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Abstrat. In this paper we present a spatial stohasti model for geneti reombi-

nation, that answers if diversity is preserved in an in�nite population of reombinat-

ing individuals distributed spatially. We show that, for �nite times, reombination

may maintain all the various potential di�erent types, but when time grows in-

�nitely, the diversity of individuals extinguishes o�. So under the model premisses,

reombination and spatial loalization alone are not enough to explain diversity

in a population. Further we disuss an appliation of the model to a ontroversy

regarding the diversity of �Major Histoompatibility Complex� (MHC).

Keywords. Geneti reombination, spatial stohasti model, Major Histoompat-

ibility Complex (MHC).

1. Introdution

Mendelian laws of inheritane, when applied to in�nite populations under random

mating, lead to Hardy-Weinberg laws, whih state that gene and genotype pro-

portions do not hange after the �rst generation [2℄. When onsidered over �nite

populations without mutation, random geneti drift leads the population to ho-

mozigosity, even in the presene of reombination. Our aim is, then, to investigate

how the proportion of di�erent genotypes varies in an in�nite population that is dis-

tributed spatially, trying to verify the role of reombination in this setting, mainly

its impliation for population diversity.

In order to build the model, we onsider some hypotheses whih we expliit in

the sequel:
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i) The population onsists of haploid individuals;

ii) There are an in�nite number of individuals, eah oupying a position in Z;
iii) A newborn individual is always formed by the ontribution of genes from two

distint individuals;

iv) We do not onsider any biohemial or metaboli in�uene on the geneti in-

heritane, i.e., mutations do not our, nor any kind of error during the proess of

geneti inheritane; besides there are no seletive fores ating over the population.

The model realls the �Voter Model�, a stohasti model originally developed

to study the interation of two distint populations ompeting for a territory [3℄.

Stohasti models treat naturally random �utuations that usually happen in the

environment. In population genetis, e.g., it is natural to assume that allele fre-

queny variation is in�uened by probabilisti fators. Then, through the knowledge

of the population state in a generation, and given a reprodution sheme for indi-

viduals, we an determine the probability of reapearane of a sample of genes in

the next generation [6℄.

The modelling proedure an be desribed brie�y as follows. We dispose eah

individual in di�erent positions for eah time step. An individual's genes one step

ahead are inherited from the reombination of its neighbours' genes in the urrent

step with equal probability. This originates a stohasti proess that will be anal-

ysed by a dual proess. The building of this dual proess allows us to look bak on

the evolution of the population and retrieve information about whih individuals

at time step 0 donated the genes that onstitute some individual at time step n.
That is, the dual proess retrieves the genealogy of genes in the population. We

will propose the modelling for 2− and 3−loi individuals, noting that the last gives

opportunity for more reombination to our.

In the next setion we propose the models and obtain some onlusions from

them. In Setion 3. we disuss an appliation to a ontroversy regarding the diver-

sity of �Major Histoompatibility Complex� (MHC). MHC moleules play a key

role in many immune funtions, onsequently, these moleules arise speial medial

interest, sine they are diretly related to organ and tissue rejetion, to pathogeni

suseptibility, as well as to individual variability regarding the suseptibility to dis-

orders of self-immune aetiology.

2. Mathematial modelling

2.1. The 2-loi model

Consider an in�nite population onsisting of haploid individuals, for whih we anal-

yse two distint loi A and B. Eah individual is at a point of Z and eah lous

admits only two alleles. In the �rst generation, the individuals at odd points will

reprodue, their new genes will be a reombination of their neighbours' genes, in

suh a way that, if the individual at position i− 1 is, e.g., A1B1 and the individual

at position i + 1 is A2B2, then the individual at position i in the �rst generation

will be either A1B2 or A2B1 with equal probabilities. In the seond generation, the

individuals at even points will reprodue by the reombination of their neighbours.

And so on. The model building is adapted from the voter model [7℄.
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See the Diagram 1 for an example of how the model evolves.
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Diagram 1: Voter model modi�ed, adapted to genetis.

Let us develop mathematialy the model: Let {V (i, n), i ∈ Z, n ∈ IN} be a set

of random variables uniformly distributed on the interval [0, 1]. De�ne the intervals
I1 = [0, 1/2[ and I2 = [1/2, 1]. For eah n ∈ IN and i ∈ Z onsider the random

vetor X(i, n) = [x1(i, n) x2(i, n)], whih for k = 1, 2, xk(i, n) has either the

value 0 or 1 (only two distint alleles per loum). So, X(n) : Z → {0, 1}2. We

de�ne, then, the dynamis of the model in the following way: if i + n is odd, then

X(i, n) = X(i, n−1); if i+ n is even, then

X(i, n) =

2
∑

α=1

[x1 (i+ (−1)α, n−1) x2 (i− (−1)α, n−1)] 1I[V (i,n)∈Iα].

