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Abstract. In this paper, the Two-Dimensional (2D) Complementary Filter (CF)
Banks, a signal processing technique which can be used to get scaling and wavelets
functions, are presented. The 2D multirate signal processing theory and comple-
mentary filters properties are the base of CF Banks, permitting us to consider
different types of sampling and filters. Two-dimensional nonseparable quincunx,
rectangular and circular complementary filters are designed for an alias free deci-
mation and interpolation. When CF bank is implemented with quincunx sampling
and filters, perfect reconstruction is achieved and although it is not reached in
others cases, the analysis and synthesis are performed without aliasing. The CF
banks are related with wavelet theory and procedures to get 2D scaling and band-
pass wavelets functions from the L-level filter bank tree structure iteratively are
shown. We illustrate scaling and wavelets functions convergence as the level of
decomposition increases.

1. Introduction

Signal processing techniques have many applications in data compression, band-
width reduction, edge detection, analysis/synthesis of signals. In this paper, the
CF banks, a signal processing technique developed originally for the processing of
images [1], is used to get 2D scaling and wavelets functions. The wavelet theory
applied with image processing introduced by Mallats [2, 3] used one-dimensional
wavelets and quadrature mirror filters. We had interest in its extension to nonsepa-
rable bank of filters considering the strong link that exists between wavelet theory
and multirate processing theory. The link between wavelet theory, bank of filter and
multirate processing [4, 5] was shown before. The theory of bank of filters using
quincunx mirror filters and its connection with wavelet theory was introduced in
[4].

In two-dimensions, complementary and mirror filters differ from each other be-
cause lowpass and highpass complementary filters cover entirely the 2D spectrum
while with exception of quincunx mirror filters, lowpass and highpass mirror filters
do not cover completely the 2D spectrum [1]. The CF Banks allow scaling and
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bandpass wavelet functions to be obtained straightforward. Through Noble’s iden-
tities [5], a general expression for the equivalent transfer function in L-levels of CF
banks decomposition was found [1]. A similar expression was shown in Vetterli at
al. [4]. We denote these bandpass wavelets since they are related with the ith-
level bandpass filters of the L-level complementary filter banks tree. Similarly, the
2D scaling function is related to the ith-equivalent lowpass filter in the L-level CF
Banks tree.

The rest of the paper is organized as follows. In section 2, the basic of 2D
multirate signal processing theory is introduced. In section 3, the complementary
filter design, CF banks and wavelet representation are presented. In section 4,
procedures to get 2D scaling and wavelets functions iteratively and an illustration
of their convergence as the level of decomposition increases are shown. Finally, in
section 5, we make the conclusions.

2. Basic Two-Dimensional Multirate Signal Pro-
cessing

In this section, we introduce the basics of 2D multirate processing theory, decimators
and interpolators. More detail can be found in [1], [5]. We use the following nota-

tion: n = [n1, n2]T , w = [w1, w2]T ,M =
[
m11 m21

m12 m22

]
,
∑

n =
∑+∞

n1=−∞
∑+∞

n2=−∞.

Downsampling and upsampling of a 2D signal is possible using different methods
and depend on sampling matrix [1], [5]. The most common sampling matrices are
the rectangular sampling matrix Mr and the quincunx sampling matrices Mq:

Mr =
[

2 0
0 2

]
, Mq1 =

[
1 1

−1 1

]
, Mq2 =

[
2 −1
0 1

]
. (2.1)

These sampling matrices define the rectangular and quincunx sampling grids as
shown in Fig. 1:
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Figure 1: Rectangular and Quincunx Grid Types

Decimation and interpolation are the basic operations in a multirate systems.
In a 2D decimator, shown in Fig. 2(a), the input signal x(n) is lowpass filtered by
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H(w), modulated by d(n) and then downsampled according to a sampling matrix
M. The modulation function can be expressed by [1]

d(n) =
1

|detM |

|detM |−1∑
l=0

exp(j2πkT
l M

−1n), (2.2)

where kl are the integer vectors inside the fundamental parallelepiped FP (MT ),
and M is the sampling matrix [1], [5]. The output Y(w) in frequency domain is
given by

Y (w) =
1

|detM |

|detM |−1∑
l=0

H(M−T (w − 2πkl))X(M−T (w − 2πkl)). (2.3)

If the lowpass filter H(w) is ideal with support in a special region, equation (2.3)
becomes

Y (w) =
1

|detM |
X(M−Tw). (2.4)

The term |detM | is the sampling rate reduction factor. Frequency aliasing can
be avoided by bandlimiting properly with an anti-alias filter H(w) or making the
input signal X(w) with a support inside the symmetric parallelepiped SP (πM−T ),
defined as [5],

w = πM−Tx, x ∈ [−1, 1)2. (2.5)

x(n)- h(n) -⊗
6

d(n)

↓M -y(n) y(n)↑M w(n)
h̃(n)-̂

x(n)

(a) (b)

Figure 2: 2D Decimator and Interpolator

In the 2D interpolator shown in Fig. 2(b), the input signal is upsampled and the
resulting signal is filtered by a lowpass filter H̃(w) in order to filter out the images
components and to get the reconstructed signal x̂(n), and the output signal [1] is

X̂(w) = H̃(w)Y (MTw) = H̃(w)
1

|detM |
X(w) (2.6)

and the reconstruction filter should have a gain |detM |, so that X̂(w) ∼= X(w).

