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Abstract. We consider a theoretical ecosystem divided into an infinite number
of identical patches and occupied by an ideal species without competitors. The
global state of the system is given by a vector in R2 whose coordinates represent
the proportion of empty and non-empty patches at time t. The dynamics of the
system is described by a non linear Markov chain whose transition matrix depends
explicitly on the state of the ecosystem at time t. This type of models were initially
constructed for the study of two-species competition, considering constant proba-
bilities of interaction and disturbances. When the probability of disturbance on the
processes of colonization and persistence are not constant, complexity makes ne-
cessary to understand first the dynamics of one species, before facing the problem of
more species. Barradas & Canziani approached the problem of persistence of one
species when the probability of disturbance affecting persistence depends on the
proportion of occupied patches and that affecting colonization remains constant.
Here we study the symmetric case, i.e. a species is subject with density depen-
dent probability to disturbances affecting colonization, and constant probability
of disturbance affecting persistence. We investigate the possibility of existence of
periodical solutions when equilibria become unstable, and detect cases in which
equilibria always remain stable. Analysis of different cases indicate that given the
appropriate conditions all situations may appear: globally stable equilibria, locally
stable equilibria, unstable equilibria, and cyclic behavior.

1. Introduction

Understanding the dynamics of a given ecosystem is one of the central problems
in Ecology. That is, knowing at every moment which species are part of it as
well as the interactions, both interspecific and intraspecific, within the system.
Species coexistence, competition, and diversity are important elements in ecosystem
dynamics. The importance of distinguishing local from regional processes when
determining diversity patterns has been stressed by Ricklefs [6]. Metapopulation
models have been conceived with the purpose of including at least two spatial scales
and associating processes occurring at those scales. A family of metapopulation
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models has been proposed by Caswell and Cohen in [4] and [5], Barradas and Cohen
[3], Barradas, Caswell and Cohen [2]. These are non linear Markov chain models
that explicitly include interspecific interaction rates and probabilities of external
disturbances.

One advantage of formulating the model as a Markov chain is the fact that
variability at patch level can be analyzed, while the system is in equilibrium at a
global level. These models were initially built for two competing species, conside-
ring constant probabilities of disturbance and constant interaction rates. Barradas
and Cohen [3] provided the first rigorous mathematical proof of the coexistence of
competing species under external disturbances, creating a mathematical model that
explains the existence of fugitive species and the role of disturbances in the increase
or decrease of biodiversity. They obtained necessary and sufficient conditions on
parameters that guarantee the existence of a non trivial globally stable equilibrium
solution. Technical difficulties forced the authors to use constant probabilities of
disturbance affecting colonization or persistence. Barradas and Canziani [1] have ap-
proached the problem of non constant, density dependent probability of disturbance
affecting persistence and constant probability of disturbance affecting colonization
by studying first the dynamics of one species. Under these assumptions, more than
one non trivial steady state solution may appear, which is not necessarily stable.
Moreover, the trivial steady state solution is not always unstable, which means that
the species can reach extinction.

Here we will study the behavior of a system with only one species, using the
same non linear Markov chain formulation, under the assumption of a density de-
pendent probability of disturbance affecting colonization and a constant probability
of disturbance affecting persistence.

2. Model with Density-Dependent Disturbances
2.1. The Model

We consider an ecosystem occupied by one species and divided into an infinite
number of patches, each of which can be either inhabited (state 1) or empty (state
0). Let yo(t) and y1(t) denote the proportion of empty and inhabited patches res-
pectively. Changes in the ecosystem are represented by the behavior of a dynamical
system in R2. Nevertheless, the fact that each patch has only two possible states
implies that one of the components of fully determines the other:

yo(t) +y1(t) = 1.

The processes considered here are colonization of empty patches by the species,
persistence of the species in an occupied patch, and disturbances affecting both.
Colonization is assumed to be proportional to the number of occupied patches in
the previous time step and independent of neighborhood effects, hence it is given
by the Poisson distribution

C(y1) = 1 — exp(—dy1),
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where d > 0 denotes the dispersal coefficient of the species.

