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Abstract. Subspace identification has been a topic of research along the last years.

Methods as MOESP and N4SID are well known and they use the LQ decomposi-

tion of certain matrices of input and output data. Based on these methods, it is

introduced the MON4SID method, which uses the techniques MOESP and N4SID.
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1. Introduction

Nowadays, an engineer’s work consists more and more of obtaining mathemati-
cal models of the studied processes [15]. A major part of the literature referring
to system identification deals with how to find polynomial models as Prediction
Error Methods (PEM) and Instrumental Variable Methods (IVM). In case of com-
plex systems, the state space model appears as an alternative to PEM and IVM
models [22]. For multivariable systems, these methods provide reliable state space
models directly from input and output data. As systems of large dimensions are
usually found in industry, the application of subspace identification algorithms in
this field is very promising [3, 8, 10, 14, 16, 17, 24]. Each subspace identification
method is different from the other ones in concept, interpretation and computa-
tional implementation. An identification generalization is presented in [18]. In [9] a
comparative study among the three most commonly used algorithms, i.e., Canonical
Variate Analysis (CVA) [13], Multivariable output-Error State sPace (MOESP) [21]
and Numerical algorithms for Subspace State Space System IDentification (N4SID)
[19] was made. For further details about these algorithms, the reader can consult
[2, 6, 7, 12, 17, 21, 22, 23, 4].

In this work it is shown, in a summarized form, the operation of POMOESP [20]
and N4SID [19] methods. Combining these methods, it is obtained the MON4SID
algorithm, which estimates the extended observability matrix in the same way that
POMOESP method; the state sequence is computed through the oblique projection
as is done in N4SID method; from this sequence it is obtained the past and future
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states and finally a consistent estimate of the system matrices is obtained applying
the least squares method.

Other form for integrating these methods can be found in [11], in which the au-
thor aimed at reducing the computational complexity, dividing MOESP and N4SID
algorithms in modules, separating them in independent parts. Afterwards, he used
the computationally fastest modules of each algorithm.

1.1. Subspace identification

Linear time invariant systems models, operating in discrete time, are dealt with in
the dynamic subspace identification methods. These systems can be described by
models in the innovation form

x(k + 1) = Ax(k) +Bu(k) +Ke(k) (1.1)

y(k) = Cx(t) +Du(k) + e(k), (1.2)

where the symbols represent the input u(k) ∈ ℜm, the output y(k) ∈ ℜl, the state
x(k) ∈ ℜn and the Kalman filter gain K. e(k) ∈ ℜl, is zero-mean Gaussian white
noise and independent of past input and output data. A, B, C, and D are matrices
with appropriate dimensions.

1.2. Subspace identification problem

The subspace identification problem: given u(k) and y(k) a set of input-output
measurements aims to, determine the order n of the unknown system, the system
matrices (A, B, C, D) up to within a similarity transformation and Kalman filter
gain K [19].

1.3. Subspace matrix equation

Performing successive iterations in equation (1.1) and (1.2), one can derive the
following matrix equation

Yf = ΓiXf +Hd
i Uf +Hs

i Ef , (1.3)

where subscript f stands for the “future” and p for the “past”. The matrices Hd
i and

Hs
i are defined as

Hd
i =











D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAi−2B CAi−3B · · · D











, (1.4)

Hs
i =











I 0 · · · 0
CK I · · · 0

...
...

. . .
...

CAi−2K CAi−3K · · · K











. (1.5)
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The past and future input block-Hankel matrices are defined as

Up =











u0 u1 · · · uj−1

u1 u2 · · · uj

...
...

. . .
...

ui−1 ui · · · ui+j−2











, (1.6)

where Up, and Uf ∈ ℜmixN . The output and noise innovation block-Hankel matrices
Yp, e Yf ∈ ℜlixN and Ep, and Ef ∈ ℜmixN , respectively, are defined in a similar
way to (1.4). The states are defined as

Xp = X0 =
[

x0, · · · xj−1

]

, (1.7)

Xf = Xi =
[

xi, · · · xi+j−1

]

. (1.8)

The extended observability matrix Γi is given by

Γi =











C
CA
...

