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Abstract. An important topic in radiative process is the estimation of some char-
acteristcs of the media and/or other conditions of the problem. This estimation
process can be formulated as an inverse problem. This work presents an estimation
of boundary conditions for natural waters, where the forward problem is solved by
LTSn method. The reconstruction is made using radiance. The inverse method-
ology was tested with data corrupted with Gaussian noise, where the Thikhonov
regularization was used.

1. Introduction

The direct or forward radiative transfer problem in hydrologic optics, in the steady
state, involves the determination of the radiance distribution in a body of water
given known boundary conditions, inherent optical properties (IOP): the absortion,
scattering coefficients and phase function, and source term. The corresponding
inverse radiative transfer problem arises when physical properties, internal light
sources and/or boundary conditions must be estimated from radiometric measure-
ments of the underwater light fields. In the last decades, the development of inver-
sion methodologies for radiative transfer problems has been an important research
topic in many branches of science and engineering (McCormick, [3]). Particularly
in oceanography, the estimation of bioluminescence sources from light-emitting ma-
rine organisms — an issue of great relevance in the study of the biological-optical
processes in the oceans — has been the subject of some recent works (Yi, Sanchez
and McCormick, [13]), well as the unified estimation of the IOP’s and the source
term (Tao, McCormick and Sanchez, [11]).
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Here the inverse model is an implicit technique for function estimation from
in situ radiometric measurements. The algorithm is formulated as a constrained
nonlinear optimization problem, in which the direct problem is iteratively solved
for successive aproximations of the unknown parameters. Iteration proceeds until
an objective-function, representing the least-squares fit of model results and exper-
imental data added to a regularization term, converges to a specified small value
(Chalhoub and Campos Velho, [2]; Stephany et all., [7, 8, 9]). The associated direct
problem is tackled with the LTSn method (Segatto and Vilhena, [10]). This model
solves numerically the time-independent, one-dimensional radiative transfer equa-
tion in natural water bodies using an analytical solution of the discrete ordinate
equations (Sy equations).

2. Direct Model: LTSn for Solving Radiative Trans-
fer Equation

The radiative transfer equation, for a given wavelength, can be expressed as

dL
p D rc o rao) [ L@ EIAE —9a +5CE ()
where L is the radiance, [ is the scattering phase function, wy = b/c is the sin-

gle scattering albedo, ¢ = a + b is the beam attenuation coefficient, a and b are
respectively the absortion and scattering coefficients, &'(6’, ¢’') and £(0, ¢) are the
incident and scattered directions for an infinitesimal beam, 6 is the polar angle, ¢
is the azimuthal angle, S is the source term, and p = cos(#).

The general problem (2.1) can be transformed to a system of equations with
azimuthal symmetry, assumning a Fourier decomposition for azimuthal variable as
showed by Chandrasekhar in 1950. From this consideration, the radiative equa-
tion, with depencency of the polar angle only, can be rewritten as (the underscript
denoting the azimuthal dependence is omitted)

dL(¢, !
p ) L pcm =an [ O LG +SCw (22)
-1
with following boundary conditions

L(O,p) = fi(n) &t p>0;
{ L(Co, i) = fo(p) at p<0. (2.3)

The discrete ordinate technique is a colocation method, where the integral term
in Eq. (2.2) is approximated by a Gauss-Legendre quadrature for a N,, finite num-
ber of polar angles. For simplicity, all IOP’s are considered space-independent.
Therefore, the integro-differential equation (2.2) becomes in a system of differential
equations. Expressing this system in matrix form

dL(<)

—ac —ALO+8(©) (24)
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with discrete boundary conditions

LT0) = [film) filp2) ... flpn,]";
L~(Co) = [fo(ma) falp2) - falpn,]" - (2.5)

The matrix entries of system (2.4) are as following
Ay = { Oij (wi/pi) — py " ifi=j;
! Oij (uj/pa) if i
being u;’s the weights of quadrature, u; the quadrature node, that is, the i-th root of

a Legendre polynomial of order Ny, with L(¢) = [L(¢, 1) L(C,p2) - .. L(C, pn,)]E

and S(¢) = [S(C. 1)/ S(Cpa)/p2 +.. S(C pn,)/pn, )" The discrete phase
function is obtained from the expanding it by Legendre polynomial

Np

Oij =Y B Pulpi) Pu(py) - (2.6)
=0

Matrix problem (2.4) is solved by applying the Laplace transform on space
variable resulting in the following operational equation

(s1 — A)L(s) = L(0) + S(s) (2.7)

where L(s) = £{L(¢)}. The resolvent B(¢) = L{(sI — A)~1} = 320 prerad
is obtained analytically using the Heaviside expansion technique, yielding

¢
L(¢) = B(C)L(0) +/ B( —7)S(r) dr . (2.8)
0
Finally, the vector L(0) is calculated by solving the algebraic linear system:

[T ][ o) P [0 ]+ [ )]

denoting H(({) = fOC B(¢ —71)S(r)dr.

The exponential behavior of the solution, additioned to the fact that the eigen-
values r, increase in magnitude with N, implys in an adjust on the form (2.8).
The difficulty mentioned can be avoided using a variable changing on ¢ (Segatto
and Vilhena, [10]):

Nu/2 Ny
B()=Y_ Premt4 Y Pt =BNO)+B(Q);
n=1 n=N, /2+1

which permits to write the solution as

L(¢) = B*(¢ — ¢) L(¢o) + B~ () L(0) + H(C) . (2.9)

The convergence of the LTSn method was established using the Cy-semi group
theory (Pazos and Vilhena, [5]).
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3. Formulation for the Inverse Problem

An overview of the recent inverse radiative transfer problems is found in McCormick
[3]. In the present paper, we describe an implicit inversion technique for reconstruc-
tion of boundary conditions from in situ radiometric measurements.

