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Abstract. We discuss recent developments in the implementation of the second
Born approximation for positron-molecule collision calculations. The evaluation
of matrix elements involving the operator VGI(JL)V is done by direct numerical
quadrature and designed to molecules of arbitrary geometry. Integral cross sections
are obtained for et - He and et - Hy collisions from 50 to 500 eV.

1. Introduction

Originally introduced many years ago in quantum scattering theory, the second
Born level of approximation (SBA) has attracted a considerable amount of interest
[1]. This approximation has been extensively used and with considerable success
in the analysis of intermediate and high-energy scattering of positrons (electrons)
against atomic targets [1]. For molecular targets the problem involving a non-
spherical potential forces a laborious and large computational effort for the SBA,
almost equivalent to more sophisticated theoretical treatments as the close cou-
pling approximation [2], the R-matriz [3], the Kohn Variational Principle [4] and
the Schwinger multichannel method [5]. These methods, specially designed for low-
energy positron(and electron) scattering, involve several additional concepts and
techniques strictly related to molecular features and quite frequently combine basis
set approaches with numerical techniques. Although the SBA has been extensively
used for atomic targets there exist no detailed study for molecular targets using the
SBA (for molecular targets, there are practically no SBA data available in the liter-
ature). The motivation for the present work is twofold. Provide the literature with
SBA cross sections, which can be quite useful in the development of new scattering
methodologies [6]. In order to do this, we have to evaluate reliable (numerically
stable) second Born type of terms, without restrictions on molecular geometries.

2. Procedure

As it is well known the SBA amplitude is obtained by adding to the first Born
approximation (FBA) the following expression:

Foa(ky, ki) =< S, | VGV S >, (2.1)
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where the G;,H is the projected outgoing-wave Green’s function defined formally as
GZ(DH = P(E — H, +i¢)~ !, and P is the target-space unit operator

P:I\ By >< By |= 1. (2.2)

{4

In the present paper, P is truncated and carries only energetically open bound
state channels. With the help of the linear momentum representation [7] of the
one-particle unit operator the truncated fgs can be rewritten as

open 2
2k
< S, VGV | S >= Z/ 9, ) (2.3)
where
g£~ /dQ < S |V|<bgk><k¢»g|V|S >, (2.4)

and the function gE ¢ (k) is essentially an angular integration of first Born terms
FRi

with different magnitude of ks (off-shell terms). In the SBA, the difficulty in
evaluating Eq. (3), associated with possible discontinuities, has been examined and
treated in a Similar way as in the subtraction method [7, 8]. Add and subtract
the expression k2 k2 qq 3 (kg) to Eq. (3). The subtracted term makes the integra-

tion smoother (smce the numerator and the denominator of the composed expres-
sion will vanish simultaneously for k’s around k;) and the added term is evaluated
analytically. When V is defined for the electron case, the SBA amplitude is given
by

fSBA(kf’ki) :thBA(kfa ) +fBZ(kfa )a (2'5)

where the upper and lower signs are for electrons and positrons, respectively. In the
present 1mplementat10n two different quadratures are used for k and k ¢ to avoid
situations where | kf — k; | are too small [9]. To obtain integral cross section we
just evaluate the square modulus of this amplitude, summing over all k ¢ directions
and averaging over the k;’s. To check the procedures to evaluate SBA and FBA
cross sections we have considered tree tests: (a) the form factor given by frp4(0
= 0) which is a kind of blueprint of each target at the FBA level [1]; (b) the
optical theorem for the SBA amplitude, which is a good test for the residue since
numerically it should give

obBA — %Imé% /d3k1;fSBA(EZ—,EZ-), (2.6)

s
where oL B4 is the total cross section calculated on the FBA; and (c) the use of
a known potential scattering problem to test the structure of our computer codes.
We tested it by feeding our programs with scattering amplitudes for the Yukawa
potential at the FBA and by comparing the outcoming SBA cross sections with
the known analytical results. The numerical integrations were carried out using a
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regular Gauss-Legendre method. They were tested with several quadratures until
full convergence was achieved. The Eq.(3) involves a infinite summation over all
the states, both discrete and continuous of the target and perform this infinite
summation exactly is extremely difficult [1]. Its summation is greatly simplified by
making the call simplified second Born approximation (SSBA)[10].

3. Results

He and H-

These calculations, were carried out within the static approximation, i.e., no
polarization effects are taken into account (only the ground state is available for
the He, and Hy and not studing the SSBA). For the ground state of He and Hy we
used a self-consistent-field (SCF) wave function obtained with Cartesian Gaussian
Functions, chosen as in Refs. [11] (See table 2.21.1) and [9], respectively. Table I
shows our FBA and SBA integral cross sections for positron - He scattering along
with results of Ref.[10]. As noted, our results agree very well with Ref.[10] for

Table I: Integral cross section (a2): positron - He

Energy(eV) | FBA(our result) | SBA(our result) | SBA(Ref.[10]) | Expt.[15]
50 2.230 1.996 1.410 3.707
100 1.289 1.336 0.892 2.104
150 0.904 0.972 0.670
200 0.891 0.941 0.524 1.54
300 0.476 0.516 0.400
400 0.362 0.391 0.311 0.596
500 0.292 0.316 0.299
E > 300 eV.

In Eq.(3) the appearance of summation makes an SBA calculation computation-
ally prohibitive. The most usual form of calculating an approximation to (3) (used
in Ref.[10]) is taking exactly only the terms corresponding to the N lowest energy
intermediate states and substituting k? for k? - 2w, for all other states, where w.
is an average excitation energy. As only the ground state is available in our study
(the only difference between the 2 methods is due to multichannel effects which
is considered only in their calculation) we may conclude that these effects are not
important for E > 300 eV. Table II shows our FBA and SBA integral cross sections
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for positron-Hy. For et - Hy there is unfortunately no SBA results with which these
results can presently be compared.

Table II: Integral cross section (a2): positron - Hy

Energy(eV) | FBA(our result) | SBA(our result)
50 3.215 3.366
100 1.715 1.801
150 1.173 1.234
200 0.891 0.941
250 0.719 0.770
300 0.603 0.654
400 0.453 0.479
500 0.365 0.356

4. Conclusions

We have calculated cross section for He and Hs by the intermediate-energy positron
impact. These elastic cross section were obtained within a second Born approxi-
mation (SBA). It would be of particular interest to apply the SBA to excitation
electronic. Efforts in this direction are now in progress.
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