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Abstract. In this work we are concerned with the existence of integral solution
for a nonlinear abstract viscoelastic problem in a Banach space where the operator
is accretive and time dependent.

1. Introduction

In this work we are concerned with the solvability of the nonlinear abstract problem
in viscoelasticity with memory,

du

dt
+ A(t)u(t) 3

∫ t

0

k(t− s)g(s, u(s))ds, 0 ≤ t ≤ T,

u(0) = x ∈ D = D(A(0)),
(1.1)

where the family A(t) : D((A(t)) ⊆ X → 2X , 0 ≤ t ≤ T is at least m- accreti-
ves operators in Banach space X, g : [0, T ] × D → X and k : [0, T ] → L(X) are
continuous functions, where L(X) is the space of linear operators on X. Problems of
this type appear in various applied areas and several authors have studied different
versions of (1.1). In particular, we note that more general mathematical model
of heat conduction in a beam or vibrations of a string both with memory can
be rewritten as an integro-differential equation with inclusion. There are another
examples as in thermoelastic evolution systems. See [1], [3] and [7].

There are several works and methods on solvability of functional evolution equa-
tions with accretive operators dependent on t but as far as we known nothing on
viscoelasticity system. The main goal of this work is to prove the existence of in-
tegral solution of (1.1). We use the fixed point theorem and auxiliary results to
obtain existence of integral solution. The idea of the proof is to define an operator
P where its fixed points are integral solutions.

In what follows, by X we denote a real Banach space with norm ‖ · ‖ and dual
X∗, J is the duality mapping. As usual we write

〈y, x〉s = lim
h→0+

‖x + hy‖2 − ‖x‖2

2h
,
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〈y, x〉i = lim
h→0−

‖x + hy‖2 − ‖x‖2

2h
.

We know that for every x, y ∈ X there exists x∗1, x
∗
2 ∈ Jx such that

〈y, x〉s = x∗1(y) = sup{x∗(y), x∗ ∈ Jx},
〈y, x〉i = x∗2(y) = inf{x∗(y), x∗ ∈ Jx}.

We note that 〈 , 〉s is upper semicontinuous and 〈 , 〉i is lower semicontinuous. For
these facts and additional properties of these directional derivatives the readers are
referred to see [1] and [6].

Given a set valued operator A we denote by D(A) and R(A) the sets {x ∈
X, Ax 6= ∅} and ∪x∈D(A)Ax, respectively. For simplify set valued operators are
identified with their graphs, i.e., if y ∈ Ax we denote by (x, y) ∈ A. An operator
A : D(A) ⊆ X → 2X is called accretive if only if for every λ ∈ R+ and every
y1 ∈ Ax1, y2 ∈ Ax2, we have

‖x1 − x2‖ ≤ ‖(x1 − x2) + λ(y1 − y2)‖.

Equivalently, A is accretive if for every x1, x2 ∈ D(A) there exists j ∈ J(x1 − x2)
such that 〈y1 − y2, j〉 ≥ 0, for all y1 ∈ Ax1 and y2 ∈ Ax2.

An accretive operator is called m-accretive if R(I +λA) = X, for every λ ∈ R+,
here I is the identity mapping.

To introduce the notion of solution of (1.1) we consider the functional problem{
u′(t) + A(t)u(t) 3 f(t), t ∈ [0, T ]
u(0) = x0,

(Af
x0

)

where A(t) is a set valued nonlinear accretive operator and f ∈ C([0, T ];X).

Definition 1.1. We say that u : [0, T ] → X is a strong solution of (Af
x0

) if it is
absolutely continuous on compact subsets of (0, T ), strongly differentiable on (0, T )
and satisfies (Af

x0
) for almost every on (0, T ).

Next we introduce the so called discrete approximate solution. Let 0 = tn,0 <
tn,1 < · · · < tn,N(n) = T be a partition of (0, T ) such that

max
1≤k≤N(n)

(tn,k − tn,k−1) → 0

as n →∞. Suppose that there exists {xn,k} ⊂ X with xn,k ∈ D(A(tn,k)) and

fn,k −
xn,k − xn,k−1

tn,k − tn,k−1
∈ A(tn,k)xn,k

for every k = 1, 2, . . . , N(n), where xn,0 = x0 and fn,k = f(tn,k).
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Definition 1.2. The sequence of step functions {xn,k} defined on [0, T ] by

xn(t) =
{

x0, t = 0,
xn,k, t ∈ (tn,k−1, tn,k], k = 1, 2, . . . , N(n)

is called a “discrete approximate” solution of (Af
x0

). A strongly continuous function
u : [0, T ] → X is called a “weak solution” of (Af

x0
) if there exists a sequence of

discrete approximate solution of (Af
x0

) converging uniformly to u(t) on [0, T ] as
n →∞.

