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Abstract. The osmosedimentation process is an example of spatiotemporal pat-
terns formation in system driven away from equilibrium, a subject of great interest
nowadays. Here, the osmosedimentation process is numerically modeled by the in-
compressible Navier-Stokes equations with appropriate source terms, together with
a scalar transport equation for the solute concentration. The unsteady Navier-
Stokes equations are written in primitive variable form, and solved using a coupled
point solver. Second order accuracy in time is enforced through the use of a second
order backward differencing discretization of the time derivative. The convective
terms are modeled using a high order bounded scheme that reduces numerical dif-
fusion and does not create spatially-oscillatory solutions. We were able to gain a
better understanding of the far from equilibrium pattern formation in osmosedi-
mentation processes and to extend previous numerical simulation farther in time.

1. Introduction

One of the most interesting examples of non-equilibrium pattern formation is that
given by the well-known Rayleigh-Bénard convection problem. This problem is
concerned with the flow of a thin horizontal fluid layer heated from below [1]:
for low values of the temperature gradient, fluid motion is inhibited by viscosity,
however, if the temperature gradient exceedes a critical value, buoyancy overcomes
viscous resistance and the fluid layer resolves itself into a number of cells. This
means that a spatial structure comes into being spontaneously, or in other words,
the system undergoes self-organization.
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The main characteristic of this effect is that the external influence (combination
of the adverse temperature gradient and gravity) is a global influence that just sti-
mulates the start of internal mechanisms capable of producing internal organization.

The external influence does not, contain by itself any directions as to whether the
system should display any macroscopic structure. In the present work the problem
is extended from pure fluids to fluid mixtures. The convection cell patterns are
now induced by composition inhomogeneities of the fluid system rather than by
temperature inhomogeneities.

We investigate the problem of fluid flow and mass transport in a viscous binary
fluid mixture under osmosedimentation, i.e. the sedimentation process that takes
place under a strong centrifugal field in a dialysis cell [2, 3, 4, 5, 6]. For the
present study we improve our model proposed earlier [7] by introducing a Boussinesq
correction term [1, 8] to the Navier-Stokes equations which govern the fluid motion.
These equations are then solved numerically.

2. The Model

The system consists of a dialysis cell under a strong centrifugal field [7]. A semiper-
meable membrane divides longitudinally the cell into two compartments, one of
which contains a viscous binary ideal solution of initially uniform composition, and
the other is filled with pure solvent. The semipermeable membrane is located at
x = 0 cm (see figure 2, where only the viscous binary ideal solution in the right side
of the osmosedimentation cell is showed).

Thanks to osmotic forces as well as strong inertial forces fluid flow is stablished
within the cell. For the details of the model - balance equations, boundary con-
ditions and numerical values for the parameters - we refer to [7]. Differently from
our previous simplified model, the small density non-uniformities generated in the
solution by fluid circulation plays an important role in the overall mass transfer
process. In fact, the Boussinesq term in the momentum equation is capable of im-
posing significant mass motions in the bulk of the solution. Convection cells are
superimposed to the fluid flow from top to bottom of the solution compartment,
and become dominant. These fluid motions are thus responsible for solute mass
redistribution in the solution half-cell.

Governing Equations
The physical model required the solution of the following coupled set of equations
[9]. The Navier-Stokes equations for incompressible flow, which in vector form can
be written as:
ov . v q -
STV (VV) - —77’ + oV 41— ¢ (x1 - )] G,
V.-V = 0, (2.1)
where p is the pressure, V= (u, v2) is the velocity vetor, G = w?r? is the inertial
field, and p and v are the density and kinematic viscosity of the fluid, respectively.
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The linear approximation constant & is given by £ = — (%8—‘9}%) _, where x; stands
X

for the solute molar fraction and y for the initial homogeneous solute molar fraction.
The convection-diffusion equation for the solute molar fraction x; of the solute

is
o

=V (x117 +§'1) : (2.2)

where fl is the flux density vector of the solute. For an ideal mixture the flux
density of the solute is [9]:

- 02 MOXO % 1
i1 = —MyM;D —_—— = , 2.
J1 P oV |:VX0 + RT (Mo p) VP} ) (2.3)

where c is molar density of solution, M; is the molecular weight of solute, D is the
solute diffusion coefficient, xq is the solvent molar fraction, R is the gas constant,
T is the absolute temperature and Vj is the solvent partial molal volume.