Disturbances affecting the colonization process are assumed to occur with pro-
bability f(y1), and those affecting persistence in occupied patches with probabi-
lity g(y1). This kind of disturbances represent processes of different types, like
occupancy-induced predation, fires induced by the abundance of flammable organic
material in forests and pastures, etc., all of which are dependent on the density of
patch occupancy.

The dynamics of the system is described by a non linear Markov chain

y(t + 1) = Ay(t)y(t)a (2'1)
where
1—(1—exp(—dy)(1 — f(y1))  9(y1)
Ay = (2.2)
(1 —exp(—=dy1))(1 = f(y1)) 1—g(y1)
and

y(t) = (yo(t), 51 (1)"-

Under these same hypotheses, Barradas and Cohen [3] considered the probabi-
lities of disturbance to be constant, while Barradas and Canziani [1] considered a
constant function f(y1) and several different biologically meaningful functions g(y1)
for the probability of disturbance affecting persistence. In both cases different types
of steady states were found, depending on given conditions.

In order to understand the dynamics of the system, we first search for steady
states. Note that constant y(t) does not exclude changes in the occupancy of parti-
cular patches, but reflects only that the proportion of occupancy remains constant.

Because of the fact that yo+y1 = 1, a fixed point of (2.1) satisfies two equivalent
equations derived from A, y = y, that can be written as

H(y) = (1—exp(=d y))(1 - f(y)1-y)+(1-91)y=v, (2.3)

where y = y;.

Finding solutions of (2.3) is equivalent to finding zeros of h(y) = H(y)—y. Since
H(0) =0 and H(1) < 1, one way of assuming the existence of at least one positive
solution of (2.3) is to ask for H(0) > 1. In such a case the condition on H(y) yields

9(0)
— 24
10 24
provided f(0) # 1. It is clear that the case f(0) = 1 does not make sense in real

biological settings. This condition is analogous to condition 0.5 in Barradas and
Cohen [3] and condition 4 in Barradas and Canziani [1].

d >

2.2. Density Dependent Probability of Disturbance During
Colonization

Given the general form of the probability functions f(y) and g(y), it is possible that
more than one non trivial steady state can be found. Here we will consider g(y)



88 Frederico and Canziani

to be constant, say ¢g(y) = p, and f(y) will take the form of different biologically
meaningful functions.

Note that H(y) can be split into two terms, one involving f(y) and the other
involving ¢(y), in a way that can simplify the analysis of existence and behavior of
steady states. Let

o(y) = (1 —exp(=d y))(1 — f(y)(1 —y)

and let
Gly)=ry.
Note that ¢(0) = G(0) and ¢(1) = 0, and that solving
H(y) =y

is equivalent to solving the equation
e(y) = Gy)-
One sufficient condition for the existence of a solution is that
¢'(0) > G'(0) =p

from which condition (2.4) can be obtained.

2.3. Stability of Steady State Solutions of the Model

When a steady state solution is found, its stability can be determined following the
general conditions for discrete dynamic systems. A fixed point y* of H(y) is locally

stable and (1 — y*,y*)T is a locally stable solution for (2.3) if
-1< H'(y*) < 1. (2.5)
In our case
H'(y) = dexp(=dy)(1—f(y))(1-y)
+ (1 —exp(—dy))[—f' ()L —y) — 1+ f(y)] —p. (2.6)

On the other hand, when y* is such that H(y*) = y*, we obtain

*

Yy
(1= fy)A—y*)
Replacing these expressions in equation (2.6) we obtain
')
1—fly

Instead of considering with the equation H(y) = y, we can consider ¢(y) = G(y),
and search for an equivalent condition involving ¢’ (y).

exp(—dy") =1—

(2.7)

