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1. Introduction

The quality of products described through precise dimensional characteristics can be
verified through careful checking of measurements, taking into account the desired,
exact value and the value obtained from direct measurement of the part.

Measures obtained from a CMM (Coordinate Measuring Machine) approximate
geometrical features of the object. This instrument, the CMM, as described in [2],
makes possible the pointwise metrological recognition by grouping the constituent
surfaces of the object.

The measurement of objects is made by coordinate sampling and achieved con-
sidering a particular measurement region defined by the displacement system of the
mobile parts of the CMM. This measurement is submitted to at least, three kinds
of error: systematical, random and rounding error. Unfortunately modeling these
errors is a very complex task, as errors are independently related to several external
factors that are usually impossible to have under control at all times in an industrial
environment,.

As error sources cannot all be controlled, it is usually more interesting to analyze
the final, net error produced in the measurement. Doing so, and with a relatively
simple strategy to analyze the accuracy of measurements obtained from the CMM
calibration process, the operator may find the most appropriate region to place a
part in order to minimize error taking into account the shape of each part. This
system will be presented in the following sections.
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2. Structure and operation of a CMM

A Coordinate Measuring Machine is an eletronic and mechanic system built to
obtain cartesian coordinates of points on solid surfaces. CMMs differ among them-
selves but they present common fundamental characteristics. In Figure 1 below we
can see the elements that compose a CMM.
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Figure 1. Coordinate Measuring Machine

The grouping system that will touch the object is a very delicate structure
coordinates of points placed on a rigid surface when these touch a contact sphere.
The function of the grouping system is to transmit a touch event to the processor
so that coordinates are noted down and mobile parts are locked. With this system
we can distinguish between points less than 0.001lmm apart from each other, being
sufficient for most applications.

3. Sources of error in a CMM

Errors in operations with the CMM come basically from the acquisition of the co-
ordinates. The error factors are classified as internal - originating from the machine
itself; and external - dependent from environmental conditions. Some of these fac-
tors are listed below, and from this list the reader will understand how hard they
are to avoid or even to reduce.
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Internal Factors: placement position, coordinate system, algorithms, age of the
machine.

External Factors: temperature, environmental humidity, dust, vibrations, hu-
man operator.

4. Errors originating from a CMM

The errors originating from a CMM can be classified among three types of error:
systematical, random and rounding error. These can be described as follows:

1. Systematical error: this error is due to permanent construction imperfections
of the instrument and has always the same value at each measurement - thus,
it is predictable.

2. Random error: the random error is caused by alterations (not perceptible)
of the instrument, of the object to be measured, of the environment and
others. These errors cannot be estimated separately but, nevertheless, can be
measured quantitatively through calibration.

3. Rounding error: rounding error (see [2]) is inherent to hardware and its con-
trol depends on numerical methods and techniques of scientific computing.
In this way, we can say that the rounding error is related to processing in
finite precision. However, in most cases the rounding error is seldom taken
into consideration for practical purposes because the introduced error will be
irrelevant if it is compared with the embedded errors of the CMM.

5. Formulation of the problem

The measurement of objects by coordinates is achieved considering a particular
space, defined by the displacement system of the mobile parts of the machine.

To model this problem, let there be a tridimensional measurement region
Sp = {(@i,vi,2)/®i, i,z € R, 1 < i < n}, where n is the number of positions
in the measurement region. We then define error sets originating from m; samples
obtained through calibration and associated to each point of S,. So, these error
sets can be grouped according to each axis:

Sio= fri+al,1<i<n, 1<) <mg)
Sy = {vityp1<i<n 1<j<m}
Sio= {zm+2,1<i<n, 1<j<m).

That is, for each position (z;,y;,2;) € S, are associated three sets of sampled
coordinates: S, S, and S’ as shown in the Figure 2 below, for some i and m;= 3.
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Figure 2. SLS! S., for a Given Point i

Moreover, we introduce a generic error function ef: R x SixSixSi— R to
provide error indexes at a position (z;,;, z;) taking into account the kind of error
we want to measure, the original point and the errors of the measurements obtained.