3. Two-Dimensional Complementary Filter Banks
and Wavelet Theory

In this section, complementary filters definitions and design are first given, then CF
Banks and its relation with wavelet representation are shown. The 2D complemen-
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tary filters are filters with impulse response defined by

h1(n1, n2) = δ(n1, n2)− h0(n1, n2), (3.1)

where h0(n1, n2) is a lowpass filter and h1(n1, n2) is its complementary highpass
filter.

The designs of rectangular, quincunx and circular complementary filters are
done with finite impulse response (FIR), causal, zero-phase filters, i.e., their impulse
responses should satisfy the following symmetric property [6]

h(n1, n2) = h(N1 − n1, N2 − n2), (3.2)

where 0 ≤ n1 ≤M1, 0 ≤ n2 ≤M2, and the length of the FIR filter is N1 = 2M1 +1,
N2 = 2M2 + 1.

The impulse response of a two-dimensional rectangular lowpass filter is [6]

hr(n1, n2) = h1(n1)h2(n2) =
sin(wc1n1)

πn1
.
sin(wc2n2)

πn2
. (3.3)

The highpass rectangular complementary filter impulse response is

hrh(n1, n2) = δ(n1, n2)−
sin(wc1n1)

πn1
.
sin(wc2n2)

πn2
. (3.4)

The lowpass quincunx filter is obtained from a linear transformation of the se-
parable lowpass rectangular filter with cutoff frequencies wc1 = wc2 = π/2. The
impulse response of the quincunx lowpass filter is obtained from the separable low-
pass rectangular filter by

hq(n1, n2) = hr(Mqn) = 2
sin(π

2 .(n1 + n2))
π(n1 + n2)

.
sin(π

2 (−n1 + n2))
π(−n1 + n2)

, (3.5)

where the impulse response coefficients of the lowpass quincunx filters in equation
(3.5) were multiplied by |detMq| = 2 to keep the frequency response amplitude
correct. The highpass quincunx filter coefficients are found from the definition of
complementary filters,

hqh(n1, n2) = δ(n1, n2)− hq(n1, n2). (3.6)

The impulse response of a two-dimensional lowpass circular filter is given by [6]

hc(n1, n2) =
wc

2π
√
n2

1 + n2
2

J1(wc

√
n2

1 + n2
2), (3.7)

where J1(x) is the Bessel function of the first kind and first order. The comple-
mentary highpass circular impulse response is

hch(n1, n2) = δ(n1, n2)−
wc

2π
√
n2

1 + n2
2

J1(wc

√
n2

1 + n2
2). (3.8)

As an example, 31x31 FIR lowpass and highpass complementary rectangular,
quincunx and circular filters were designed, and their impulse responses, with wc =
π/2, are shown in Figs. 3 and 4.
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Figure 3: Lowpass Rectangular, Quincunx and Circular Filters Impulse Responses

Figure 4: Nonseparable Highpass Complementary Rectangular, Quincunx and Cir-
cular Filters Impulse Responses

In Fig. 5, the 2-channel complementary filter bank tree structure is shown. In
the analysis, the input signal is filtered with lowpass and highpass filters and then
downsampled, using the sampling matrix M, yielding the approximation signal xlrl

and the detail signal xhrl
, respectively. In the synthesis, the signals xlrl

and xhrl
are

upsampled using the sampling matrix M, filtered with lowpass and highpass filters,
respectively, then added and multiplied by |detM | in order to get the reconstructed
signal x̂rl+1 .

xrl+1

h0(n) ↓M-xlrl. . .

h1(n) ↓M-xhrl

(a) Analysis

-xlrl ↑M h̃0(n)

-
xhrl

↑M h̃1(n)

(b) Synthesis

?⊕
6
|detM |-̂

xrl+1

Figure 5: Tree-Structure of 2-Channel CF Bank

For the 2-channel filter banks, perfect reconstruction is obtained when sampling
is quincunx and the filter is also quincunx. The synthesis filters should be

H̃0(w) = 2H0(w), (3.9)
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H̃1(w) = 2H1(w), (3.10)

where H0(w) = H(w) is a quincunx lowpass filter and H1(w) = H(w+K), k=[π, π]
is a highpass filter. Others structures can be developed to obtain perfect recons-
truction with rectangular sampling or rectangular and circular filters, at the cost of
lower compression [1].