1< p{y* {d+ 571 jy} + 1} +d(1 -y - fy") <1. (2.8)
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Criterion 1 Stability Condition. A solution y* of ¢(y) = G(y) is locally stable
if

p-2<¢ () <p (2.9)

Proof. If we write H(y) = ¢(y) + (1 —p) y then H'(y) = ¢'(y) —p+1 in
which case condition (2.5) is equivalent to —1 < ¢'(y*) —p+1 < 1.
Hence we obtain p —2 < ¢/(y*) < p. n

Criterion 2 Instability Condition. If a steady state y* corresponds to an inter-
section of curves p(y) and G(y) such that p(y) < G(y) when y < y*, then y* is an
unstable equilibrium.

Proof. Given € > 0, we can write

ply” +¢) — o) _ ply” +¢) —py*
9 3

Taking limits on both sides as ¢ — 0, we get
¢'(y") = p.

By the previous criterion y* is unstable. L]

3. Particular Familes of Functions f(y)

When f(y) is no longer constant, the function ¢(y) can not be expected to be
concave, a fact that partially simplified the analysis in Barradas and Canziani [1].
In order to appreciate the richness of behavior of the system, it is then necessary
to consider different probability functions f(y).

Graphically, the solutions of the equation ¢(y) = G(y) are the points of intersec-
tion of the curve (y) with the straight line G(y). Since the line G(y) passes through
the origin, it is fundamental to analyze the concavity of ¢(y) in its neighborhood
in order to determine the number of non trivial steady states. In particular, it is
important to analyze the concavity of ¢(y) between the origin and the point where
this function attains its maximum over the interval [0, 1] as can be seen in the
examples.

3.1. Casel

We consider the case in which the probability of disturbance occurring during col-
onization is high at low occupation and decreases as the occupation of patches
increases. This could be the case in a region such as the Patagonia. When the den-
sity of the vegetation cover is low, the winds can hinder the germination and rooting
of seeds, but the effect is diminished as the density of grown plants increases.
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This situation can be described using a family of functions of the form

2

-9y

where k is a positive constant. Then 0 < f(y) < 1.

We can then compute the derivatives ¢’(y) and ¢”(y) and observe that both
¢’ (0) = 0 and ¢”0) = 0. In order to produce a formal analysis of the concavity
of ¢(y) over the interval [0, 1], it is necessary to observe the sign of the second
derivative and obtain some relationship involving parameters d and k, and the
variable y. It can be easily seen that the expressions of derivatives are rather
intractable. Nevertheless we can consider ¢(y) as the product of two functions:

o(y) =2(y) f(y),

where B(y) = (1 — exp(—dy))(1 — y) verifying $(0) = B(1) = 0. Moreover,
0<2(y)<l—-y, Yyelo1].
The first derivative of this function is

?'(y) = (d—dy + 1) exp(—dy) — 1

verifying @'(0) =d >0 and %' (1) = exp(—d) — 1< 0.
From the analysis of the second derivative we obtain the following condition for
the concavity of the function:

?'(y) = —dexp(—dy)(-dy+d+2) <0 & —dy+d+2<0

so that it is necessary that y < dsz, a condition that is verified Yy € [0,1]. Then

we can conclude that P(y) is concave on the interval [0,1].

Let us now consider f(y) = and such that f(0) = 0. This is an increasing

y
: k+y2?
function of y for

2

T =3 >0 Vel

It is also a convex function on the interval [0,v/k], for the second derivative satisfies

—/ Qk(k - y2)
=—— >0 <= < \/E

7= 2 il

If we express @' (y) in terms of B(y), f(y), and their derivatives, we obtain the

expression:

P'(y) =2 W) W) + 20 W) F ) + 3T ()

in which the first term is negative on [0,1], the second is positive in a neighborhood
of zero, and the third one is positive for y € [0, \2/E] Therefore, in order to prove
that p(y) is convex in a neighborhood of zero, it is sufficient to prove that:

!