The initial distribution is given by P (X(i, 0) = [a b]) = πab, for all i ∈ Z, with
∑

a,b=0,1 πab = 1 and πab > 0, for a, b ∈ {0, 1}. The funtion 1IA is the harateristi

funtion of the set A. The initial distribution of a's in the �rst oordinate and b's
in the seond are, respetively,

P (x1(·, 0) = a) =
1

∑

j=0

πaj , and P (x2(·, 0) = b) =
1

∑

i=0

πib,

with a, b = 0, 1.

2.1.1. Dual proess and genealogy

Consider, for eah (i, n) ∈ Z× IN, the proess Y i,n(k) = (yi,n1 (k), yi,n2 (k)), suh that

Y i,n(k) : Z → Z2
is given by Y i,n(0) = (i, i); Y i,n(1) = (i, i) , if i + n is odd; and,

if k = 1 and i+ n is even, or if k > 1

Y i,n(k) = Y i,n(k − 1) +
∑

α,β=1,2

(−1)α(δβ1 , −δβ2)1I[V (yi,n

β
(k−1),n−k+1)∈Iα],
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where δβk is equal to 1 if β = k, and equal to zero otherwise. This proess represents
the genealogy for the individual at position i, in generation n.

The following Diagram 2 represents a possible genealogy for an individual at

generation 5.
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Diagram 2: Genealogy for the individual at position 1, generation 5.

By onstrution of the proess Y i,n
we have the following

Lemma 2.1 (Duality relation, gene phylogeny). The following duality identity is

valid:

X(i, n) =
[

x1(y
i,n
1 (n), 0) x2(y

i,n
2 (n), 0)

]

. (2.1)

The genotype of the individual at position i, generation n, onsists of the gene
at the �rst lous of the individual at the random position yi,n1 (n) and of the gene at

the seond lous of the individual at the random position yi,n2 (n), both pertaining

to the initial generation.

Theorem 2.1. The proportion of genotypes, from the �rst generation on, keeps

onstant.

The proof an be found in Appendix A.

2.1.2. Diversity loss

Consider the following equality, whose validity is shown in Appendix B:

P (X(i, n) 6= X(j, n)) =



1−
∑

a,b=0,1

π2
ab



P
(

Y i,n(n) 6= Y j,n(n)
)

. (2.2)

This equality translates mathematialy an anestrality relation between two individ-

uals hosen at random from generation n. That is, we an infer that the probability

of two individuals having distint genotypes is assoiated with the probability of

their genes having ome from distint anestors in the initial generation. Applying

expression (2.2) and letting n grows to in�nity, we arrive at the following
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Theorem 2.2 (Geneti diversity loss). The probability of X(i, n) being di�erent

from X(j, n) goes to zero for large n. It follows that the geneti diversity does not

keep itself on the population.

Proof. We may onsider yi,n1 a symmetri random walk in Z, without any loss of

generality. On the other hand, yi,n2 walks in Z independently of yi,n1 , exept when

yi,n1 = yi,n2 , beause when they meet eah other, if yi,n1 (k + 1) = yi,n1 (k) + 1, then

we must have yi,n2 (k + 1) = yi,n2 (k) − 1, but if yi,n1 (k + 1) = yi,n1 (k) − 1, then

yi,n2 (k + 1) = yi,n2 (k) + 1. The behaviour of yj,n1 and yj,n2 is analogous.

So, with probability one, yi,n1 will ouple with yj,n1 when n grows to in�nity, sine

they are unidimensional symmetri reurrent random walks [8℄. In the ase that yi,n2

is already equal to yj,n2 , then there is nothing else to prove. In the ase that yi,n2 is

di�erent from yj,n2 , we an hange the point of view and onsider that yi,n2 and yj,n2

are independent proesses from y1 = yi,n1 = yj,n1 . Thus yi,n2 and yj,n2 , unidimensional

symmetri random walks, will ouple with eah other with probability one when n
inreases.

2.2. The 3-loi model

The model for three loi onstitutes an extension of the model for two loi. For

3 distint loi A,B and C, we will have the following reombination possibilities.

If the individual at position i − 1 is, for example, A1B1C1 and the individual at

position i+1 is A2B2C2, then the individual at position i will be either A1B2C2 or

A1B1C2 or A1B2C1 or A2B1C2 or A2B1C1 or A2B2C1 with equal probabilities.

