]
that (i) pr = P(X = k) >0, k € Rx C IR, where Rx is the range of the random
variable X, and (ii) >, cp. Pk = 1.

Example 2 Let Q = {w;,ws, w3}, be the sample space where the probabilities of
the elementary events are P(w;) = 1/, P(ws) = 1/V/7, P(ws) = 1— (1/7m+1/V/7).
If 7 ~ 3.14 and /7 ~ 2.64, then P(w;) =~ 0.318, P(wy) ~ 0.379, P(wsz) ~ 1 —
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(0.318 4+ 0.379) ~ 0.303. If 7 ~ 3.1416 and /7 ~ 2.6458, then P(w;) ~ 0.31831,
P(ws) ~ 0.37796, P(w3) ~ 1—(0.3183140.37796) = 0.30373. The representation of
the approximated values for 7 and /7 presents no problem in an usual floating-point
system. So the errors in the computations are caused by roundoff and truncation. It
is common ground that increasing the precision necessarily does not imply increasing
the accuracy. In this example the increasing of the precision will modify the value
of P(ws) and P(ws) in the third decimal digit.

Example 3 Suppose that X has a Bernoulli distribution. If p = 1/31 and ¢ =
30/31 then Y, pr = 1. If p = 1/31 ~ 0.032 and ¢ = 30/31 ~ 0.968 then
Z}C:Opk = 1.000 but if p &~ 0.0322 and ¢ ~ 0.9677 then EkeRX pr &~ 0.9999 < 1.
The important point to be quoted is that 1/31 is a rational number, therefore either
it has a finite representation or it is a periodic fraction, with a period so long that
exceeds the precision of the floating-point system.

Example 4 Let X be a binomial random variable with parameters n = 3 and
p = 1/3. Thus ¢ = 2/3 and Zi:opk = 1. If p ~ 0.3333 and ¢ ~ 0.6667 then
po =~ 0.2963, p1 ~ 0.4444, p2 =~ 0.2222, p3 ~ 0.0370, and Zi:opk ~ 0.9999 < 1.

Example 5 Suppose X follows a Poisson distribution with parameter A = 2, and
e = 2.7 is an approximated value for e. Then, py =~ 0.137, p; ~ 0.274, py =~ 0.274,
p3 =~ 0.183, py =~ 0.091, ps =~ 0.037, pg =~ 0.012, and 22:0 P(X =k) ~1.007 > 1.

To solve problems in several fields, including the representation of real numbers
in computers, due to its ability to manipulate imprecise data and to control trunca-
tion and roundoff errors, during the last years interval mathematics [2, 12, 13] with
high accuracy arithmetic [11] has been widely applied.

The interval probability [3, 4] is a proposal for the solution of numerical pro-
blems in computing probabilities. Interval mathematics with high accuracy arith-
metic controls numerical errors, thus the unique errors that remain when interval
probabilities are computed are those inherent to random processes.

This paper presents advances to the calculus of interval probabilities for discrete
random variables. It is outlined as follows. Section 2 is a brief remark on the
interval probability (more details can be found in [3, 4]). The next section presents
discrete random variables defined through intervals. Several examples illustrate the
advantage of the proposed approach, and in all of them it is used the BIAS/PROFIL
library [9, 10]. This library supports the general definition of computer arithmetic
by semimorphism proposed in [11]. The conclusions are in the last section.

2. The Interval Probability

Let IR be the set of real numbers. The set of intervals—IIR is IIR = {[a1,a2] | a1 <
as, ai,az € R}, where [a1,a2] = {z € R| a1 <z < as}. An element in IR is called
an interval. The real numbers are denoted by lowercase letters and the elements of
IIR are named by uppercase letters and written as A = [ay,as], X = [z1, 23], etc.
Another notation for an interval is [z, Z]. Details about intervals related to equality,
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order, algebraic structure, topology can be found in [2, 11, 12, 13, 16].

Scientists and engineers solve computational problems involving probabilities
by performing approximate calculations with limited precision, i.e., the precision of
the floating-point system. So given the probability of the event A the real number
P(A) = p, either p € S or p ¢ S. Therefore in both situations p can be represented
by an interval. From the point of view of implementation, p can be the smallest
machine representable interval, [\/p, Ap], that contains it, where 57 and A are the
directed roundings [11]. This means that [\/p, Ap| is an interval whose endpoints
are floating-point numbers such that 7p < p < Ap.

Campos [3, 4] proposed the interval probability as a probability measure to solve
the numerical errors involved in the calculus of real probabilities (all details about
the definition of the interval probability can be found in [3, 4]).