Initial and Boundary Conditions

The fluid is assumed to be initialy at rest everywhere in the domain, and all
the boundary conditions for the discretised Navier-Stokes equations are imposed on
the velocity components only. Both u and v at solid walls are set to zero. At the
membrane there is only the normal velocity component w.

As the initial condition for the density it is imposed that p; are uniform every-
where in the domain. Diffusion of solute across solid boundaries is prevented by
setting the appropriate gradients to zero. At the membrane, the following boundary
condition is adopted, jo = —K;,Apg,o3 , where K, is the membrane permeability
and Apg o is given by the difference between the solvent chemical potentials across
the membrane [5].

T (K) =277 My (g/mol) = 18
po (P) =1.57x 1072 | M, (g/mol) = 3.6 x 10*
Do1 (cm?/s) = 107° po (g/cm®) = 1.0
Lo (cm) = 1.0 Vo/Mo (em®/g) = 1.0
L, (cm) =7.5 p (g/cm®) = 1.0033
Ro (cm) = 15.7 ¢ (mol/cm?®) = 5.52 x 1072
w (rpm) = 2000 x1 (initial) = 5.0 x 107°

3. The Numerical Method

Equation (2.1) is discretized on a staggered grid [10] using finite differences. Equa-
tion (2.2) is discretized using the finite volume technique. Viscous terms are discre-
tised using standard second order centred differences, e.g.,

<82¢) _ Uii1y — 2u;j + Uiy, +O(Ax). (3.1)

ox? (Az)?
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When close to domain boundaries, derivatives are discretised using appropriate
non-centred formulae:

82’& o ui,j+1 — 3ui,j
Erohe %(Aw)Q + O(Ax). (3.2)

In order to avoid the time step limitations characteristic of explicit integration
schemes, an implicit discretisation of the spatial terms is adopted. Since time-
accurate solutions were important for this problem, a time-stepping is performed
with a second order backward differencing given by

a(b B 3¢n+1 _ 4¢n +¢n71
at 2(At)

+ O(At)?,

where ¢ is either component of the velocity (in the Navier-Stokes equations) or x1
in the convection-diffusion equation.

To correctly model the convection effects present in the flow, we employed Zhu's
HLPA non-diffusive, bounded scheme [11, 12]. The implementation followed the
defered correction technique: HLPA’s discretization is treated explicitly and as a
source term in the momentum and convection-diffusion equations. Their convective
terms were discretized using first order upwind. An equivalent term was subtracted
as an explicit source term, so that when the iterative methods converged for a given
time step, both upwind discretizations cancelled out and only HLPA remained. The
deferred correction retained the diagonal dominance of the coefficient matrix while
at the same time, providing a low-diffusion alternative to the first order upwind
scheme.

The net result of the discretisation procedure is a coupled system of linear equa-
tions which must be solved at each time step. Since there is no evolution equation
for the pressure, an auxiliary scheme must be employed for the computation of the
pressure field within the domain.

4. Solution Procedure

The solution of the discretised fluid flow equations is obtained via a relaxation
method similar to the Gauss-Seidel procedure; the method employed is known as
Symmetric-Coupled Gauss-Seidel (SCGS) [13].

Each four velocities and pressure on the staggered grid constitute a cell (see
figure 1). Following the SCGS method, let us define a correction vector § whose
elements will correct the four velocities and the pressure, therefore satisfying the
discrete versions of equations (2.1) and (2.2) simultaneously. Thus,

n+1,(k+1) n+1,(k+1/2)
i—1/2,5 = Uy +0ui—1/2,5,
n+1,(k+1/2) n+1,(k)

i+1/2,j Uii1/p5 T OUjit1/2,5,

n+l,(k+1)  _  nt+l,(k+1/2)
Yij-1/2 = Uij-1/2 +0vi 5172, (4.1)
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n+1,(k+1/2) n+1,(k)

ij+1/2 = U ii12 T 0Vijt1/2,
k41 k
pz(',j = pg,j) +6pi 5,

where n and k are the time and iteration level indices, respectively. The value
k + 1/2 appears because all but the boundary velocities are corrected twice during
a single sweep of the SCGS method. The SCGS is a coupled solution scheme.