The least squares approximation, in the sense of the minimum norm, can guar-
antee the existence of a solution, but it can be unstable in the presence of noise,
a permanent feature in the experimental data. In order to have a robust inverse
model, assuring that parameter variation are bounded to become the final solution
physically acceptable, some a priori information must be added to the quadratic
difference term. In general, this additional information associated to the inverse
solution means smoothness.

Denoting by p = [pl,pg, ..+ DN, }T the unknown vector to be determined by
the inverse analysis, the inverse radiative transfer problem can be formulated as a
nonlinear constrained minimization problem,

min J(p) , lg<ps<uq , q=1,....,N, , (3.1)

where the lower and upper bounds I/, and u, are chosen in order to allow the
inversion to lie within some known physical limits, and the objective function is

given by
N,

2
J(p) =3 [P - 1M (p)] - 0lp] (3.2)
i=1
being N, the number of measurement points in the water layer, Q[p] and ~ the
operator and the parameter of regularization, and L the radiometric quantity.

The present inverse problem adimits two procedures to find the boundary condi-
tions (2.3) or (2.5). The unknown function can be solved as a parameter estimation
approach, or a function estimation approach, where the functional form is not avail-
able. For practical purpose, a sampled function is considered:

p= { ;; ] = [fe(m) fuua) - falpn)]" (=1,2). (3.3)

In the absence of an explicit solution, the optimization problem defined by
Eq. (3.1) is iteratively solved by the quasi-newtonian optimization algorithm F04UCF
from the NAG Fortran Library. This approach has been previously adopted with
success in many applications. This routine minimizes an arbitrary smooth function
subjected to constraints (simple bounds, linear or nonlinear constraints), using a
sequential programming method.

3.1. Tikhonov Regularization

A well-known regularization technique proposed by Tikhonov (Tikhonov and Ars-
enin, [12]) can be expressed by

Qp] = ZN: aj Hp(’“)Hz (3.4)
k=0
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where p*) denotes the k-th derivative (difference), and the parameters ay > 0. In
this work, if a = 0p; (Kronecker’s delta), i.e.,

aip] =19

then the method is called the Tikhonov regularization of order-j (Tikhonov-j).
Particularly, the Tikhonov regularization of order zero will be referenced only as
Tikhonov regularization.

2
2

4. Numerical Results

The performance of the inversion method presented in the previous section has been
evaluated using synthetic radiometric data, i.e., data are generated by the same
direct model used in the inverse solver for a single wavelength. The computational
domain has been discretized into a vertical radiometric grid of N, = 11 nodes,
ranging from 0 to zpax = 4 m. In all simulations, 8 was given by an expantion in
Legrendre polynomials of the one-term Henyey-Greenstein scattering phase function
(Retamoso, [6]) expressed as follows:

Nl"
Bleost) = (1= )1+ g — 29 cos(@) 2 = 3> EED g peosyy (a)
=0

where 1) is the scattering angle (formed by ¢’ and ¢ directions) and g = 0.90. The
inherent optical properties were assumed to be constant, and Monterey bay water
conditions, under sunlight and without wind, have been considered, taken from a
similar work (Tao, McCormick and Sanchez 1994). At the sea surface, a cardioidal
radiance distribution is taken for simulating the diffuse sunlight (1 W/m?nm), and
the source term was considered null.

The radiances are computed in N,, = 16 points of quadrature, andi =1, 2,..., N,
depths, defining a vertical grid of resolution Az = z,ax/N.. The measurements were
done for uniformly spaced points, identified as grid-2. The synthetic experimental
data were generate by the direct model added a Gaussian white noise with 10% of
noise.

In order to identify the bottom boundary condition, two simulations were car-
ried out. The first one, the inverse problem was solved without any regularization
technique (o = 0). Figure 1 displays the reconstruction without regularization, it
is seen that the least square estimator procudes a wrong solution for the inverse
problem. In a second simulation, the Tikhonov regularization of first-order was ap-
plied (v = 2x 167), and the estimation of boundary condition is shown in figure 2,
where a good agreement between estimated and true solutions can be observed.

5. Final Comments

In the present paper, we have introduced a reconstruction technique of bound-
ary conditions in natural waters from in situ radiance data. Assuming that the
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Figure 1: Reconstruction of bottom boundary conditions witout regularization.

unknown function can be sampled, the inverse problem was formulated as a nonlin-
ear constrained optimization problem, and iteratively solved by a quasi-Newtonian
minimization routine.

The proposed inversion technique has been tested yielding good numerical re-
sults. This metodology can also be applied for finding both boundary condition.
The reconstruction of botton boundary condition was done because this case is more
frequent in real world.

In a future work the inversion method described here will be used in a prob-
lem with different type of experimental data: different grid for measurements, and
irradiances will be considered. It is also our intention to use a reconstruction by
parameter approach, where the boundary condition is given by an expansion of
certain base functions, in order to reduce the dimension of search space.
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Figure 2: Reconstruction of bottom boundary condition with Tikhonov regulariza-
tion.
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