2" fy) <28 (W) [ ()
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or more precisely

y? 2ky

dexp(—dy)(—dy +d+2) Py < 2[exp(—dy)(d — dy + 1) — 1] e

From this inequality we obtain

d? —d? — 4kd — 2d
V—+y|————— | +d+1 > exp(dy).
1k 1% S\)

B
ne (v)

Both functions, A(y) and B(y), are continuous, and d + 1 = A(0) > B(0) = 1,
which implies that 3 ¢ > 0 such that A(y) > B(y) Yy € [0,¢). This proves that
©(y) is convex in a neighborhood of zero, and then concave. This was also observed
plotting the function for a wide range of values of d and k.

This is one of those examples where the sufficient condition (2.4) is not verified,
yet there are equilibrium solutions depending on the values of p, d, and y.

3.1.1. Criteria for the existence of steady states

Let us consider the graph of ¢(y) over the interval [0,1] and a vertical line passing
through the origin. If the line is tilted towards the right using the origin as a pivot,
there is a point (yo, ©(yo)) at which the line will tangentially touch the curve. In
other words, if T'(y) is the tangent to the curve passing through the origin, it will
satisfy the equation:

T(y) — ¢(yo) = ¢ (¥0) (¥ — o)
and therefore T(y) = ¢'(vo)y+(Yo) — ¢’ (¥0)yo- Note that this condition is trivially
verified for y = 0 since ¢’'(0) = 0.
If now we focus on this point (yg, ©(yo)) and on the value of the derivative ¢’ (yo),
we can formulate the following criteria, depending on the disturbance probability p

(Fig.1):
i. Non existence of non trivial steady states if p > ¢'(yo)
ii. Existence of one non trivial steady state if p = ¢'(yo)
iii. Existence of two non trivial steady states if p < ¢’(yq).

Let p, d and k be such that there exists a steady state. Let k be fixed, then
decreasing p and increasing d, or inversely, we can obtain two steady states that
shift one towards y = 0 and the other towards y = 1 (Fig.1). When p is fixed, an
increase in d and a decrease in k produces a shift of two steady states towards the
trivial ones.
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Figure 1: Illustrates Case I

3.1.2. Stability of steady states

When the probability of disturbance affecting persistence is strictly positive, that
is p > 0, we can state that:

i. The trivial steady state y* = 0 is always stable since ¢’(0) = 0 < p, satisfies
condition (2.9). This means that, independently of the value of p > 0, when the
probability of occurring a disturbance that affects colonization is high at low patch
occupancy, the species can not persist.

ii. When the only non trivial steady state is y* = yg, it is unstable since ¢'(0) = p.
ili. When conditions are such that two non trivial steady states, y. < y*, are
obtained, then y. will be unstable for the Instability Criterion is satisfied. The
stability of y* can not be determined unless d and k are known explicitly. Since
only cases where p < 1 are meaningful, it is enough that the condition ¢’(y*) > —1
is verified to assure stability whenever y* is at the right of the point where ¢(y)
attains its maximum, independently of the value of p. This can be easily verified
graphically. When y* is at the left of the point where ¢(y) attains its maximum, it
is because p has a high value, in which case ¢’(y*) is in fact very small. Then the
condition ¢'(y*) < p is satisfied.

When the probability of disturbance affecting persistence is null, the only steady
states are the trivial ones, y. = 0 and y* = 1. Under this condition y, = 0,
representing total emptiness, is an unstable equilibrium since ¢’(0) = p = 0. On the
other hand y* = 1, representing total occupancy, is a globally stable equilibrium
since condition (2.9) is verified for ¢’(1). When the probability of a disturbance
affecting persistence is null, no matter how high the probability of disturbance
during colonization, the species will eventually occupy the whole territory. When a
patch is colonized, the species will persist forever and will continue colonizing other
patches from this one.
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3.2. CaselIl