To connect the CF banks to 2D wavelet representation [2, 3], it is considered
the discrete approximation of a signal f(x, y) ∈ L2(R2) at a series of increasing
resolution levels rl = 2−l, l ≥ 0. The approximation function at resolution rl+1 is

Arlf = f ∗ φ̃rl
(rl
n,rl

m), (3.11)

where ”*” is the 2D convolution symbol, φ̃rl
(x, y), the two-dimensional scaling

function, corresponds to a 2D lowpass filter.
The difference of information of a signal f(x, y) at resolution rl = 2l is

Drl
f = f ∗ ψ̃rl

(rln, rlm), (3.12)

where ψ̃rl
(x, y), the two-dimensional wavelet function, corresponds to a 2D highpass

filter. Dilating and translating φrl
(x, y) and ψrl

(x, y), the families of functions with
rl build an orthonormal basis on a vector space Vrl

, Srl
such that

Vrl+1 = Srl
⊕ Vrl

. (3.13)

The set of 2D orthogonal wavelets decomposition is represented by the two
components

(ArL
f,Drl

f)−L≤l≤−1. (3.14)

These functions, with complementary filter banks, are nonseparable and cover
all [−π, π]2 plane, in the analysis.

Using Noble’s equivalence [5], the equivalente lowpass filter at the ith-level of
the CF bank is given by [1]

H
(i)
lp (w) =

i−1∏
j=0

H((MT )jw) (3.15)

i = 1, 2, · · ·. A similar function to (3.15) was defined in [4].
The bandpass filter at the ith step is the difference between the complementary

highpass filter at that level and the sum of the rest of the bandpass highpass filters
of the previous levels, i.e.,

H
(i)
bp (w) = [(1−H(i)

eq (w))− (H(i−1)
bp (w) +H

(i−2)
bp (w) + ...+H1(w))]. (3.16)
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4. Two-Dimensional Scaling and Wavelet Functions

The lowpass impulse response in the ith step of the decomposition is the inverse
Fourier transform of the equivalent lowpass filter given in equation (3.15),

h(i)
eq (n1, n2) = F−1(H(i)

eq (w)) = F−1(
i−1∏
j=0

H((MT )jw)), (4.1)

where H(w) is the original lowpass filter. Then, the 2D scaling function φ(i)(n1, n2)
in the ith step is

φ(i)(n1, n2) = h(i)
eq (n1, n2). (4.2)

The inverse Fourier transform of equation (3.16) is

h
(i)
bp (n1, n2) = δ(n1, n2)− h(i)

eq (n1, n2)− h
(i−1)
bp (n1, n2)− ...− h1(n1, n2). (4.3)

Then, the bandpass wavelet at the ith iteration is

ψ
(i)
bp (n1, n2) = h

(i)
bp (n1, n2). (4.4)

If it is considered 2-level CF bank decomposition using quincunx sampling and
filters, the scaling and wavelet functions are

φ(2)(n1, n2) = h(2)
eq (n1, n2) =

sin(π
2n1)

πn1

sin(π
2n2)

πn2
, (4.5)

ψ01(n1, n2) = h
(2)
bp (n1, n2) = −

sin(π
2n1)

πn1

sin(π
2n2)

πn2

+2
sin(π

2 (n1 + n2))
π(n1 + n2)

sin(π
2 (−n1 + n2))

π(−n1 + n2)
,

(4.6)

ψ1(n1, n2) = h
(1)
1 (n1, n2) = δ(n1 + n2)

−2
sin(π

2 (n1 + n2))
π(n1 + n2)

sin(π
2 (−n1 + n2))

π(−n1 + n2)
.

(4.7)

In Fig. 6 and 7, 31x31 scaling and bandpass wavelet functions and their
magnitude are shown, respectively, for 2-level CF Banks decomposition using
quincunx sampling and filters.

Figure 6: Scaling2, Wavelet2 and Wavelet1 functions, respectively, in 2-level de-
composition, Quincunx filter and sampling.
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Figure 7: Scaling2, Wavelet2 and Wavelet1 magnitudes, respectively, in 2-level
decomposition, Quincunx filter and sampling.

5. Conclusion

In this paper we proposed a CF bank which can be used to get 2D scaling and
bandpass wavelet functions. The 2D multirate theory permite us to have a variety
of sampling and filtering methods. The CF bank was related to wavelet representa-
tion. When CF Banks is implemented using quincunx sampling and filters, perfect
reconstruction is achieved, and although for other cases perfect reconstruction is
not reached, the analysis is done free of aliasing. It was shown that 2D scaling and
bandpass wavelet functions can be found iteratively, through the equivalent trans-
fer functions at the ith-level of CF Banks decomposition. An illustration of these
functions was shown for 2-level decomposition case. The CF banks can be applied
also for analysis/synthesis of signals, image compression and edge detection.
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