CAi−1











. (1.9)

1.4. Orthogonal projection

The orthogonal projection of the row space of Ax into the row space of Bx is, [19],

Ax/Bx = AxBx(BxB
t
x)

†Bx, (1.10)

where (.)† denotes the Moore-Penrose pseudo-inverse of the matrix (.). The projec-
tion of the row space of Ax into the orthogonal complement of the row space of Bx

is, [19],

Ax/B
⊥
x = Ax −Ax/Bx. (1.11)

1.5. Oblique projection

The oblique projection of the row space of G along the row space H into the row
space of J is, [19],

G/HJ = [G/H⊥].[J/H⊥]†.J . (1.12)

Properties of the orthogonal and oblique projections

Ax/A
⊥
x = 0, (1.13)

Ax/Ax
Cx = 0. (1.14)

For a proof, see [19].
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2. Identification Methods

2.1. MOESP identification Method

Inside the MOESP family, there is the POMOESP method, which solves the problem
in section 1.3, by means of an approximation of the extended observability matrix
Γi. Therefore, it is necessary to eliminate the last two terms in the right hand side
of equation (1.3). That is done in two steps:

First, eliminating the term Hd
i Uf in (1.3), performing an orthogonal projection

of equation (1.3) into the row space of U⊥
f yields

Yf/U
⊥
f = ΓiXf/U

⊥
f +Hd

i Uf/U
⊥
f +Hs

i Ef/U
⊥
f . (2.1)

By the property (1.11) it results in Uf/U
⊥
f = 0. Equation (2.1) can be simplified to

Yf/U
⊥
f = ΓiXf/U

⊥
f +Hs

i Ef/U
⊥
f . (2.2)

Second, to eliminate the noises in (2.2), it is defined an instrumental variable Z =
[U t

pY
t
p ]

t . Multiplication of (2.2) by Z yields

Yf/U
⊥
f Z = ΓiXf/U

⊥
f Z +Hs

i Ef/U
⊥
f Z . (2.3)

As it is assumed that the noise is uncorrelated with input and output past data
[20], that means that Ef/U

⊥
f Z = 0.Therefore, (2.3) is written as

Yf/U
⊥
f Z = ΓiX̂f . (2.4)

In equation (2.4) Xf/U
⊥
f Z = X̂f is the estimate of the Kalman filter state. Equa-

tion (2.4) indicates that the column space of Γi can be calculated by the SVD
decomposition of Yf/U

⊥
f Z. For further details, see [19].

2.2. N4SID identification method

N4SID method solves the problem in section 1.3 by means of an approximation of
past and future Kalman filter state sequence. From the Theorem 12 in [19],

X̃i = Γ†
iΘi, (2.5)

where Θi = Yf/Uf
Wp which is achieved by performing an oblique projection of

equation (1.3), along the row space Uf onto the row space of Wp, that is

Yf/Uf
Wp = ΓiXf/Uf

Wp +Hd
i Uf/Uf

Wp +Hs
i Ef/Uf

Wp . (2.6)

It is easy to see that the last two terms of equation (2.6) are null, Uf/Uf
Wp = 0

by the property of the oblique projection, equation (1.12); Ef/Uf
Wp = 0 by the

assumption that the noise is uncorrelated with input and output past data [19].
Thus, equation (2.6) can be simplified to

Yf/Uf
Wp = ΓiX̃i, (2.7)
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where X̃i = Xf/Uf
Wp and Wp = [U t

pY
t
p ]

t. Then equation (2.7) is written as

Θ = ΓiX̃i. (2.8)

Equation (2.8) indicates that the column space of Γi can be calculated by the
SVD decomposition of Θ and Γi can be calculated as, [19],

Γi = U1S
1/2
1 . (2.9)

Once are known Θ and Γi, it is easy to compute X̃i (calculated from (1.6)). Now
X̃i+1 can be calculated as, [19],

X̃i = Γ†
i−1

Θi+1, (2.10)

where Θi+1 = Y −
f /U−

f

W+
p and Γi−1 denotes the matrix Γi without the last l rows.

