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Abstract. We give a generating function for partitions with difference conditions
and a combinatorial proof for a bijection between these partitions and another
class of partitions. New combinatorial interpretations for the Rogers-Ramanujan
identities are included as special cases.

1. Introduction

We begin presenting some basic concepts: A partition of a positive integer n is a
finite nonincreasing sequence of positive integers my,...,m, such that m; + ...+
My = n.

Generating functions are used for studying partitions. For many problems it
suffices to consider these functions as “formal power series.” For others one requires
that they be analytic functions of complex variables. For instance, if we denote p(n)
as the number of partitions of n for each n, then the generating function for p(n)
is given by the following analytic identity:

> opm)g" = [ -, (1.1)

where |q| < 1.

Another very useful device for studying partitions is the graphic representation
of the partition of an integer n. The Ferrers graph of a partition is a graphical
representation which associates each summand m of a partition with a row of m
dots. Thus, the Ferrers graph of the partition 5+4+4+2+ 2+ 1 of 18 is
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In [1], page 59, Andrews presents a bijective proof, given by Bressoud, for the
following theorem:

Theorem A The number of partitions of n with minimal difference at least 2 be-
tween parts equals the number of partitions of n into distinct parts wherein each

even part is larger than twice the number of odd parts.

The Rogers-Ramanujan identities are:

- 1
- H (1 g (1 g 1)’ (1.2)
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where we are using the standard notation

(a;q)0 = 1
(@)p=(a;0)n = (1—a)1—aq)...(1—ag"*), n>0.

It is clear that Theorem A is related to the first Rogers-Ramanujan identity since
the left side of (1.2) is the generating function for partitions as described in the first
part of Theorem A.

The general result that we are going to prove has as special case, not only this
Theorem A, but also one related to the second Rogers-Ramanujan identity which
is the following:

Theorem 1 The number of partitions of n with minimal difference at least 2 be-
tween parts, with parts greater than 1 equals the number of partitions of n into
distinct parts wherein each odd part is larger than 2 plus twice the number of even
parts.

The proof for this theorem is similar to the one given by Bressoud [3] for Theorem
A.
Proof. We consider a partition 7 as described in the first part of the theorem.
We represent m with a modified Ferrers graph in which we indent each row by two
nodes. Thus if 7 : 18 + 15+ 12 + 7 4 5, our representation is:
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We now put a vertical bar in our graph so that to the left are rows of 2, 4, 6, 8,
etc nodes going from botton to top.

We reorder the rows to the right of the bar putting first the rows with an odd
number of nodes (in descending order) and then the rows with an even number of
nodes (in descending order). Thus our new graph is:

and reading the new complete rows as parts of a transformed partition we have in
this instance 17 + 12 + 11 +9 + 8.

It is immediate from our construction that all parts are distinct and that the
smallest odd part is larger than 2 plus twice the number of even parts. The process
is clearly reversible thus giving us a bijection between the two classes of partitions
presented in the Theorem. [

2. The Main Result

We state, next, our main theorem.

Theorem 2 Let A(n,{) be the number of partitions of n of the form n = b; +
by + -+ + bs such that bj — bjy1 > 2 and by > £, and B(n,l) be the number of
partitions of n in distinct parts such that the smallest part is greater than £ and
each part= {(mod 2) is greater than 2t + £ + 1 where t is the number of parts
= (+ 1(mod 2). Then, for £ >0, A(n,f) = B(n,{) for all n and

o0 o0 q
Z A(n, 0)q" =
n=0 s=0 (q)s

S2+Zs
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Proof. Let n = by + by + -+ + bs be a partition enumerated by A(n,?). If we
substract £+ 1 from bg, £ + 3 from bs_1,...,¢ + (2s — 1) from by we are left with a
partition of n — ({ +1+£+3+---+ £+ (2s— 1)) =n— s — s% in at most s parts
and this is generated by

Now in order to prove that A(n,¢) = B(n,{) we are going to construct a bijection
between the sets enumerated by these two numbers.

We take a partition = enumerated by A(n,¢). Considering that the difference
between parts is at least 2 we may represent m with a modified Ferrers graph in
which we indent each row by two nodes and, in doing so, our representation is:

25 —1 14

We now put a vertical bar in our graph so that to the left are rows of ¢/ + 1,4+
3,...,£+ (2s — 1) nodes going from botton to top.

25 —1 14

Now we reorder the rows to the right of the bar putting first the rows with
an odd number of nodes and after the rows with an even number of nodes, both
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in descending order. If we consider now the new rows as parts of a transformed
partition it is easy to see that from our construction all parts are distinct, each one
is greater than ¢ and the smallest

part= £(mod 2) is greater than 2t + ¢ + 1 where t is the number of parts =
{+1(mod 2). In fact if there are r parts= £(mod 2) then the r-th is > 2(s—r)+£+2 >

2(s—r)+L+ 1
What we have described is clearly reversible thus giving us a bijection between
the two classes of partitions enumerated by A(n,¢) and B(n,¥). n

We illustrate, below, the partitions enumerated by A(n,¢) and B(n,¢) and the
correspondence between them given by the bijection described in the theorem for
n=19 and ¢ = 2.

A(19,2) B(19,2)
19 «— 19
164+3 «— 16+3
15+4 «—— 13+6
14+5 «—— 14+5
1346 «—— 11+8
1247 «—— 1247
1148 «— 10+9
114+5+3 «— 11+5+3
10+6+3 «—— 10+6+3
9+7+3 «—— 94743
9+6+4 «—— 8+6+5

The cases £ = 0 and £ = 1 are the special cases described in Theorem A and
Theorem 1, respectively, that are related to the Rogers-Ramanujan identities.

We observe that if in the proof of Theorem 2 we reorder putting first the even
ones we get the following result:

Theorem 3 Let C(n,{) be the number of partitions of n in distinct parts greater
than € such that each part = £+ 1(mod 2) is greater than 2r + { where r is the
number of parts = £(mod 2). Then C(n,£) = A(n,£) for £ > 0.

Comment: Except for the cases { = 0 and ¢ = 1 any interesting infinite product
representation for the given generating functions in Theorem 2 is not known.
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