In the rest of this work we consider A(t), 0 ≤ t ≤ T a family of m-accretive
operators over the real Banach space X with the following hypotheses.

(H1) For a < 0 ≤ s ≤ t ≤ T < b, λ ≥ 0 there exists h : (a, b) → X continuous and
L : R+ → R+ take bounded on bounded subsets such that

‖x1 − x2‖ ≤ ‖(x1 − x2) + λ(y1 − y2)‖+ ‖h(t)− h(s)‖L(‖x2‖)

for every (x1, y1) ∈ A(t) and (x2, y2) ∈ A(s).
(H2) If tn ↑ t, xn ∈ D(A(tn)) and xn → x in X, then x ∈ D(A(t)).

Now we introduce the notion of integral solution, see [7].

Definition 1.3. By an integral solution on [s, T ] for (Af
x0

), x0 ∈ D(A(s)), we mean
a continuous function u : [s, T ] → X such that:
1) u(s) = x0

2) u(t) ∈ D(A(t)) a.e. t ∈ [s, T ],

3) ‖u(t)−x‖2 ≤ 2
∫ t

t

[〈f(τ)−y, u(τ)−x〉s+C‖u(τ)−x‖‖h(τ)−h(r)‖]dτ+‖u(t)−x‖2,

where C = max{L(c1), L(‖x‖)} and c1 = sup{‖u(t)‖; s ≤ t ≤ T}, s ≤ t ≤ τ ≤ t ≤
T, r ∈ [s, T ] and (x, y) ∈ A(r).

Hypotheses H1 and H2 do not imply that D(A(t)) is independent of t. However
we can prove that m-accretivity of A(t), together with H1 and H2 imply that
D(A(t)) := D is necessarily independent on t. We can prove that if X is uniformly
convex then D(A(t)) is a convex set, see Barbu [1]. As far as we known to classify
Banach the space X such that D(A(t)) is a convex set is open problem. In the
following we suppose that D is convex subset X.

The next result due to Pavel is a theorem of existence of integral solution of
(Af

x0
). The readers are referred to [7] for the proof of the following theorems.

Theorem 1.1. Assume that A(t), 0 ≤ t ≤ T satisfies H1 and H2 and that for
each t ∈ [0, T ] A(t) is m-accretive. Moreover, assume f : [0, T ] → X a continuous
function. Then the limit of discrete approximate solutions u : [0, T ] → X is the
unique integral solution of problem (Af

x0
).

Moreover, if v is a integral solution of (Ag
x1

), x1 ∈ D, and g : [0, T ] → X
continuous, then

‖u(t)− v(t)‖ ≤ ‖u(s)− v(s)‖+
∫ t

s

‖f(τ)− g(τ)‖dτ. (1.2)
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For u(t) and v(t) integral solution of (Af
x0

) and (Ag
x0

) respectively, Kartsatos et al.
in [5] proved that

‖u(t)− v(t)‖2 − ‖u(s)− v(s)‖2 ≤
∫ t

s

〈f(τ)− g(τ), u(τ)− v(τ)〉sdτ.

The organization of the remainder part of this work is as follows. In Section 2 we
introduce some basics results. In Section 3 we show the existence of local integral
solution to the nonlinear abstract problem and to the problem (1.1).

2. Auxiliary Results

Let
D = {D(t); D(t) ⊂ X, 0 ≤ t ≤ T}

be a family of nonempty subsets of the Banach space X.

Definition 2.1. A family U = {U(t, s), 0 ≤ s ≤ t ≤ T} of operators is said to be a
evolution if it satisfies the following conditions with respect to D
1) For each pair (s, t) with 0 ≤ s ≤ t ≤ T,U(t, s) : D(s) → D(t) and U(s, s) = I is
a identity on D(s).
2) U(t, s)U(s, r) = U(t, r), for 0 ≤ r ≤ s ≤ t ≤ T.
3) For each s ∈ [0, T ] and x ∈ D(s), the function t 7→ U(t, s)x = u(t, s, x) is
continuous on [s, T ].
4) If 0 ≤ sn ≤ tn ≤ T, xn ∈ D(sn) and sn ↓ s, tn → t, xn → x and if x ∈ D(s), then
U(tn, sn)xn → U(t, s)x as n →∞.