For further details, see [19] or [6].

2.3. MON4SID identification method

In this subsection, it is presented the MON4SID method. To solve the problem in
section 1.3, it is used the POMOESP method to calculate the extended observability
matrix Γi and the N4SID method is employed to calculate the matrices (A, B, C,
D) through the least squares method.

Γi, given in (2.4), can be derived from a simple LQ factorization of a matrix
constructed from the block-Hankel matrices Uf , Up and Yf , Yp, in the form





Uf

Wp

Yf



 =





L11 0 0
L21 L22 0
L31 L32 L33









Q1

Q2

Q3



 , (2.11)

and the orthogonal projection in the left side of (2.4) can be computed by matrix
L32 [20]. The SVD of L32 can be given as

L32 =
[

U1 U2

]

=

[

Sn 0
0 S2

] [

V t
1

V t
2

]

= USV t. (2.12)

The order n of the system is equal to the number of non-zero singular values in
S. The column space of U1 approximates that of Γi in a consistent way [20], that is

Γi = U1. (2.13)

The system (1.1)-(1.2) can be written as

[

X̃i+1

Yi|i

]

=

[

A B
C D

] [

X̃i

Ui|i

]

+

[

r1
r2

]

. (2.14)

In equation (2.14), suppose (ideally) that X̃i+1 and X̃i are given, then the
system matrices (A,B,C,D) could be computed through the least squares method.
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Therefore, the problem now is to find the state sequences. The oblique projection
Θi given in equation (2.8) can be computed from (2.11) by

Θi = Yf/Uf
Wp = L32[L32]

−1
[

L21 L22

]

[

Q1

Q2

]

. (2.15)

An estimate of the state sequence X is given by

Γi = Γ†
iL32[L32]

−1Wp. (2.16)

The following matrices are defined: X̃i = X(:, 1 : N − 1), X̃i+1 = X(:, 2 : N).
Thus, the system matrices can be estimated from equation (2.14). The Kalman
gain K can be estimated from [19] or [20]

K = [G−APCT ][Λ0 − CPCT ]−1, (2.17)

where P is the forward state covariance matrix, which can be determined as solution
of the forward Riccati equation

P = APAT + [G−APCT ][Λ0 − CPCT ]−1[G−APCT ]T . (2.18)

We have then the following algorithm

Algorithm MON4SID

1) Compute the matrices Uf , Up and Yf , Yp and the LQ factorization given in
(2.11).

2) Compute the SVD of the matrix L32 from (2.11).
3) Determine the system order by inspection of the singular values in S given in

(2.12).
4) Determine Γi from equation (2.13) and the state sequence X from (2.16),

determine Xi+1 and Xi. 5) Compute the matrices A,B,C, and D from equation
(2.14).

3. Simulation

In this section it is employed the Shell benchmark [5], [25] to evaluate the perfor-
mance of the MON4SID algorithm and to compare it with other existing identifica-
tion algorithms (PEM, MOESP and N4SID). The Shell benchmark is a model of a
two-input two-output distillation column. The inputs are overhead vapor flow (D)
and reboiler duty (Q); the outputs are column pressure (P) and product impurity
(X). The model of the process is given as follows

P (t) =
−0.6096+ 0.4022q−1

1− 1.5298q−1 + 0.5740q−2
D(t) +

−0.1055+−0.0918q−1

1− 1.5298q−1 + 0.5740q−2
Q(t) +

+
Ns

1− 1.5945q−1 + 0.5945q−2
ep(t), (3.1)
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ep(t) is the white noise which generates the disturbance in the pressure. The pa-
rameter Ns is used to set the noise level in the simulation. For this study three
values are used: 0.2, 0.5 and 1 and they are called 20 % , 50 % and 100 % noise
level simulation. The standard deviation of the noise is 1.231. The model of the
impurity (X) is slightly nonlinear. It is given by