Definition 1 An interval space of probability is a quadruple (Q, A, P, P,) where
is the sample space, A is a o-field of subsets of Q, P is the probability function
defined on A and the function P, : A — IIR has the following properties:

(i) VA € A if P(A) exists, then exists P,(A) € IIR such that P(A) € P,(A),
) L€ Py(9),
)
)

(i
(ii1) 0 € P,(0),

(iv) If A1, As, ... is a sequence of elements belonging to A where A; N A; =0 for

all i # j, then P,(UX 1 A,) =507 Py(An).

n=1

The function P, is called an interval probability or an interval extension for P or
a validation for P.

The question now is: what additional properties similar to those of the real
probability the proposed interval probability has? The following propositions an-
swer this question (the complete proofs are in [4]).

Proposition 1 If {Ap}, v is such that Ay C Ay C ..., A = U A, =
lim,, .o A,,, then

Py(A) = lim P,(A).

n—oo

Proposition 2 Given A € A, P,(A) = [a1,a3], and € a positive real number. A
validation for the complementary event, P,(A€), is

Py(A®) = 1. — Py(A).

So if py = P,(A) = [p1,p2], then g, = P,(A°) = [q1,¢2] = [1 —p2—e.1—p1 +¢l.
The real number £ can be related either with the precision or the error in the
computations.

Example 6 If p, = [0.625-1071,0.625 - 107!] then ¢, = [1 — 0.625- 107! —¢,1 —
0.625- 107! +¢l.
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Proposition 3 If{A,}, v issuchthat Ay D Ay D ---, A= N5 A, =lim, o0 Ay,
then
P,(A) = lim P,(Ay,) + [-6, +4].

n—o0

Proposition 4 Let (IIR, <) the set of the intervals with the partial order < proposed
by [11]. If A C B then
P,(A) < P,(B).

Proposition 5 Let A,B € A be where A C B, P,(A) = [a1,a2] and P,(B) =
[b1,b2]. If a1 = az = a, then

Pv(B*A):Pv(B)fpv(A)'

Proposition 6 If P,(A) = [a1,az], Py,(B) = [b1,b2] and P,(ANB) = P(ANB) =
[a,a], then

P,(AUB)=P,(A)+ P,(B) — P,(AN B).
Proposition 7 P,(Up_; A;) < > 1, Po(Ag).

Proposition 8 Let A, € A, Vn € IN such that Ay D As D ... and lim, ., A, =
(. Then

nILHgO P,(A,) =0..
3. Interval Probabilities for Discrete Random Vari-
ables

In this section interval probabilities are computed for the discrete random variables
Bernoulli, Binomial, Poisson, Truncated Poisson, Hypergeometric, Geometric, and
Pascal. Examples use the BIAS/PROFIL library [9, 10].

Definition 2 Given X a random variable taking values in a countable set Rx =
{z1,29,--+}, and P(X = k) = pr,k € Rx its probability function. P,(X = k)
satisfies the following properties:

(i) P,(X =k) € IR,

(i) 1€ Ypeny Po(X = k).

P,(X = k) is an interval probability function, or an interval extension for the pro-
bability function, or yet a validation for the real probability function.

For each one of the random variables defined below the (i) and (ii) conditions
must be proved. Condition (i) is straightforward.
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3.1. Bernoulli

Definition 3 Let X be a random wvariable with Bernoulli distribution, such that
P(X =1)=p and P(X =0) =1—p = q. Then the Bernoulli interval probability
function is P,(X = 1) = p, = [p1,p2], and P,(X = 0) = ¢» = [q1, ¢2].

Lemma 1 Let p, and q, be, then1 € [1 — (pa —p1) —e,1+ (p2 — p1) + <.

Proof. Given p, = P,(X =1) = [p1,p2] and g, = P,(X =0) = [1—p2—¢,1—p1+¢],
then Z;lg:o P,(X =k)=[1—(p2—p1) —&,14 (p2 — p1) +¢]. It can be seen that
l—(p2—p)—ec<land 14 (p2 —p1) +¢> 1. u
Example 7 Let p, = [0.0322,0.0323] be. Then

e =105 = ¢, = [0.9676900001,0.9677900001] and
Po + ¢ = [0.9998900000, 1.0000900001].
£ =105 = ¢, = [0.9676990001, 0.9677990001] and
Do + @ = [0.9998990000, 1.0000990001].

3.2. Binomial

In the binomial distribution, B(n,p), the parameter n is a non-negative integer
number. An interval extension for the probability function takes interval values
only for p, ¢, and the arithmetic operations.

Definition 4 Suppose that X ~ B(n,p). The binomial interval probability function
18

n _
Py(X =k) = (k>p’;q;} Fk=0,--,n.

Lemma 2 If X ~ B(n,p) then 1€ Y} (3)pkqr*.

Proof. Let p, = [p1,p2] and ¢, = [1 — ps —e,1 — p1 + €], then

ki;Pv(X =k) = zn: (Z>pvkq3}k

k=0
(Po + )"

= ([p1,p2] +[1 —p2 —&,1 —p1 + )"
[1—(p2—p1)—¢&, 1+ (p2—p1)+e|”.