A condition that implies 4) is the following, see [7]:
5) There exists a real number w ∈ R and a function F such that

‖U(t + s, s)x− U(t + r, r)y‖ ≤ ewt‖x− y‖+
∫ t

0

ew(t−τ)F (τ + s, τ + r)dτ,

for 0 ≤ r ≤ s ≤ T, 0 ≤ t ≤ T − s, x ∈ D(s), y ∈ D(r) where F : [0, T ] × [0, T ] → R
is a continuous function with F (s, s) = 0,∀s ∈ [0, T ] and F (t, s) = F (s, t), F (t, s) ≤
F (t, r) + F (s, r), 0 ≤ r ≤ s ≤ t ≤ T.

The “range condition”

D(A(t)) ⊂ R(I + hA(t + h)), 0 < h < h0, s ≤ t ≤ T,

for small h0 > 0 together with H1 and H2 are sufficient conditions to A(t) generate
an evolution operator. If A(t) is a m-accretive family, then the range condition is
the following

R(I + A(t)) = X, t ∈ [0, T ]

which is equivalent to

R(I + hA(t)) = X, ∀t ∈ [0, T ], ∀h > 0.
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In fact, we can prove, see [7], that hypotheses H1 and H2 imply that A(t) generate
a evolution operator U in the sense 1)...5) with D(t) = D(A(t)) and F (t, s) =
C‖h(t)−h(s)‖, where C is a positive constant that depend of L and of homogeneous
solution (Af

x0
) with f = 0. Thus U(t, s)x0 is the unique integral solution of (Af

x0
)

with f = 0. Now we consider that U is an evolution operator in the sense of 1). . . 4).
The readers are referred to Pavel [7] for the prove of the following theorem.

Theorem 2.1. If U is compact, then for each 0 ≤ s < t ≤ T,U(t, s) is equicon-
tinuous at t0 > s, on bounded subsets Y ⊂ D(s).

We can prove that if the evolution operator U generated by a family of m-accretive
operators {A(t), 0 ≤ t ≤ T} is compact then we have.
I) For each s < t0, U(t, s) is an equicontinuous at t0 on bounded subsets Y ⊂

D(A(s)),
II) For each s ∈ [0, T ] and λ > 0, Jλ = (I + λA(s))−1 is compact. We remark
that an extension of Brezis’ Theorem says that the evolution operator U generated
by a family of m-accretive operators {A(t), 0 ≤ t ≤ T} is compact if and only if
conditions I and II hold.

Given f : [0, T ] → X continuous we denote by Bx0f the unique integral solution
of (Af

x0
). The map f 7→ Bx0 is called Bénilan-Pavel operator. From (1.2) we obtain

that Bx0 is a continuous operator on C([0, T ];X).

3. Main Result

We recall that we are assuming that D is a convex subset of X. Now we define local
integral solution for the following problem{

du

dt
+ A(t)u(t) 3 (Fu)(t), 0 ≤ t ≤ T

u(0) = x ∈ D,
(AFu

x )

where F : C([0, T ];D) → C([0, T ];D) is a continuous operator.
For a ∈ (0, T ] we introduce Ea and Ta given by

Ea : C([0, a];X) → C([0, T ];X),

Ta : C([0, T ];X) → C([0, a];X),

where

(Eau)(t) =
{

u(t), if t ∈ [0, a] ;
u(a), if t ∈ [a, T ]

and
(Tau)(t) = u(t).

It is easy to see that Ea and Ta are continuous operators.
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Definition 3.1. By a local integral solution of (AFu
x ) in [0, r], 0 < r ≤ T we mean

a continuous function u : [0, r] → D with u(0) = x a fixed point of TrBxFEr. The
local solution on [0, s) is a local solution on [0, r] for all 0 ≤ r < s.

The following three theorems are extensions of results contained in [7]. See [2]
to details.

Theorem 3.1. Let A(t), 0 ≤ t ≤ T, be a family of m-accretive operators on Banach
space X satisfying H1 and H2 and x ∈ D. Assume further that F (K) is uniformly
integrable for every bounded set K and that BxF is a compact operator. Then there
exists δ > 0 and at least an integral solution of (AFu

x ) on [0, δ].

Let I(F ) = {u;u is a local integral solution on [0, r] of (AFu
x ) }. As in the

proof of case A(t) ≡ A independent of time we can prove the following results using
the evolution operator instead of semigroups. See [5], [7] and [4] for the proof in
the case independent of t.