6. Proposed solution

Starting from a data file originated from a calibration containing the original n po-
sitions and the m; measurements associated to each position, a set of routines was
implemented to calculate the error index associated to each point of the measure-
ment region. This error function associates each point of the measurement space
to an error from the m; measurements obtained for the point. So, with these er-
ror values we will be able to plot a surface and find the measurement region with
smallest error. In this way, errors are associated to a color scale and, finally, a color
surface is visualized.

Six different types of error indexes are developed for this analysis, working dif-
ferently as they allow the user to choose special aspects to take into consideration
in the measurement process: sample centering, sample spreading, and others. The
program is developed in C and runs under Windows.

7. Measurement indexes (¢y)
The error value relative to each point of the measurement region will be calculated

with six different methods, allowing the user to take into account any several desired
aspects. These indexes can be change to suit new applications or special purposes.
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7.1. Largest absolute error (¢)

Let there be the set S; and the following associates values:

VITi= min{x;'-/l <j<my} Ax= max{xz-/l <j<m}
vyi = min{y! /1 < j <m;} Ay;= max{y!/1 < j < m}
V= min{z;-/l <j<m;} Azi= max{z;-/l <ji<m;}.

The measurement index associated to point (z;,¥;, 2;) and denoted by &}is eval-
uated by:

el = max(| va; |, | Az, | vuil, | Ayl | vzl | Azl) .

This index determines the largest absolute error obtained in the calibration of
each point independently of the axes.

7.2. Largest absolute error +displacement origin-point (&3)

Let there be the set S; and the associated values yz;, Ax;, Vv, Ayi, Vzi , Dz as
above.

The measurement index associated to (z;, ¥, z;) and denoted by &} is calculated
as:

Eéz max(| x|, | Az; |, | vy || Ay |, | vzl Azi| - max (2, ys, 2:)

This index is similar to the previous but takes into account the distance to the
origin. It tries to include the displacement as the CMM will move longer if the object
is far from the origin, and the probability of mechanical misaligments increases. Of
course, there are other possibilities to represent the displacement in the calculation,
and this index can easily be changed to be suited for other applications.

7.3. Average error of the 3 coordinates (¢3)

The measurement index associated to (z;, y;, z;) denoted by &% is calculated through
the formula:

€5 = n—h(ZT:l T+ Z;'n:ly;"s‘ Z;nzl Z;) -
This index takes the average error of the calibration. We can take just one of the

axes (or two) into consideration and create a new index, for example, considering
the other axes as irrelevant.
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7.4. Centering (¢4)

Let there be the sets S;,S;,5, and S,. The measurement index associated to
(7i,vi, 2;) denoted by &% is calculated by:

i — 1
E4—mi

>2i(S5,8,,80) = Sill -

y?

This index shows the degree of centering of the samples with respect to (z;, y;, 2;)
(see Figure 3).

Error index islarge Error index is small

Figure 3. Centering Index

The more distant of the point are the samples, the largest will be the value of this
index. If the centering is correct, the center of the samples coincides with (x4, y;, 2;)-

7.5. Spreading from the ideal point (c5)

This index shows the degree of spreading of the samples regarding the ideal point
(see Figure 4), denoted by % and calculated through the formula:

et = oo 2l (85,85, 80) — Sill -

The more spreaded from the ideal point are the samples, the largest will be the
value of this index.

Error index is small Error index islarge

Figure 4. Spreading the Ideal Point
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7.6. Spreading of the center of the samples (gg)
This index shows the degree of spreading of the errors regarding the center of the

samples (se Figure 5) and is associated to (z;, v, 2;), denoted by ¢ and calculated
through the formula:

5%: Lij” (Sazcv‘ggljvs,zz) -C H7

where
C= miZZ(S;S;,S;) .

The more spreaded from the center of the samples are the samples, the largest
will be the value of this index.

Error index is small Error index islarge

Figure 5. Spreading of the Center of the Samples

Using the visualization tool ( - Schroeder 1996) the
indexes are associated to a color scale and color contours of surfaces are shown.
The number of contours and their color can be controlled by the user, helping to
enhance detail and search for placement positions where error is reduced, or simply
to check how error patterns evolve over time.