We onsider {V (i, n)} and {U(i, n)} two sets of [0, 1]-uniformly distributed ran-

dom variables . We de�ne Jβ =
[

β−1
3 , β

3

[

, β = 1, 2, and J3 =
[

2
3 , 1

]

. For eah n ∈ IN

and i ∈ Z let X(i, n) = [x1(i, n) x2(i, n) x3(i, n)] be the random vetor where,

for k = 1, 2, 3, xk(i, n) takes the values 0 or 1. That is, X(n) : Z → {0, 1}3. The
initial distribution is given by P (X(i, 0) = [a b c]) = πabc. The model dynamis is:

if i + n is odd, then X(i, n) = X(i, n− 1); if i+ n is even, then

X(i, n) =

2
∑

α=1

3
∑

β=1





x1

(

i− (−1)α+δβ1 , n−1
)

x2

(

i− (−1)α+δβ2 , n−1
)

x3

(

i− (−1)α+δβ3 , n−1
)





T

1I[V (i,n)∈Iα]1I[U(i,n)∈Jβ ].

2.2.1. Dual proess and genealogy

We also build the dual proess for this model. Consider, for eah (i, n) ∈ Z × IN,
the proess Y i,n(k) = (yi,n1 (k), yi,n2 (k), yi,n3 (k)), suh that Y i,n(k) : Z → Z3

is given

by Y i,n(0) = (i, i, i); Y i,n(1) = (i, i, i), if i+n is odd; and if k = 1 and i+n is even,

or if k > 1, then

Y i,n(k) = Y i,n(k − 1)+
∑2

α=1

∑3
β=1

∑3
γ=1(−1)α+1

(

(−1)δβ1δγ1 , (−1)δβ2δγ2 , (−1)δβ3δγ3
)

×1I[V (Y i,n
γ (k−1),n−k+1)∈Iα]1I[U(Y i,n

γ (k−1),n−k+1)∈Jβ ].

By onstrution, it follows
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Lemma 2.2 (Duality relation). The following duality identity is true:

X(i, n) =
[

x1(y
i,n
1 (n), 0) x2(y

i,n
2 (n), 0) x3(y

i,n
3 (n), 0)

]

(2.3)

Theorem 2.3. The proportion of genotypes keeps onstant from the �rst generation

on.

We will skip the proof sine it is, mutatis mutandis, analogous to the proof of

Theorem 2.1.

2.2.2. Loss of diversity

The following identity is valid:

P (X(i, n) 6= X(j, n)) =



1−
∑

a,b,c=0,1

π2
abc



P
(

Y i,n(n) 6= Y j,n(n)
)

. (2.4)

The demonstration is analogous to the demonstration of equality (2.2).

Theorem 2.4. The probability of being Xn(i) di�erent from Xn(j) goes to zero

when n inreases. Therefore it follows that the geneti diversity does not keep itselt

in the population.

Proof. We may onsider, without loss of generality, that yi,n1 and yi,n2 are symmetri

random walks in Z, independent of eah other. On the other hand, yi,n3 moves in Z

independently from (yi,n1 , yi,n2 ), exept when yi,n1 = yi,n2 = yi,n3 , beause when they

meet, we have the following possible impliations:

• if yi,n1 (k + 1) = yi,n1 (k) + 1 and yi,n2 (k + 1) = yi,n2 (k) + 1, then yi,n3 (k + 1) =

yi,n3 (k)− 1,

• if yi,n1 (k + 1) = yi,n1 (k) − 1 and yi,n2 (k + 1) = y2(k) − 1, then yi,n3 (k + 1) =

yi,n3 (k) + 1,

• otherwise, the movement of yi,n3 to the left or to the right happens with equal

probabilities.

We an analyse analogously the movement of yj,n1 , yj,n2 and yj,n3 .

So, the proess yi,n1 will almost surely ouple with yj,n1 when n inreases, and

in the same way, yi,n2 will a.s. ouple with yj,n2 when n inreases, sine they are

unidimensional reurrent symmetri random walks [8℄.

In the ase that yi,n3 is already equal to yj,n3 , then the proof ends.

In the ase that yi,n3 is di�erent from yj,n3 , we an hange the point of view

and take, for example, yi,n3 , yj,n3 and y1 as independent from eah other, where

y1 = yi,n1 = yj,n1 ; besides the movement of y2 = yi,n2 = yj,n2 will depend on that of

yi,n3 and yj,n3 , if yi,n3 = yj,n3 . We onlude, therefore, that when n goes to in�nity,

the probability of yi,n3 and yj,n3 oupling with themselves goes to one.
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2.3. Disussion

Firstly, in eah model, we establish a duality relation between the stohasti pro-

esses X and Y . It follows, by the stohasti proess oupling tehnique, that, in

both models, the probability of two individuals being genetially distint, P (X(i, n) 6=
X(j, n)), goes to zero when n goes to in�nity. That is, the geneti diversity disap-

pears from the population as time goes by.