X(t) = 0.0765
500000

Q(t− 7)− 1500
+ 0.9235X(t− 1) +

+
Ns

1− 1.6595q−1 + 0.6595q−2
ex(t), (3.2)

where ex(t) is white noise with standard deviation 0.677. The Shell benchmark
works around the nominal values Dnom = 20 ; Qnom = 2500; Pnom = 2800;
Xnom = 500. It was used a PRBS signal which is persistently exciting of any
finite order, obtaining sufficiently informative open-loop experiments. It was col-
lected 1000 samples, 800 samples were used for estimation and the remaining
200 samples were used for validation. The pre-treated signals were of the form
Fx = (F − Fnom)/(std(F )) where F can be D,Q, P or X .

4. Model Order Estimation

There is an extensive literature on algorithms to estimate the model order of a linear
system in state space. In the subspace algorithms the determination of the model
order n is very subtle. Ideally, this information can be determined by the number
of singular values different from zero of the orthogonal or the oblique projections
of row spaces of the Hankel’s block matrix of input and output data. Nevertheless,
when the system data contains noise, this number is not easy to calculate. In Figure
1, it is shown the spectrum of SVD values of the process with different values of Ns.
Another procedure is to select the value n, which minimizes the estimation errors, a
technique used by algorithms such as PEM, which requires a higher computational
effort. There is a statistical criterion that can help obtaining the model order: the
Akaike Information Criterion (AIC), defined in [1],

AIC(n) = ρ.ln[σ2
error(n)] + 4Pn, (4.1)

where ρ is the number of samples used in the identification, σ2
error(n) is the variance

of modeling error for a model of order n with Pn parameters. The index AIC(n)
normally reaches a minimum for a certain number of parameters in the model. The
application of the AIC criterion to the process with Ns = 0.2 is shown in Figure 2,
where one can observe that the minimum value occurs for n = 6.

5. Model Performance

When there are families of models, one wants to know which of them is the most
appropriate for a certain objective, since there is not a model that represents the
real system in all its aspects. To evaluate the quality of the model, it is necessary
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Figure 1: Spectrum of SVD for different values of Ns.
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Figure 2: Spectrum of AIC with Ns = 0.2.

a criterion to measure the distance between the model and the real system. Per-
formance indicators very used are mean relative square error (MRSE) and mean
related variance (MVAF), which are defined as

MRSE(%) =
1

l

l
∑

i=1

√

√

√

√

N
∑

j=1

(y − ŷ)2/

N
∑

j=1

(ŷ)2. 100, (5.1)

MVAF (%) =
1

l

l
∑

i=1

(

1− var(y − ŷ)/var(y)
)

. 100, (5.2)

where y is the real output and ŷ is the output estimated by the obtained model.
The MRSE index is usually used in the literature and the MVAF index is used by
the SMI Toolbox. Both performance indexes are used to evaluate the quality of the
model obtained by each algorithm, as shown in Table 1 (for Ns = 0.2 and order
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n = 6), Table 2 (for Ns = 0.5 and order n = 6) and Table 3 (for Ns = 1 and order
n = 7).

Table 1: Numerical results of algorithm performance for Ns = 0.2 .

Algorithm Processing time(s) MRSE (%) MVAF (%)

N4SID 0.703 2.7623 99.7376
MOESP 0.312 7.0001 98.4672

MON4SID 0.407 2.4367 99.7670
PEM 3.609 7.5114 98.9544

PEM (n=7) 4.953 2.3579 99.7364

Analyzing the values of Table 1, the MON4SID model is the best one in terms
of cross validation. It is verified that the processing time to obtain the model
is smaller for MOESP and is much larger for PEM. The MON4SID model was
chosen to identify the Shell benchmark process, due to the good balance between
its performance and processing time. The PEM model gives better performance
with n = 7.