Let us consider the case where the probability of a disturbance during colonization
increases as the proportion of occupied patches increases. This could represent sit-
uations where competition, both intraspecific and interspecific, is important. For
instance, if the density of trees in a certain region is high, the shadow of the canopy
affects photosynthesis and hence reduces the chances of the offsprings of growing
and prospering. Another example could be that of a predator-prey system, where
an increase of prey occupancy of the territory attracts the predator species and
produces an increase in the probability of disturbance affecting the process of colo-
nization by the prey species. The probability function can have the form:

fly) = ay”,

with0<a <1, 8>0.
The analysis of the concavity of ¢(y) is not trivial. Once more we can consider
©(y) as the product of two functions

o(y) =2W)f(y),

when @ is as before, and f(y) = 1 — ay®. In order to study the latter we need to
consider four cases, depending on the value of 8 and its role in the derivatives of
the function:

(a) B > 2. Given this condition, we have: fl(y) = Pay® 1 <0 Vye[0,1]and

z”(y) =-B(B-1)ay? 2 <0 Vye(0,1]. We have 7,/(0) = 0, which implies that
f(y) is concave over the interval [0,1]. Under these conditions, and recalling that
P(y) is also concave on [0,1], we can affirm that ¢(y) is concave on [0,yy,], where

Ym 1s the maximun of ¢(y) on [0,1].

(b) 1 < 8 < 2. Here we also have f/(y) = fay® 1 <0 Vyel01. The
difference with the previous case is that the second derivative is not defined at y = 0.
Nevertheless we can see that

—=I!

Fly)=-80B-Day’?<0, Yye(01],

so that when taking limits as y — 0 we obtain: lim, g f”(y) = —o0. This implies
that f(y) is concave on the interval [0,1]. Then, as before, ¢(y) is concave on [0,y ].

(c) B = 1. Here we have a straight line f(y) = 1 — ay so that, when multiplied by
the concave function $(y), we obtain a concave function on the interval [0, ¥y, ).

(d) 0 < 8 < 1. In this case we have

—/

fy)=—-Bay’ 1 <0, Yye(0,1],

hence by taking limits as y — 0 we obtain lin%j/(y) = —o0.
y—)
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Differently from situations (a) and (b), here the second derivative is

1/

Fy=-8B-1ay’2>0 Vye (1],

so that lin%?” (y) = +oo which means that f(y) is convex on the interval [0, y,,].
y;}

Under these conditions it is not possible to ascertain the concavity of ¢(y)
straightforwardly as in the previous cases. Since the first and second derivatives of
f(y) are not defined at y = 0, it is not possible either to deduce the sign of the
second derivative ¢ (y) as in Case I. Nevertheless we can affirm that ¢(y) is concave
in a neighborhood of 0 for

: 1
ylgg+ ¢"(y) = —o0.

Then the only possibility for knowing the general behavior of the function ¢(y) over
the interval [0,y,,] is to plot it for a wide range of values of parameters d and 3.
It is also important to plot the second derivative too, for there can be values of the
parameters for which inflection points appear but are imperceptible on the graph.
We can conclude that the function ¢(y) is concave in a neighborhood of 0 and,
moreover, the inflection point is found beyond the point where the function reaches
its maximum.

3.2.1. Criteria for the existence of steady states

i. If 8 > 1, then ¢/(0) = d and we get from (a), (b), and (c¢) that ¢(y) is concave
over [0,y,,]. Therefore the existence of a non trivial steady state depends on the
value of d, as established by condition (2.4) (Fig. 2). If d < p there is no non trivial
steady state. If instead d > p, there exists a non trivial steady state and it will be
unique due to the concavity of ¢(y) over the whole interval [0, yy,].
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Figure 2: Illustrates Case Il when 6> 1, a =1

ii. If § < 1, then lim, o+ ¢'(y) = 4+o0. This guarantees the existence of a non
trivial steady state for any value of the other parameters. This steady state is also
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unique for ¢(y) does not change its concavity until after it reaches its maximum
value (Fig. 3).
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Figure 3: Nlustrates Case IT when 8 <1, a =1

In both cases the non trivial equilibrium moves towards the trivial one either by
increasing d or /3, or by decreasing p.