2.3.1. A omparison between the models

When we augment the number of loi from two to three, the diversity is maintained

longer when reombination is present. To ilustrate this behaviour see Figure 1 that

shows the simulated mean time for Y 0,n
and Y j,n

to ouple, for various values of j
(j = 2, 12, 22, . . . , 102). The more j is distant from 0, it takes longer, in mean, for

Y 0,n
and Y j,n

to assume the same value in Z2
or Z3

. But the oalesene times in

Z3
are longer than in Z2

.

Figure 1: Variation of the oalesene mean time with the initial distane

between individuals.

3. Appliation

3.1. Reombination and diversity of the MHC

The immune system of an organism is omposed of ells and moleules responsi-

ble for the defense against infetions. Even strange non-infetious substanes may
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generate immune responses [10℄. This is the ase about rejetion to grafting and to

transplantations performed between two people immunologially inompatible.

The role played by the immune system is to exhibit antigens against miroor-

ganisms that invade the body to the lymphoytes that eliminate these pathogens.

Speialized proteins, the Human Leukoyte Antigens (HLA), exeute this fun-

tion; they are odi�ed by a highly polygeni, polymorphi system, alled �Major

Histoompatibility Complex� (MHC).

The term �major histoompatibility omplex� derived from researhes in whih

tissues were transplanted between members of the same speies. Rejetion ouring

in many transplantations was thought of being determined by one gene solely, that

was alled the major histoompatibility gene. Later, it was disovered that this

gene was in fat a omplex, an ensemble of genes inherited as one that sine has

been known as the major histoompatibility omplex (MHC). Today, it is known

that eah speies has an MHC ontaining multiple genes.

MHC genes appear in all vertebrates, in humans they are designated Human

Leukoyte Antigens (HLA), sine they were initially deteted in leukoytes. The

human MHC is odi�ed mainly by a region of the 6th hromosome that ontains

more than 200 genes [9℄. At least six polymorphi geni loi, separated and orga-

nized in lusters, were de�ned in a unique area of the 6th hromosome [4℄. They

are the most polymorphi of the human genome, having hundreds of stable forms

(alleles) for eah gene in the population already desribed. For example, a gene of

the human MHC that is polymorphi is HLA-B. Nowadays it has more than 150
alleles desribed. Nevertheless, this polymorphism is not valid for all MHC genes,

some of them have little polymorphism or are monomorphi. Approximately 224
geneti loi were identi�ed englobing 3.5 megabases (Mgb) of DNA in MHC regions.

Possibly 180 genes are expressed and around 40% of them have some funtion in

the immune system. This region was one of the �rst �multimegabase� of the human

genome whih was ompletely sequened [9℄.

MHC polymorphism is a onsequene of vertebrates' evolutionary response

against invasion by miroorganisms; thus it reassures the ontinuity of the speies,

even in the presene of pandemis. Some individuals may survive a pandemi due

to the protetive e�et of MHC geneti polymorphism. The polymorphisms at

the binding region with the antigen determine the spei�ity of peptide binding.

Therefore the MHC moleule binds only with some few peptides among the many

at disposal around the ellular miro-environment [9℄. Beause of polymorphism it

is improbable the existene of two individuals that express idential MHC moleules.

This huge diversity is the main obstale for organ and tissue transplantation suess.

MHC moleules have another essential harateristi: they are polygeni. Being

polygeni means that these moleules are odi�ed by multiple independent genes.

They are inherited in lusters alled haplotypes and expressed o-dominantly in

eah individual [10℄.

3.1.1. Controversy

Another important MHC harateristi is reombination. Nevertheless the hy-

pothesis that reombination ontributes to the diversity of MHC throughout popu-
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lations is still disputed, sine few omparative researhes have omputed estimates

of this omplex reombination rates [11℄.

5

The spatial stohasti model for reombi-

nation presented above shows that reombination is able to maintain MHC diversity

in a population through long time periods, but when time goes to in�nity, diversity

goes to zero almost surely.

The model puts in relevane the importane of polymorphism, polygeny and

reombination to the diversity of MHC moleules. Other issues suh as the MHC

odominant pattern or the existene of more than 3 alleles for one lous for most

of MHC genes are not onsidered.