Table 2: Numerical results of algorithm performance for Ns = 0.5 .

Algorithm Processing time(s) MRSE (%) MVAF (%)

N4SID 0.672 3.5803 99.3617
MOESP 0.297 5.3490 98.3046

MON4SID 0.400 2.9910 99.4758
PEM 0.3594 3.5728 99.3316

Table 3: Numerical results of algorithm performance for Ns = 1 .

Algorithm Processing time(s) MRSE (%) MVAF (%)

N4SID 0.703 3.7106 99.1107
MOESP 0.396 4.3724 98.4669

MON4SID 0.407 3.1619 99.3167
PEM 4.453 3.4401 99.1423

Figure 3 shows the outputs generated by the process and by the identified model
for Ns = 0.2. It can be observed that, for a given operating range, the identified
model reproduces very well the main dynamic characteristics of the Shell benchmark
process. Zero initial conditions were considered.

Analyzing the values in Tables 2 and 3, the MON4SID model is the best one in
terms of cross validation. It is verified that the processing time to obtain the model
is smaller for MOESP and is much larger for PEM.
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Figure 3: Comparison of process response (broken line) versus MON4SID model
response (continuous line).

6. Conclusions

In this work, it was presented the MON4SID algorithm, which uses LQ factorization
in the same way as the MOESP method, which is used to compute the oblique and
orthogonal projections; given these projections it is computed the state sequence
and the extended observability matrix, respectively. The past and future state
sequences are computed from the state sequences which have only one initial state,
it does not happen in the N4SID method, since for each oblique projection (Θi and
Θi+1 ) different state sequences (X̃i+1 and X̃i ) are computed, generating a problem
of bias in the estimates. To evaluate this algorithm, three identification algorithms
(MOESP, N4SID, PEM) were applied to the Shell benchmark process, to identify
a MIMO model in discrete time state space and their results were compared. It is
possible to observe that a linear model can provide a good description of a non-linear
system within a certain operating range. The Akaike criterion provided the model
order. The performance comparison was made according to cross validation for each
algorithm, employing two different performance criteria. For this specific case, the
MON4SID model was chosen, due to its performance and processing time. PEM
was the slowest model out of the four tested ones. The obtained model is observable,
controllable and asymptotically stable within a certain range of operation, and it
can be applied in control and monitoring applications.

Resumo. Identificação por subespaços tem sido um tema de pesquisa ao longo

dos últimos anos. Métodos como MOESP e N4SID são bem conhecidos eles usam

a decomposição LQ de certas matrizes de dados de entrada e saída. Com base

nestes métodos, é apresentado o método MON4SID, que usa a técnica dos métodos

MOESP e N4SID.



Subspace Identification for Industrial Processes 193

References

[1] H. Akaike, Information theory and an extension of the maximum likelihood
principle. In: Second International Symposium on Information Theory, Bu-
dapest, Hungary. (B.N. Petrov, F. Csaki, eds.), pp. 267–281, 1973.

[2] T. Backx, “Identification of an Industrial Process: A Markov Parameter Ap-
proach”, Ph.D. Thesis, Technical Univ. Eindhoven, The Netherlands, 1987.

[3] S.D.M. Borjas, C. Garcia, Subspace identification using the integration of
MOESP and N4SID methods applied to the Shell benchmark of a distilla-
tion column, artigo aceito 9th Brazilian Conference on Dynamics Control and
their Applications DINCON 2010, Serra Negra/SP Brasil, pp. 57, 2010.

[4] S.D.M. Borjas, C. Garcia, Modelagem de FCC usando métodos de identificação
por predição de erro e por subespaços, IEEE América Latina, Revista virtual
- na Internet, 2, No. 2 (2004), 108–113.

[5] B. Cott, Introduction to the Process Identification, Workshop at the 1992
Canadian Chemical Engineering Conference, Journal of Process Control, 5,
No. 2 (1995), 67–69.