This proof involves details which can be seen in [4]. ]

Example 8 If X follows a binomial distribution with parameters 3 and 1/3 then
p» = [0.3330000001, 0.3340000001], ¢,, = [0.6660000000, 0.6670000000], and

P,(X = 0) = [0.2954082960, 0.2967409630],
P,(X =1) = [0.4431124440, 0.4457787780],
P,(X = 2) = [0.2215562220, 0.2232235560],
P,(X = 3) = [0.0369260371, 0.0372597041],
528, Po(X = k) = [0.9970029990, 1.0030030010].
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3.3. Poisson

The method for getting interval probabilities for the Poisson distribution uses spe-
cific interval extensions of real functions [4, 5, 12].

Definition 5 Given X a Poisson random variable, the Poisson interval probability
function is

Py(X =k) = k7 k! 'k =0,1,
Lemma 3 1€ ) 7 [¢ ;Akav]-
Proof.
oo Ak ANk
e AR e
SUICTRIN e Sl
k=0 k=0""
= e &
= | k! >> i)
k=0 k=0
= [1,1].

Details of the interval extensions for the functions used in this proof can be seen in
[13]. n

Example 9 Given X a Poisson random variable with parameter A = 10, the ob-
jective is to calculate the probability that X be less or equal to 5. So,

P,(X 0.0000454000, 0.0000454001],
P,(X = 0.0004539994, 0.0004539995|,
P,(X = 0.0022699965, 0.0022699966|,

0.0189166375,0.0189166376],

=0) = ]

(X =1 =] |

(X =2)=] |
P,(X = 3) = [0.0075666550, 0.0075666551],
(X =4) =] |

( [0.0378332749, 0.0378332750].

Py(X =5) =
Thus, P,(X < 5) = [0.0670859628, 0.0670859634] and the floating-point result
with the usual rounding is P(X < 5) = 0.067.

3.4. Truncated Poisson

Definition 6 Given X a Poisson random variable, the Truncated on the right Pois-
son interval probability function is defined by

Uy .
Pox = j) = levellg ) d<k

Lemma 4 If X has a truncated Poisson interval pmbability distribution then
1e >y Po(X =k) if and only if ¢ < 1/ZJ o k, X and ¢y > 1/2] . ;’\j.
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Proof.

oo k
va(X:k) = va(X:j)

k=0 =0
k €A e AN
= D levell—— —]
= ;! 5!
N e v v
e N e AN
= Do) e
=0 —L° o
k A k — 5
e N e AN
= [Clz 5! ’CQZ 4! I
=0 j=0

If ¢; and ¢y are real numbers satisfying the above restrictions, the lemma is proved.
n

Example 10 It is supposed that X is a random variable which follows a truncated
Poisson distribution at k = 4, with parameter A = 2. So,
[c1, o] = [1.0555794427, 1.0555794428], and the interval probabilities are:

P,(X = 0) = [0.1428571429, 0.1428571430),
P,(X = 1) = [0.2857142857, 0.2857142858],
P, (X = 2) = [0.2857142857, 0.2857142858],
P,(X = 3) = [0.1904761905, 0.1904761906],
P,(X = 4) = [0.0952380953, 0.0952380953],

(]

oo Pu(X = j) = 0.9999999999, 1.0000000003].

3.5. Hypergeometric

A random variable with non-negative integer parameters N and n has a hypergeo-
metric distribution if

P(X=k)=—"——% k=0,1,---,min{n,ny }.

The example below (Feller [6] on pp. 44) is used to show numerical problems in
the computation of probabilities for this random variable.

Example 11 It is supposed that N = 100, ny = 2, and n = 50. Then P(X =
0) =0.24747---, P(X = 1) = 0.5050- -, and P(X = 2) = 0.24747---. With four
significative digits Y p_ P(X = k) = 0.9998 < 1.

Different from the former random variables, interval values for this one are
needed only at the end of the computed probabilities. This suggests the following
definition.
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Definition 7 Let X be a random wvariable with hypergeometric distribution, the
hypergeometric interval probability function is

(DG GG
G G

Example 12 Interval results with the data of the Example 11 are:

l,k=0,1,--- ., min{n,n;y }.

P,(X = 0) = [0.247474747401, 0.247474747501],
P,(X = 1) = [0.505050505001, 0.505050505101],
P, (X = 2) = [0.247474747401, 0.247474747501],
S22 Po(X = k) = [0.9999999998, 1.0000000002].

To define interval probability distribution for the Geometric and Pascal random
variables, it is necessary to propose results to series of intervals.