6

On the other hand, the variability of MHC system evokes a series of questions

of sienti� interest on its own, related to MHC unommon polymorphism, natural

evolution, biologial funtion of its diverse genes and their ations on the immune

system. Due to MHC geneti polymorphism it is improbable to �nd two individuals

that express idential MHC moleules. This suh great diversity is the main ob-

stale to suessful organ and tissue transplantations [10℄. Nonetheless, aording

to the onlusions of the mathematial model developed above, this diversity will

extinguish o� in the long run. Therefore, the observed diversity of MHC moleules

is not likely to depend on their high polymorphism, high polygeny, or on the great

number of loi involved in reombination; if it is not a transient e�et, this diversity

may be due to other fators suh as mutation.

3.2. Other pratial issues

Reombination is reognized as an important fator potentially leading to evolution

advantage in populations [2℄, due to its role on the maintenane of population diver-

sity. But reombination solely, in spatially distributed in�nite populations, is not

able to maintain diversity for longer times, in the ontext proposed by the models

desribed in this paper, for a �nite number of loi. However, further researh should

be developed in order to put in relevane other harateristis not onsidered so far,

for example, reprodution of diploid individuals, seletive pressure, dominane rela-

tion between genes, or number of alleles per loum. It is likely that, e.g., inreasing

the number of possible alleles for eah lous, diversity will take longer to disappear

from the population.

Another important aspet is the rate of reombination whih may not be the

same or onstant through the population. This is a relevant issue, e.g., for phylo-

geneti tree estimation. If high rates of reombination are ommon in MHC genes,

re-evaluation of many inferene-based phylogeneti analyses of MHC loi, suh as

estimates of the divergene time of alleles and trans-spei� polymorphism, may be

required [11℄.

5

In the absene of reombination, the genes of HLA omplex are inherited as an isolated unity

of the 6th hromosome, the haplotype; the probability of two brothers being HLA-idential is

25%, aording to Mendel laws: the hild inherits a haplotype from the father and another from

the mother.

6

It is worth noting that the MHC moleule is odi�ed by genes pertaining to 6 loi, eah proper

subset of them having potential probability of reombination.
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4. Conlusion

We proposed a mathematial model apable to verify the interferene of reombina-

tion in the diversity of a spatially distributed in�nite population. From the model,

we onlude that, as time inreases, the probability of taking two distint individ-

uals with the same geneti load, goes to one. Besides, the greater the number of

reombining loi onsidered, the longer the population diversity is maintained.

When the model was applied to the reombination of MHC moleules, we found

that reombination was not a su�ient ause to the maintenane of MHC diversity.

Appendix

A Proof of Theorem 2.1

By the duality relation (2.1), for n ≥ 1, we have

P (X(i, n) = [a b]) = P
(

[x1(y
i,n
1 (n), 0) x2(y

i,n
2 (n), 0)] = [a b]

)

=
∑

r,s∈Z P ([x1(r, 0) x2(s, 0)] = [a b])P (Y i,n(n) = (r, s))

=
∑

r,s∈Z

(

∑1
j=0 πaj

)(

∑1
i=0 πib

)

P (Y i,n(n) = (r, s))

=
(

∑1
j=0 πaj

)(

∑1
i=0 πib

)

∑

r,s∈Z P (Y i,n(n) = (r, s))

=
(

∑1
j=0 πaj

)(

∑1
i=0 πib

)

B Proof of Equality (2.2)

P (X(i, n) 6= X(j, n))

= P
([

x1(y
i,n
1 (n), 0) x2(y

i,n
2 (n), 0)

]

6=
[

x1(y
j,n
1 (n), 0) x2(y

j,n
2 (n), 0)

])

=
∑

ri 6=rj or si 6=sj

P ([x1(ri, 0) x2(si, 0)] 6= [x1(rj , 0) x2(sj , 0)])

×P
(

Y i,n(n)=(ri, si), Y
j,n(n)=(rj , sj)

)

=
∑

ri 6=rj or si 6=sj

[1−P ([x1(ri,0) x2(si,0)]=[x1(rj ,0) x2(sj ,0)])]

×P
(

Y i,n(n)=(ri,si), Y
j,n(n)=(rj ,sj)

)

=
(

1−
∑1

a,b=0 π
2
ab

)

∑

ri 6=rj or si 6=sj

P
(

Y i,n(n) = (ri, si), Y
j,n(n) = (rj , sj)

)

=
(

1−
∑

a,b=0,1 π
2
ab

)

P
(

Y i,n(n) 6= Y j,n(n)
)
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