[6] K. De Cock, B. De Moor, Subspace identification methods, in Contribution to
section 5.5, Control systems robotics and automation of EOLSS, UNESCO En-
cyclopedia of life support systems, (Unbehauen H.D.), 1 of 3, Eolss Publishers
Co., Ltd., Oxford, UK, pp. 933–979, 2003.

[7] B. De Moor, P. Van Overschee, W. Favoreel, Algorithms for subspace state
space system identification - an overview, In Applied and computational con-
trol, signal and circuits, (B. Datta Ed.), Vol. 1, pp. 247-311. Birkhauser: Boston
(Chapter 6), 1999.

[8] W. Favoreel, B. De Moor, P. Van Overschee, Subspace state space system
identification for industrial processes, Journal of Process Control, 10, No. 2-3
(2000), 149–155.

[9] W. Favoreel, S. Van Huffel, B. De Moor, V. Sima, M. Verhaegen, Comparative
study between three subspace identification algorithms, Niconet, 1998.

[10] B. Haverkamp, Efficient implementation of subspace method identification al-
gorithms, Niconet, 1999.

[11] B. Haverkamp, M. Verhaegen, “SMI Toolbox: state space model identifica-
tion software for multivariable dynamical systems”, Vol. 1, Delft University of
Technology, The Netherlands, 1997.

[12] T. Katayama, “Subspace Methods for System Identification”, Springer, London,
2005.



194 Borjas and Garcia

[13] W. Larimore, Canonical variate analysis in identification, filtering and adaptive
control, In “Proc. 29th Conference on Decision and Control”, Hawai, USA, pp.
596–604, 1990.

[14] W. Larimore, Automated multivariable system identification and industrial
applications, In: “American Control Conference, ACC’99”, San Diego, CA,
Proceedings, Vol. 2, pp. 1148–1162, 1999.

[15] L. Ljung, “System Identification Theory for the User”, Prentice Hall Englewood
Cliffs, NJ, 1999.

[16] G. Mercere, L. Bako S. Lecouche, Propagator-based methods for recursive sub-
space model identification, Signal Processing, 88, No. 3 (2008), 468-491.

[17] P. Roberto, G. Kurka, H. Cambraia, Application of a multivariable input-
output subspace identification technique in structural analysis, Journal of

Sound and Vibration, 312, No. 3 (2008), 461–47.

[18] P. Van Overschee B. De Moor, A unifying theorem for three subspace system
identification algorithms, Automatica, (Special Issue on Trends in System
Identification), 31, No. 12, (1995), 1853–1864.

[19] P. Van Overschee B. De Moor, “Subspace Identification for Linear Systems:
Theory, Implementation, Applications”, Dordrecht: Kluwer Academic Publish-
ers, 1996.

[20] M. Verhaegen, P. Dewilde, Subspace model identification. part i: the output-
error state-space model identification class of algorithms, International Journal

of Control, 56, No. 1 (1992) 1187–1210.

[21] M. Verhaegen, Identification of the deterministic part of MIMO state space
models given in innovation form from input-output data, Automatica (Special
issue on Statistical Signal Processing and Control) , 30, No. 1, (1994) 61–74.

[22] M. Viberg, Subspace methods in systems identification. In: 10th IFAC Sympo-
sium on System Identification, SYSID’94, Copenhagen, Denmark, Proceedings,
Vol. 1, pp. 1–12,1994.

[23] M. Viberg, Subspace-based methods for the identification of linear time-
invariant system. Automatica, (Special Issue on Trends in System Identifica-
tion), 31, No. 12 (1995), 1835-1851.

[24] M. Viberg, Subspace-based state-space system identification, Circuits, Systems

and Signal Processing, 21, No. 1 (2002), 23–37.

[25] Y. Zhu, Multivariable process identification for MPC: the asymptotic method
and its applications, Journal of Process Control, 8, No. 2, (1998) 101–115.