3.2.2. Stability of the steady states

If the probability p of a disturbance affecting persistence is positive, we obtain the
following results depending on whether 3 > 1 or g < 1:

When g > 1 the steady state y. = 0 is stable for d < p and unstable in the
other cases. This means that in order to be successful in the process of colonization
it is not sufficient for the species that the probability of perturbation be low but
also needs to have a capability for dispersion such that it can overcome the effect
of disturbances on persistence. A single non trivial steady state y* exists only if
d > p. Its stability depends on the values of the other parameters in f(y) and of p.

When 0 < 1 the steady state y, = 0 is always unstable independently of the
capability of dispersion of the species and the probability of disturbances affecting
persistence. As before, the stability of the non trivial steady state y* depends on
the relative value of the parameters, with a greater sensitivity towards the value of

p.

Example. Considering the following values for the parameters d = 10, a = 1,
£ =0.9, and p = 0.7, the steady states are:
Y« = 0, with ¢'(0) = 400, is unstable;
y* = 0.42896030, with H'(y*) = —0.7357575, is stable.
If the value of p is changed to p = 0.95, then the steady states become: y* =
0.3757851, with H'(y*) = —1.041727, is in this case unstable.

This means that when p < pg for a certain pg, then y* is stable but looses the
stability when p > pg. In the latter case there exist two consecutive unstable steady
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states, which give rise to cyclic behavior (See Fig. 5).

When the probability of a disturbance affecting persistence p = 0, the trivial
steady state y. = 0 is unstable for any positive value of 3. In this case the species is
under totally favorable conditions, because at low patch occupancy the probability
of a disturbance affecting colonization is low and the probability of a disturbance
affecting persistence is null. Even when the probability of disturbance affecting
colonization increases with density, the species is not affected for once a patch
is colonized it is never lost. The other trivial steady state y* = 1 is globally
stable. Condition (2.9) is verified since ¢'(1) = (1 — a)exp(—d) + o — 1 satisfies
—l<a<(l—a)exp(—d)+a—-1<0.

3.2.3. Periodic Solutions

Let us consider f(y) = ay® and take the parameters to be a = 1, 3 = 0.9, d = 10,
and different values for p. When we plot the iterated function H(H(y)) together
with the identity for several values of p, as specified in the figure, we can observe
in each case one intersection of the two curves, corresponding to the solutions of
H(y) = y. It is important to note how the plots change as the value of p increases
(Fig.4). The plot for p = 0.98 shows three intersection points, which implies the
existence of period-two solutions. The stability of period-two solutions is determined
by evaluating the slope at each intersection point.
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Figure 4: Emergence of cycles as equilibrium becomes unstable

In this case the existence of periodic solutions can be interpreted as follows.
When the occupancy level is low, the species finds favorable conditions for colo-
nization independently of the probability of disturbance affecting persistence, for
an emptied patch is rapidly colonized again. Then the density of occupied patches
grows fast. As high levels of occupancy are reached, the probability of distur-
bance affecting colonization increases and couples its effects with the probability of
disturbance affecting persistence in such a way that an emptied patch has a low
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probability of being successfully colonized again. This leads to a decrease in the
density of occupied patches until the system returns to a situation favoring colo-
nization. The system oscillates (Fig. 5) between two states: one at low and the
other at high level of patch occupancy.
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Figure 5: Cyclic behaibor with parameters as in Example

3.3. Case II1

Let us consider now a case in which the probability of a disturbance affecting colo-
nization is high at both low and high patch occupancy while at intermediate den-
sities it becomes low. As an example we can consider a plant species that can
not survive if too exposed, but its growth is hindered by intraspecific competition
(shadow).