8. Interpolation

To improve and increase the degree of detail of the final image generated by the
visualization toolkit (vtk) and due to the small number of points provided by cal-
ibration, interpolation is used to generate more intermediate points between the
index values associated to each point of the measurement region.

Consider the measurement grid 5 x 5 x 5 (Figure 6) and the index (&%) associated
to each one of the 125 points.
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Figure 6. Measurement Grid Considered (5 X 5 x 5)

More points are defined in this region generating a new grid (9 x 9 x 9), for
example. The evaluation of the index value associated to the new points generated
is made as follows (Figure 7):

(®/‘ Ll ﬁ/. @ from calibration

O interpolation from the edge
d 9 4 (2 values)

B interpolation in the face
(4 values)

Figure 7. Points Generated Through Interpolation

9. The interface

The interface is divided in two parts: Visualization and Edition of colors. It presents
a fixed menu with four options: File, Index, Interpolation and Contours.

In the option “File”, we can open the input data file. The format of this file is
the following (see Figure 8):
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x200 -0.345421 -0.419010 -0.401535 -0.360107 -0.410598
y200 -0.374845 -0.375820 -0.345422 -0.391471 -0.418082
z200 -0.427808 -0.428414 -0.432152 -0.426594 -0.434873
x300 0366134 0.375101 0.352256  0.409748  0.413160
y300 0354491 0.430227 0.389085  0.340028  0.420292
z300 0427436 0.437159 0.373964 0.363934  0.407025

Figure 8. Input Data File

Each axis of the coordinates has five measurements (taken directly from the
calibration).

9.1. Visualization

The visualization part is composed by three options: Index, Interpolation and Con-
tours.

Under “Index” we can choose by one of the six indexes presented: Largest abso-
lute error, Largest absolute error + displacement origin-point, Average error of the
3 coordinates, Centering, Spreading of the ideal point, Spreading of the center of
the samples.

Under “Interpolation” we can choose one of the four measurement spaces pre-
sented: 5 x5 x5, 9x9x09,17 x 17 x 17, 33 x 33 x 33 samples.

Under “Contours”, the user can choose by the number of contours in the visual-
ization: 4, 6, 8, 10, 12 or others.

9.2. Color edition

| A Visualizagdo VTK - A:\arquivo2.tet

Auquivo Indice Interpolag@o Contomos,

EE

Visualzagio Edicso de Coes |

i@ iniciar | 0 Exploranda - Disqute de .. | &, Paint Shap Pro [ Fabi B ORG 50

Figure 9. Color Edition

The colors to be used are defined in the window shown in Figure 9. This is made
through the manipulation of a color palette presented in the screen. The first cell
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of the palette indicates the color related to value of smallest error, and from here
the user has the following options:

- open a palette;

- work with the default palette;

- modify the colors of the default palette;
- return to default palette.

To plot new images is necessary to click in the button depicted as a small arrow
to the right (see example of visualization below - Figure 10).

Figure 10. Image

10. Example

Considering one input data file containing test data, the measurement index “Aver-
age error of the 3 coordinates”, the measurement space 5 x 5 X 5, 4 contours using
the default palette, the following image was obtained (Figure 11):
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Figure 11. Example

The axes z,y and z are represented in violet, green and blue, respectively. The
small cube shows the origin of the system and the initial position of the grouping
system.

In this example we have that the green region represents a region of small error
and the violet region a region of large error. Thus, it is advisable to place any object
to be measure in the green region, since the average error is smaller there.

11. Conclusions

This paper deals with the practical issues of using computers in the process of
placing objects to be measured by a coordinate measuring machine and to produce
better results, reducing overal error.

Calibration data are used to produce tridimensional error maps. Using such
maps, the operator may choose the best position to place a part according to its
shape and the error that has to be minimized. Moreover, one may produce different
error maps for different purposes and keep the “history” of the CMM recorded
as a series of error maps taken from periodical calibrations. We could perform
comparisons between different machines and automate the process of positioning a
part to minimize error.

According to [7], scientific visualization is the formal name given to the field
of computer science that encompasses user interface, data representation and pro-
cessing algorithms, visual representations, and other sensory presentations such as
sound or touch. In this sense, this paper presents a graphical environment design
oriented to the scientific visualization of the error embedded in the measurement
space of a CMM.
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