Definition 8 Let be the sequence of intervals {[xy,, xn,|}, n = 1,2,--+ and s, =
S oo [Tk Ty ). If exists limy, o0 Sn, then

o0 n
g [Tny s Tny] = lim s, = lim E [Tk Ty

For real numbers it is well known that
oo n n n o0
D oapr=lim Y app = lim (a) pe) =a lim Y pr=a) p
k=1 k=1 k=1 k=1 k=1

The following lemma proves a similar property for intervals, but in the particular
situation where the distributive law for intervals is true, i.e, if X =z or YZ > 0
then X(Y + Z) = XY + X Z.

Lemma 5 Let be the sequence of intervals {X, = [Xn,,Tny]}, n = 1,2,---, where
XmnXn >0Vm,n. Then

[e )

o0
E YT, Tn,| = E [fvnl,xnz
n=1

Proof.
o0 o0
Z[xyy][mkumkz] = Z $l‘k1,y$k2
k=1 k=1
= nlgr;o]; [x2k,, YTk, ]
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n

= nlLII;o T,y ;[xkl,mkz])

= [x,y] nh—>Holo Z[xklaxkz]

k=1

o0
= [J;,yg [Ty Tny]-
n=1

3.6. Geometric

Definition 9 The geometric interval probability function for a random wvariable
with geometric distribution of parameter p is

Pv(X:k):pqu]fil, k:1727

Lemma 6 1€ ) ;7 p,gi~!

Proof.

[p1, p2][a1, %]kfl

in(X:k) =

(s [

k=1
= [p1, pa]lat a5
k=1
o0
= > Imat pads

=~
Il

1

o0
= [Zplql Zp @ ']

= Zpl 1—p2—5 sz 1—p1+5)k 1]

k=1

o0
= [plz (1—pa—e)f” ,pgz (1 —p1+e)*).
k=1 k=1

If 2<e—p <0and 0 < e+py <2then Y ;o (1 —py—e) ! = 5+1p2 and
S i(l=pr+e)ft=—-"1- So Yoo Po(X = k) = [P, 5P2;] and the lemma is
proved because pg“ < 1 < p1 - n

Example 13 Let be p, = [0.3300000001, 0.3400000001],
so ¢, = [0.6600000000, 0.6700000000] and the interval probabilities are:
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P,(X = 0) = [0.3300000001, 0.3400000001],
P,(X = 1) = [0.2178000000, 0.2278000000],
P,(X = 2) = [0.1437480000, 0.1526260000],
P, (X = 3) = [0.0948736800, 0.1022594200],
P,(X =4) = [0.0626166288, 0.0685138114],
P,(X =5) = [0.0413269751, 0.0459042537],
P,(X < 5) = [0.8903652839, 0.9371034851].

3.7. Pascal

The negative distribution with parameters o and p of a given random variable X
is P(X =k) = (“"‘f_l)paqk, where k is an integer greater or equal to zero. If
is a positive integer, this distribution is also called the Pascal distribution. The
definition below proposes an interval extension for the Pascal distribution random
variable.

Definition 10 If X is a random variable with Pascal distribution then its Pascal
interval probability function is

a+k—-1\ ,
Pv(sz)z( L )pvqf,kzo,l,---.

Lemma 7 If X has an interval Pascal distribution then 1 € > (a+£71)pﬁq5.

Proof. Using the Lemma 6 it remains first to solve ZZ’;O (a+£_1)qf. In this sum-

mation it is supposed that all the real numbers involved are positive. Then it is
possible to use Lemma 6 to take p& off.

i (a+:1>d§—§: <a+:1>[qlm]k

k=0 k=0

“fa+k—1 ,
= ( L )[tﬁ”,qg
k=0
a+k—1 g a+k—1 3
k 1 k q2
0
a+k—-1\ . > fa+k—1 k
c (el

("
(a+llj—1) 1p25k’i<a+z—1>(1pl+s)]
n

M

k

=

Eﬂg:w

el
Il

0 =0

V)

—

p2te) % (p1—¢)



The Interval Probability 343

So. Py Yptodh = [(GE22)* (;22)°]. Tt is noted that -2 < 1, Ve > 0 =

(&)O‘gl,andﬁzl,V520:>(1%)0‘21. n

Example 14 If p, = [0.2500000000, 0.2600000001], then
¢v = [0.7400000000, 0.7500000000] and for oz = 3 some of the interval probabilities
are:

P,(X = 0) = [0.0156250000, 0.0175760001],

P,(X = 1) = [0.0346875000, 0.0395460001],

P,(X = 2) = [0.0513375000, 0.0593190000],

P,(X < 2) = [0.1016500000, 0.1164410001].
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4, Conclusions

Results show that the interval probability can be used for solving numerical pro-
blems (which causes many pitfalls in computers [7, 15]) involving random variables.
Additionaly, it is possible to control the precision of the realized computations by
varying the constant e.
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