Theorem 3.2. Let the evolution operator U(t, s) be generated by A(t), t ∈ [0, T ]
and let S ⊂ C([0, T ];D) be subset such that F (S) is uniformly integrable.
a) If U(t, s) is a compact operator for s < t, then the solution set

I(F ) = {v; v is a local integral solution of (AFu
x ) on [0, r]}

is relatively compact in C([0, r];D).
b) If U(t, s) is an equicontinuous then I(F ) is a bounded equicontinuous subset of
C([0, r];D).

Theorem 3.3. Assume that the evolution operator U(t, s) is generated by A(t), t ∈
[0, T ], is a compact operator for s < t. Let S ⊂ C([0, T ];D) be such that F (S) is
uniformly integrable. Then the solution set

I(F (S)) = {uf ;uf is an integral solution of (Af
x0

) and f ∈ F (S)}

is relatively compact in C([0, T ];D).

Now we are ready to consider the nonlinear abstract model in viscoelasticity with
memory given by (1.1).

Theorem 3.4. Let A(t), 0 ≤ t ≤ T, be a family of m-accretive operators satisfying
H1 and H2. Suppose that A(t) generate a compact evolution operator U(t, s), g
and k as above. Then, for each x ∈ D there exists c ∈ (0, T ] such that (1.1) have
an integral solution in [0, c].

Proof. In fact, let u0 be an integral solution of (Af
x) with f = 0. We take ρ >

0, c0 ∈ (0, T ] and M > 0 such that

B(x; ρ) = {v ∈ X : ‖v − x‖ ≤ ρ}

‖g(s, v)‖ ≤ M,
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s ∈ [0, c0], v ∈ D ∩B(x; ρ) and

‖u0(t)− x‖+ c0M = ‖U(t, 0)x− x‖+ c0M ≤ ρ,

t ∈ [0, c0], where {U(t, s) : U(t, s) : D → D, 0 ≤ s ≤ t ≤ T} is an evolution operator
generated by A(t), 0 ≤ t ≤ T.

Let c1 ∈ (0, c0] and r ∈ (0,M ] such that

c1 = sup
τ∈[0,T ]

‖k(τ)‖M ≤ r

and
C1 = {f ∈ C([0, c1];D) : ‖f(t)‖ ≤ r, t ∈ [0, c1]}.

We notice that C1 is convex, not empty, bounded and closed in C([0, c1];D). Since
C1 is uniformly integrable, it follows from Theorem 3.3. that there exists c ∈ (0, c1]
such that Bx(C1) is relatively compact in C([0, c];D).

Define C = {f ∈ C([0, c];D) : ‖f(t)‖ ≤ r, t ∈ [0, c]}. If P : D(P ) ⊆ C →

C([0, c];D) is given by Pf(t) =
∫ t

0

k(t − s)g(s, uf (s))ds, where uf is a unique

integral solution of (Af
x) and

D(P ) = {f ∈ C : uf is an integral solution of (Af
x) }.

Note that Pf = f implies that uf is an integral solution of (1.1). To complete
the proof is sufficient to show that P have a fixed point in C.

We affirm that D(P ) = C, since for any f ∈ C we have

||uf (t)− x|| ≤ ||uf (t)− U(t, 0)x||+ ||U(t, 0)x− x||

≤ ||U(t, 0)x− x||+
∫ c

0

||f(s)||ds

≤ ||U(t, 0)x− x||+ cr ≤ ρ,

thus uf (t) ∈ D ∩B(x; ρ) and therefore D(P ) = C.
Note that P (C) ⊂ C, since for any f ∈ C, we have

||Pf(t)|| ≤
∫ t

0

||k(t− s)||||g(s, uf (s))||ds

≤ c sup
τ∈[0,T ]

||k(τ)||M ≤ r,

for all t ∈ [0, c]. If follows that Pf ∈ C.
Moreover the operator P is given by P = FBx, where Bx : C → C([0, c];D) is

the Bénilan-Pavel operator and F : C([0, c];D) → C([0, c];D) is given by

Fu(t) =
∫ t

0

k(t− s)g(s, u(s))ds.
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Since F and Bx are continuous, then P is continuous from C in itself.
Define K = coP (C). We remark that K ⊆ C and therefore Bx(K) is relatively

compact set in C([0, c];D). Since F is continuous operator we have that FBx(K) =
P (K) is a relatively compact in C([0, c];D). From Schauder’s Theorem P have a
fixed point in K. That is, there exists f ∈ K and therefore in C such that Pf = f .
This concludes the proof. �
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