Vi, j+s
l
P,
Uy |~ e 4= Uisyj |2y
v
|— |
iu Vivj'l/z
Ax

Figure 1: Staggered grid cell.

Substituting equations (4.1) into the discretized momentum equations results in
the following linear system:

I .
i—1/2,j 0 0 0 At

w1 o piAAmt) OU;—1/2,; R;'il/Z,j

N L 0 A Stti 12 Rl
0 0 L2 vo ) g | = | R ay |

0 0 0 Ii’i:;l/z‘ prA;) OVi,j41/2 RS i1

| & A A&y 2z 0 | omy | | R
(4.2)

which when solved, provides the required values for the corrections. The elements
of the RHS vector of the above system are the residuals from the momentum and
continuity equations. Relaxation parameters w; and ws are taken to be equal to
w =~ 0,5.

SCGS requires the solution of system (4.2) for every cell in the domain. Because
of the banded structure of the coefficient matrix, it can be partioned and solved
efficiently using two explicit formulee.

The convection-diffusion equation is solved by applying the line version of the
standard Gauss-Seidel iterative method. The resulting tridiagonal system is solved
for every line using the Thomas algorithm.

For each time step, the iterative procedure is repeated until the residuals of
discrete versions of equations (2.1) and (2.2) fall below a certain threshold value e.
This is a measure of how closely the numerical values satisfy the discretized equa-
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tions. The value of € was determined through numerical experiments and eventually
set at 1074,

5. Results and Discussion

Fig. 2 shows the simulation results of the model for the stream lines at different
times. In Fig. 3 we see the center of the eddies in the osmosedimentation cell. In the
bulk of the osmosedimentation cell, to maintain the momentum conservation, eddies
are generated in pairs of clockwise and counter-clockwise rotation. Sometimes,
eddies from opposite rotations collide and disappear. There are also lone eddies at
the top and bottom walls.
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Figure 2: Streamlines of the osmosedimentation process at different simulation
steps. From left to right (a) n = 63, (b) n = 75, (¢) n = 125 and (d) n = 650. White
(black) cells are clockwise (counter-clockwise) convection cells. The streamlines
values are in arbitrary scale.

In general, as shown in Fig. 3, the eddies move to the bottom of the cell. Due
to this convective flow, the osmosedimentation process provides a mass extratifi-
cation [14] that is unstable under centrifugation. When there is enough unstable
mass depletion under a given mass concentration, the counter-clockwise eddies raise,
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Figure 3: Bifurcation diagram of the onset of convection cells in the osmosedimen-
tation process. The vertical axis gives the position of the eddies center against time
observed at x = 0.25 ¢m from the membrane. The () (A) are the center of the
clockwise (counter-clockwise) eddies. The two generation lines are indicated by the
dash lines.

clearly defining two generation lines (dash lines in Fig. 3). At this point there is a
mass redistribution which tends to diminish non-uniformities in mass distribution.

These results are in qualitative agreement with those determined by the previous
researchers [2, 3, 4, 5, 6].

6. Conclusions

The osmosedimentation process has a very complex dynamics and, as shown by
[7, 14], is a difficult process to model and simulate. Thus, to reduce the risk of in-
stabilities, coupled solvers were employed. The use of a bounded and low-difusivity
convection scheme prevents the appearence of false diffusion that could invalidate
the results.

Good agreement with previous experiments encourage us to push forward this
investigation and study the sensitivity of the dynamics evolution of the osmosedi-
mentation process to changes in the physical parameters such as cell dimensions,
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membrane effects and initial conditions.
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