We can represent such situation using the function

) = acos(27r2y) +1

with 0 < a < 1.

As before function ¢(y) obtained for this probability function is unimodal. In
this case the analysis of ¢(y) and the solutions of the equation ¢(y) = G(y) are
based on geometric methods for the analytic expressions are intractable. For a given
value of parameter d, there exists a point «g € (0,1) such that one of the following
three is valid for ¢(y), considering ¥, = ym(p, d) to be the point where ¢(y) reaches
its maximum.

3.3.1. Criteria for the existence of steady states

i. When a € (0,aq), the function ¢(y) is concave on the interval [0,y,,) and this
implies the existence of a non trivial steady state only if ¢’(0) > p.
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ii. When « € (g, 1), the function ¢(y) exhibits two inflection points yo and
y1 € (0,Ym), Yo < Y1, such that ¢(y) is concave on [0,yo), convex on (Yo, y1), and
concave again on (y1,¥ym). These changes in the concavity of the function before
reaching its peak value give rise to the possibility of more than one intersection with
the linear function G(y). Hence up to three non trivial steady states can be found.

iii. When « = 1, the function ¢(y) shows a unique inflection point on the interval
[0, ym ), being first convex and then concave. This is a function that behaves as the
one in Case I, so that the conditions for the existence of non trivial steady states
are the same.

Here situation ii., even if mathematically interesting, is not applicable to bi-
ologically meaningful situations since the changes in concavity are essentially im-
perceptible. When adjusting a model to field data, only situations i. and iii. will
be observed. In situation i., where only one non trivial equilibrium is found, an
increase in d or a decrease in p will shift the equilibrium towards y = 1 for any fixed
value of a. The same behavior is observed when « decreases for this implies a lower
probability of disturbance at both high and low patch occupancy.

3.3.2. Stability of the steady states

In situation i., that is for a € (0, ), the probability of a disturbance affecting
colonization is low at low patch occupancy, and the behavior is similar to that of
Case II with § < 1. The trivial steady state y. = 0 is unstable when ¢'(0) =
(1 — @)d > p. When the value of « is close to 0, the behavior is similar to the one
for # <1 in Case II. If there exists a non trivial equilibrium, it can be either stable
or unstable, in which case period two solutions can be obtained.

In situation iii., that is for a = 1, the probability of a disturbance affecting
colonization is very high when densities are close to the endpoints of the interval
[0,1]. Hence the stability of the trivial steady state y. = 0, and of the first non
trivial one in case it exists, is given as in Case I. There is a fundamental difference
with Case I when there exists a second non trivial equilibrium, which relates to
the high probability of disturbance at high patch occupancy, since it can become
unstable when the probability of disturbance affecting persistence is also high. In
the case where the second non trivial steady state is unstable, period two solutions
appear.

4. Conclusions

We can observe in this study how the fact of introducing a density dependent
probability of disturbances affecting the process of colonization opens the door to
a variety of behaviors, including the possibility of cycles. The number and stability
of the steady states in the level of occupancy of the ecosystem vary depending on
the nature of the probability function f(y).

When the probability of disturbance affecting colonization is high at low patch
occupancy, then the trivial steady state y, is always stable. A high probability of
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disturbance at low patch occupancy puts the species in a most unfavorable situation
facilitating extinction, as seen in Case I or Case III when o — 1.

High values of the dispersion coefficient d enhance the appearance of non trivial
equilibria, as seen in Case I, and induce the instability of the trivial equilibrium L.,
as in Case IT (when 8 < 1) and in Case III.

When p the probability of disturbance affecting persistence is not too high, a
low probability of disturbance affecting colonization at low patch occupancy results
in general in a steady state with high percentage of occupied patches. Even when
p is high, periodic cycles may appear, but there is no risk of extinction.

The metapopulation approach is not much used yet in analysis of population dy-
namics but some publications show that it could be a very promising one (Valverde
and Silvertown [7]).
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